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gauche de G/U. On a évidemment f(gu) = f(g) 1 (u) pour ue U, donc
£ détermine un isomorphisme «(Gy) &~ P’. Il en résulte I’isomorphisme an-
noncé G, [R"] = .

Corollaire : Dans les conditions du lemme, soient 7" un sous-groupe de U,
et g : G/T — G/U lapplication canonique g7 |- gU. Alors g*E est le
fibré G [R"], R étant le T-espace déterminé par 1 | 7.

Prevve : On a déja vu que ¢*Gy est la i-extension de Gy. Or g*¢ est
associé au 0,-fibré principal ¢*P’, doncg* P’ = g* (Gy) = u(q*Gy) = (G 1)
Il en résulte que ¢*¢ ~ G [R"], pour I'action 1 | T"de T sur R".

3. INTERPRETATIONS DES REPRESENTATIONS COMPLEXES IRREDUCTIBLES
D’UN TORE T

Tout homomorphisme différentiable 4 : U; — U,; est de la forme
I (exp ix) = exp iax, a € Z. Cela résulte du fait que la différentielle d’une
translation a gauche 7, de U, est en tout point I'identité R — R, ce qui
implique dh (g) = dh (1),g € Uy, en vertu de dh (g) od 7, (1) = d(hot,) (1)
= d(t(,4 ©h) (1). Alors 4 est nécessairement de la forme ci-dessus, avec a € R.
Mais si x € Z, on doit avoir ax € Z, c’est-a-dire a € Z. Plus généralement, si
T=U; X..xU;etsik;:U,; - T applique exp ix sur (I, ... I, exp ix,
I,...1), tout homomorphisme /4 :7 — U; est de la forme A (exp ixy, ...

exp ix,) = Hh O k;(expix;) = H exp i a;x; = expi(a;x,+...+a,x,),
J J

a; € Z. D’ou une bijection canonique « : Hom (7, U,) = Z", « (h) = (a;).
Par ailleurs, Hom (7, U,) est un groupe abélien pour la multiplication des
homomorphismes, et 'on voit aussitdt que o est un isomorphisme de
groupes. En composant o avec I'inclusion Z" - Hom (R", R) donnée par
(a;) » a;x; + ... +a,x,, on obtient I'homomorphisme injectif & |-
— dh (1, ..., 1) de Hom (7, U,) dans le dual de ’algébre de Liet = R" de 7.
En particulier, si p; est la projection de 7" sur son j*° facteur, o (P;) est Ia
fonction coordonnée x; sur R".

Considérons maintenant les groupes de cohomologie H' (T;Z) et
H*(U,; Z), ou I'on suppose U, orienté de la maniére habituelle. Alors
H' (Uy;Z) = Z, donc tout 1 € Hom (T, U,) détermine un élément h*(1) e
e H' (T; Z), h* étant 'homomorphisme H' (U;;Z) - H' (T; Z) induit
par . On obtient ainsi un homomorphisme naturel v, : Hom (7, U,) —
— H! (T; Z).
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En effet, si 4 et 4’ sont deux homomorphismes de T dans U, considérons
le diagramme

m
—_—
pPi
—

U, x U, —p;l» U, p; = “m¢ composante
Z

ol k(e = (7 1), k, (e”) = (1, €7), et m (e, ) = €% . ¥ =
= '®*%) Comme mk, = mk, = identité, on a kiym* (1) = kym* (1) = 1
dans H' (U;;Z) = Z. Donc (k;py)* m* (1) = pi (1), (kopp)* m* (1) =
= p, (1) dans H' (U, x U,; Z). Mais la formule de Kiinneth H' (U, X
XU Z)y ~ H' (U,;Z) @ H* (Uy; Z) dit précisément que tout élément
ve H' (U, x U,; Z) sécrit de maniére unique o = (k,p)* o - (k,p,)*a.
En particulier m* (1) = p; (1) + p5 (1), donc si 4k’ est ’homomorphisme
produit m o (hxh’),on a (hh") *(1) = h* (1) + A'* (1), C’est-a-dire v(hh') =
= vp(h) + vp(h'). La naturalité de v, s’exprime ainsi: pour tout homo-
morphisme de tores ¢ : 7' — 7T, on a ¢* ov = v 0 ¢*, ou le premier ¢*
est ’homomorphisme induit H* (T; Z) — H' (T’; Z), tandis que le second
est ’homomorphisme induit Hom (7; U;) - Hom (T"; U,). Cela résulte
aussitot de I’égalité (hog) * (1) = ¢* (A* (1)).

Lemme : v est un isomorphisme.

