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CONVEXITE ET ENCHAINEMENT

par Robert BANTEGNIE

INTRODUCTION. Dans les espaces euclidiens R" et plus généralement
dans les espaces vectoriels topologiques réels la convexité est bien connue.
Le premier, Menger [4] a étudié la convexité dans les espaces métriques.
Nous en rappelons la définition. Si (E, d) est un espace métrique, pour des
points a, b, ¢ distincts de E, on dit que le point ¢ est entre a et b si 'on a
d(a, c¢) + d(c, b) = d(a, b); s’il existe une image isométrique du segment
réel [0, d (a, b)] joignant dans E les points a et b on dit qu’existe dans £
un segment joignant a et b; il peut exister plusieurs segments joignant deux
points de E. (E, d) est convexe quand, quels que soient les points distincts
de E, il existe dans E un point qui soit entre ces deux points; il est segmenté
quand deux points quelconques de E peuvent étre joints par un segment;
il est unisegmenté quand il est segmenté et quand le segment joignant deux
points quelconques est unique. Menger a montré (théoréme de Menger)
qu’un espace convexe et complet est segmenté. Rinow [5] a introduit une
généralisation des espaces segmentés. Nous les appelerons espaces intrin-
seques (Rdume mit innerer Metrik): (E, d) est intrinséque quand, quels que
soient les points a et b de E, on a d (a, b) = inf ¥ (I') ou la borne inférieure
est prise sur la longueur £ (I') des courbes rectifiables I' joignant a et b
dans E. Un espace segmenté est intrinséque.

(E, d) est presque convexe si quel que soit ¢ > 0 et quels que soient les
points g et b de E on peut trouver, dans £, ¢ distinct de a et de b tel que

d(a,c) +d(c,b) =d(a,b)(1+e);

il est totalement convexe si, pour tout A de I = [0, 1] et quels que soient
a et b dans E, on peut trouver ¢ dans E tel que

(1) d(a,c) = Ad(a,b), d(c,b) = (1—=2)d(a,b);
un espace segmenté est évidemment totalement convexe.

(E, d) est totalement presque convexe si quel que soit ¢ > 0 et A dans I
on peut trouver ¢ dans E tel que
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(2) Id(a,c)——ld(a,b)l<8d(a,b),
|d(c,b) —(1—=21)d(a,b)| <ed(a,b).
Un espace totalement convexe est évidemment totalement presque convexe.

D’apres [5], tout espace totalement presque convexe et complet est
intrinséque. Or, si, dans le plan euclidien, on considére le complémentaire
d’un disque ouvert muni de la métrique induite c’est un espace connexe
complet presque convexe qui n’est pas intrinséque. On peut donc se deman-
der sous quelle condition naturelle de presque convexité il est assuré qu’un
espace métrique complet est intrinséque.

TIntroduisons les notations suivantes ot J désigne I'intervalle réel} 0, 5] .

On dit, pour AeJ, que (£, d) est A-pseudo convexe si, pour tout couple
(a, b) de points distincts de £ on peut trouver ¢ dans E distinct de a et de b
tel que

(3) d(a,¢) +d(c,b) = d(a,b), inf(d(a,c),d(c, b)) = Ad(a,b);

de méme (E, d) est A-pseudo presque convexe (pour AeJ) si, quel que soit
e > 0 et le couple (a, b) de points distincts de F, on peut trouver ¢ dans E
distinct de a et de b tel que

4) d(a,¢) +d(c,b) =(1+8)d(a,b), inf(d(a,b), d(c,b))=id(a,D).

(E, d) est A-convexe resp. A-presque convexe, pour A € I, st quels que soient
les points a@ et b de E et ¢ > 0 on peut trouver ¢ dans E tel que (1) resp. (2)
soit vérifié.

(E, d) est umiformément convexe resp. uniformément presque convexe
si ’on peut trouver A dans J, donc > 0, tel que E soit A-pseudo convexe
resp. A-pseudo presque convexe.

