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CLASSES DE CHERN D’UN ESPACE HOMOGENE
PRESQUE COMPLEXE

par S. MAUMARY *

1. DONNEE DU PROBLEME

Soit G un groupe de Lie compact réel, U un sous-groupe fermé, et
G/U Pespace des classes & droite gU, g € G. Ce dernier est une variété diffé-
rentiable réelle compacte, dont on désignera I’espace tangent au point
0 = Ue G/U par (G/U),. Considérons la représentation isotrope t (1) =
= du (0) € Autg (G/U),, u € U étant interprété comme translation a gauche
de G/U. Cette représentation détermine le fibré tangent £ a G/U: I'applica-
tion G x (G/U), — E (&), donnée par (g, v) |— dg (v), eninterprétant ge G
comme translation & gauche de G/U, devient un homéomorphisme si I’on
identifie (gu, v) avec (g, v (1) v).

Supposons que ¢ soit muni d’une structure complexe J, invariante par
G. Autrement dit, J est un R-automorphisme de ¢, tel que J?> = —identité
et Jodg = dg o J, en interprétant g € G comme translation a gauche de
G/U. Cette derniére égalité montre que J est déterminée par sa restriction
a la fibre (G/U), et que celle-ci est invariante part (1), u € U. On écrira
& le fibré & muni de la structure complexe J. La représentation réelle 1 se
factorise alors canoniquement par une représentation complexe 1’ : U —
— Aut. (G/U)!, qui détermine &’ comme précédemment.

Prenons un tore 7" <= U, et soit g : G/T — G/U Papplication canonique
gT |- gU. La restriction 1 | T détermine ¢*¢: I'application G X (G/U), —
— E (¢*¢), donnée par (g, v) |— (gT , dg (v)), devient un homéomorphisme
si 'on identifie (g7, v) avec (g, 1 () v), ¥ t € T. Maintenant, v/ | T est somme
directe de représentations complexes ¢? de rang 1, donc g*&’ est somme
directe de fibrés vectoriels complexes & de rang 1, déterminé par ¢). La
classe totale de Chern c (¢’) e H* (G/U; Z) vérifie donc

g*(c (&) = c(g*&) = [Tc(&) = [T +x(&))e H* (GIT;R) .

a 4

*) Conférence donnée a la réunion des mathématiciens suisses aux Plans-sur-Bex
mars 1968.
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Comment la classe d’Euler y (&) est-elle déterminée par ¢, ? Si T'est un tore
maximal dans G, on pourra donner une réponse compléte.

En ce qui concerne les classes caractéristiques, on suppose seulement
que ’on connait, pour tout fibré vectoriel réel orienté, sa classe d’Euler,
sa suite exacte de Gysin et 'existence d’une application classifiante.

Exemple :

Si G = U,,; (groupe unitaire a n+41 variables), et

(51
U =(—-—)
01U,

I’application G/U — PC" induite par g |- g (1, 0, ..., 0), g € G, est un difféo-
morphisme. Mais la variété PC" admet une structure complexe invariante

par G, donnée au voisinagede (1:0: ... :0)parlacarte (1:z,:... : z,4¢) | ‘
- (243, ..., Z,4 1) Soit J la structure complexe invariante induite sur le fibré
tangent réel & 4 PC". Alors &’ est le fibré tangent complexe.

Soit

le tore dans U, qui est d’ailleurs maximal dans G. Par définition, i/ (exp ix;,
s EXP X, 4 1), X, €R, est la différentielle complexe de la translation

(1:zy:..:z,0¢) > (exp ix; 12z, exp iXy:..Zypq XD iX,0q) =
(1:zy exp i(Xg—X1)t oot Zppq €XP i (Xy4q —X1))
au point (1:0:...: 0). Dans la carte ci-dessus, on a donc
J(exp ixy, ..., exp ix,.1)(z,) = z, exp i(x,—x1), a1,

Donc
qsi (ex.p ix19 -eey €XD ixn+1)(za) = Zy €Xp i(xa_xl)‘

2. EXTENSION DES FIBRES PRINCIPAUX

Etant donné un groupe de Lie compact réel G, un G-fibré principal P
est défini par un espace £ (P) muni d’une action libre et continue de G, a
droite, et par une projection z : E (P) — B (P)sur un espace de base compact
B (P), telle que 7 (x) = n (y) < x €y G. Un morphisme de G-fibrés prin-
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