Preuve: Dans le cas T = U,, v est un homomorphisme Z - Z
tel que v (1) = 1 En général, on a des 1somorphismes canoniques
Hom (T, U,) ~ @ Hom (U, U)) et H* (T; Z) ~ ® H' (Uy; Z)
(formule de Kiinneth). Avec ces décompositions, la j*™¢ composante de
heHom (T, U,) est hok; et celle de i* (1) est k; o h* (1) = (hok ;)*(1).
Donc v se décompose en somme directe d’isomorphismes. _

Considérons maintenant un 7-fibré principal P de base B(P) = X.
Pour tout 2 e Hom (7, U,), on peut construire le fibré vectoriel de rang 1
&, = P[C], ou C est le T-espace déterminé par A. Sa classe d’Euler y (£,)
est un élément de H? (X; Z). De cette maniére, on obtient un homomor-
phisme naturel yp : Hom (7, U,) - H* (X; Z). En effet, si % et 4’ sont deux
homomorphismes de T dans Uy, et 4’ 'homomorphisme produit, on a un
isomorphisme canonique de fibrés vectoriels ¢, ® &,, = £,,', qui associe

a tout vecteur (xXz) ® (x X z')de &, ® &, levecteur x x zz’' de &,,’. Mais
Uy Ug U

d’une maniére générale pour deux fibrés vectoriels complexes & et &' de
rang 1 sur X, on a y ((®E) = x (&) + x (&'). On le voit en utilisant des
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applications classifiantes pour y et x, et en vérifiant que yx (n (;\9 n) =
= x(n) @ x(n), ou @ désigne le produit tensoriel externe sur PC' X
X PC*':si x est un point fixé de PC*, ona ngn |x X PC' = n et deméme
n (;) 11[ PC! x y ~ y. Donc, si k; et k, désignent les inclusions
PC! » PC! x PCY, ki (») = (3, %), ky () = (x,), on a ki ¥ (n@n) =

= k3 x (n@mn) = x (). Mais on a I'isomorphisme de Kiinneth H 2 (PC* x

X PC!;Z) ~ H*(PC';Z) @ H?(PC'; Z) donné par o — ki (¢) @ kj (),
puisque H* (PC';Z) = 0 en vertu de la suite exacte de Gysin de 5. La
naturalité de up s’exprime comme suit: soient ¢ : 7' — 7" un homomor-
phisme de tores, P’ un 7"-fibré principal, P un 7-fibré principal et ,P' — P
un morphisme de 7-fibrés principaux. Si f : X’ — X est I'application induite
entre les bases, alors f* o up = up 0 ¢*. En effet: f* (&,) = f* P[C] et
f¥P = 4P, donc f*(&,) = 4P [C], ot C est le T-espace déterminé par /
Mais 4P’ [C] = P"[C], ou C au second membre est le7T"-espace dé¢ terminé.
par h o ¢. Donc y (f*&,) = x (;e4), et il suffit de rappeler que x (f*¢,) =

= f* x (En)-

Lemme : Pour le T-fibré principal y X y X ... X 9 sur B; = PC" X
X . X PC", pi, . «, €st un isomorphisme.

Preuve : Envisageons d’abord le cas 7 = U,;. Pour h = identité:
U, - U, &, est le fibré canonique n et x (n) engendre H? (PC"; Z) en
vertu de la suite de Gysin de 7. Donc p, est surjectif. Comme H? (PC*; Z) =
Z en vertu de la méme suite exacte, u, est nécessairement injectif.

En général, on a des isomorphismes canoniques Hom (T, U,) ~
~ @ Hom (U, U,) et H* (B;;Z) ~ @ H*(PC";Z) (formule de Kiin-
neth). Avec ces décompositions, la j**™¢ composante de 4 € Hom (7T, U,)
est h o kj, et celle de y (£,) est k; x (£,), ot k ; désigne cette fois 'applica-
tion identité¢ de PC"sur x X ... x X PC" X x... X x < By, qui est d’ailleurs
telle que & (yX... Xy) = 4;y. Comme kj x (&) = x (k&) = ¥ Gy [CD),
on a décomposé p, . «, en somme directe d’isomorphismes.

Définition : On appelle transgression dans un T-fibré principal P de base X
’homomorphisme composé 1, = ppvy' : H' (T; Z) — H? (X; Z). Elle
est naturelle et c’est un isomorphisme lorsque P est universel, ¢’est-a-dire
lorsque P = y X ... X y. La naturalité s’exprime ainsi: soit ¢ : 7" — T
un homomorphisme de tores, P’ un T'-fibré principal de base X', et
¢P" — P un morphisme de 7-fibrés principaux induisant une application

S X" — X des bases. Alors f* 0 7, = 1p, 0 ¢*, ce quirésulte de la natu-
ralité de up et vy.
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