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alors n'est autre qu'un des fibrés vectoriels obtenus par le principe de

clivage appliqué à Dans ce cas <fii ptet cc(Pi) est la fonction coordonnée

Xi sur l'algèbre de Lie R" de T.

3) On peut obtenir la formule ci-dessus sans utiliser la factorisation

q*£> © £i, mais seulement en utilisant 2) et la naturalité de la transgression.

En effet, factorisons q en

E(P)IT^E(t>P)IT'

où r(xT) (xxl)T' pour xeE(P)et s(yT') yUn pour
Comme E ($P/T') est homotopiquement équivalent à l'espace des drapeaux

D (£), on a

s*(c(o) n(i+T?

d'après 2). Par naturalité de la transgression,

r* os*(c(£)) Y\(l+i:p °4>* ov(pi)),
T

donc

g*(c(0) n(1+Tr° v(^i)) n(1+Tr (<»>))
T T

en posant pt o $ et œt v

5. Classe de Chern d'un espace homogène presque complexe

En utilisant les notations du §1, soit GjU un espace homogène, dont le

fibré tangent £ est muni d'une structure complexe J invariante par G. On

va chercher les composantes irréductibles de la représentation isotrope
complexe iJ restreinte à un tore T contenu dans U. On désignera par g et u

les algèbres de Lie de G et U.

On va d'abord voir que iJ est induite par Ad : G -» AutR g, cette
dernière étant définie par g |-> dag (1), où ag est l'automorphisme intérieur de

G déterminé par g e G. En effet, si 7i : G -> GJU est l'application canonique,
on a dn (1) o Adu d(no<ju) (1) i (u) o dn (1) pour ue U, puisque
n ° <*u (#) USU u on (g), en interprétant u comme translation à

gauche de G/ U. Donc Ad u, u e U, est un automorphisme de la suite exacte
0 —> u — g dK> {GjU)o 0, induisant l'automorphisme i (u) de (G/U)0.
Complexifions cette suite exacte. Alors:

1) La représentation iJ 0 1 de U dans (GjU)0 0 C est équivalente à
i~J © i~ J, où iJ est la représentation conjuguée de iJ. Cela résulte du fait que



— 312 —

si V est un espace vectoriel complexe de base (ek), V ® C admet la C-base

£k ek 0 1 ~ *ek ® h £k ek ® 1 + iek ® i- Etant donné un C-auto-
morphisme u de V par u (ek) J] ujk ej> on a

2) Si T est un tore maximal dans G, donc aussi dans U, alors u ® C

admet un supplémentaire V dans g 0 C invariant par Ad 0 1 | T. En effet,

l'algèbre de Lie t Rn de T devient une sous-algèbre de Cartan t 0 C de

u 0 C et g 0 C simultanément. Le théorème de structure g 0 C (70C) 0
0 Va, où a décrit l'ensemble R (G) des racines de G, et u 0 C (70C)©
© Vß, où ß décrit R (U), montre que l'espace vectoriel V — © Va

est un supplémentaire de u 0 C, invariant par ad t 0 C. Toute racine a

est une forme C-linéaire sur t 0 C dont la restriction à t est égale à i<xR, otR

étant une forme R-linéaire sur t Rn. Il existe une base (ej de V, ea e Va,

par rapport à laquelle la matrice de ad x, x e R", est

Comme Ad (exp ix) est la matrice exponentielle de cette dernière, on voit
d'une part que V est invariant par Ad (t) 0 1, A t exp ix e T\ et d'autre

part que les composantes irréductibles de Ad | T sont données par les homo-

morphismes t exp ix |-> exp i aR (x) de T dans U±.

D'après ce qui précède, si T est maximal dans G, les représentations
iJ 0 iJ | T et Ad 0 1 | T sont équivalentes. Donc les composantes irréductibles

iJa de iJ sont celles de Ad 0 1 | T prises seulement avec l'un des signes

+ ou —. Elles correspondent à un ensemble de racines positives. La donnée
de ces signes détermine d'ailleurs la structure complexe J de (G/U)0, en

vertu de dim Va 1. En posant co* v (z^), on a la

Proposition : Soit G/U un espace homogène presque complexe, tel que U
contienne un tore maximal T dans G. Alors, si q : G/T G/U est

l'application canonique, on a q* (c (G/U)) J~J (1+tGt (œa)) où a

parcourt les racines positives de R (G) — R (U) et c (G/U) est la classe

totale de Chern du fibré tangent £ à G/ U, muni de la structure complexe
invariante J.

j
u ® 1 (sk) X Ujk Sj et m (g) 1 (4) X Ujk éj

a e R (G) - R (U)
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Preuve : Il suffit de se rappeler que £J est associé au U-fibré principal G v

par la représentation iJ de U, et d'appliquer la formule trouvée au § 4.

Convention d'écriture: On écrit seulement — ctJR au lieu de tGt (co„),

de sorte que la formule précédente devient

q* (c (G/ [/)) na-4).
Exemple :

Reprenons PC" (cf. §1), pour lequel on sait que xa — xu a > 1,

donc q*(c(PCn)) Considérons C"+1 comme fibré vec-
a> 1

toriel C sur un point a. En composant q : Un+ 1/T -» PC" avec l'application
constante s : PC" -» a, on obtient l'application constante r : Un+ 1/T a.

D'après la remarque 2) du §4, ,s*(c (Q s'écrit J^[ (1 — xt). Donc [^(1 — xt) 1

i— 1

dans A H* (Un+ JT; Z), puisque c (Q 1. D'où l'identité J"| (Z—x,)
Xn dans l'anneau des polynômes en X à coefficients dans A. En substituant

1 + xt à X, on obtient q* (c(PCn)) (1+Xj)". On a £ © £",
avec de rang 1, puisque £ est associé à un U1 X — fibré principal par
iJ, et n'est autre que r* c'est-à-dire par construction y. Donc xx

q* (t), où t engendre H2 (PC"; Z). Comme g* est injectif en vertu du
principe de clivage, on en tire c(PC") (1 + 0".

On trouvera de profondes applications de la proposition dans [4].

Appendice : le principe de clivage

Soit £ un fibré vectoriel complexe de rang n sur un espace connexe X.
Considérons l'espace P (<!;) des droites contenues dans les fibres de £, ainsi
que la projection q : P (£) -» X induite par n : E (£) X.

Alors :

1) q*Ç contient le sous-fibré X de rang 1, déterminé par les couples
(d, x) e P (£) x E (£) avec x e d, de sorte que q*Ç œ X © + ;

2) q* : ET* (Z) H* (P (£)) est injectif pour les coefficients entiers.

Pour prouver 2), considérons le produit tensoriel externe £ 0 q sur
X x PCfc, k ^ n, où q est le fibré vectoriel canonique de rang 1 sur PC/c.
Si (£®P)o est le complémentaire de la section nulle, on a une application
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