On montre ici (théoréme 1) qu’un espace uniformément presque convexe
est totalement presque convexe donc intrinséque: c’est le résultat annoncé
dans [1]. Par contre, notons que I’ensemble réel [—1,0[U]O0, 1] est un
espace métrique uniformément convexe qui n’est pas totalement convexe.
Rappelons aussi qu’on a montré ailleurs (cf. [2]) que les notions de A-presque
convexité et de A-convexité coincident dans les espaces dits compacts
a distance finie ou les fermés bornés sont compacts.

Au § 1, sont introduites d’autres notions de convexité; on étudie aussi
lIa convexité sur 'intervalle 7. Au § 2, on étudie les chaines de points d’un
espace métrique et on prouve un résultat (proposition 5) liant la A-pseudo
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presque convexité resp. la A-pseudo convexité avec I'enchainement d’ordre
1 4 ¢ resp. d’ordre 1, résultat essentiel pour la preuve du théoréme 1.
Au § 3 figurent les résultats principaux. Enfin au § 4 et comme application
on étudie les espaces rectifiablement bien enchainés (voir la la définition).

On a donné, en passant, une preuve du théoréme de Menger. Rappelons
que les rapports entre le théoréme 1 et la quasiconvexité (tout espace
uniformément presque convexe est uniformément quasiconvexe) ont été
donnés dans [1] ((E, d) est quasiconvexe si pour tout ¢ > 0 et pour tout
couple (a, b) de points distincts de E on peut trouver 6 > 0 et x dans E
tel que d(a, x) < d(a,b) — 0, d(b,x) <e; il est uniformément quasi-
convexe quand le choix du § ci-dessus peut étre fait indépendamment du
couple (a, b)). Le 'ecteur intéressé trouvera d’autres résultats dans la suite
d’articles « On convex metric spaces I-IV » (la partie I est due a A. Lelek,
W. Nitka, Fund. Math. 49 (1960/61), 183-204; un résumé de la partie II due
a W. Nitka est paru dans Bull. Acad. Polon. Sci. Ser. Math. Astronom.
Phys. 9 (1961), 77-78; la partie 1II est due a R. Duda, Fund. Math. 51
(1962/63), 23-33 et la partie IV a A. Lelek, J. Mycielski, Fund. Math. 61
(1967), 171-176). Rappelons aussi que le théoréme 1 permet de montrer
(cf. [2]) qu’un espace uniformément presque convexe et localement compact
est convexe d’ou résulte qu’un espace uniformément presque convexe
complet et localement compact est compact a distance finie; ce dernier
résultat généralise un des résultats de « On convex metric spaces, IV ».

1. ConvEXITE. On désigne resp. par I, Ij J, J, J les intervalles réels
0, 1 1 1
[ 1] 10, 1],} 0, 5} [O, E:l ,] 0, 5[ En plus des notions rappelées ci-dessus,
on dit que

pour A < I, (E, d) est A-convexe si, pour tout A€ A et tout couple
(a, b) de points de E on peut trouver ¢ dans E tel qu’on ait (1); pour 1 = I

ou I, (E, d) est totalement convexe; pour A = { 1} il est A-convexe.
Pour A < I, (E, d) est A-presque convexe si pour tout A€ A, tout ¢ > 0
et tout couple (a, b) de points de E, on peut trouver ¢ dans E tel qu’on ait

(2); pour A = I'ou /, (E, d) est totalement presque convexe; pour A = { A }
il est A-presque convexe.

Pour A = J, (E, d) est A-pseudo presque convexe si, pour tout 1 e A,
tout ¢ > O et tout couple (a, b) de points distincts de E, on peut trouver ¢
dans E distinct de a et de b tel qu’on ait (4); pour A = {4} il est A-pseudo
presque convexe; pour A = {0}, il est presque convexe.
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Pour A < J, (E, d) est A-pseudo convexe si pour tout e A et tout
couple (a, b) de points distincts de E, on peut trouver ¢ dans E distinct
de a et de b tel qu’on ait (3); pour A = { 1}, il est A-pseudo convexe; pour
A = {0} il est convexe.

Pour A dans J, il est immédiat qu’un espace A-convexe est A-pseudo
convexe, qu'un espace A-pseudo convexe est A’-pseudo convexe pour tout
A" < A de J et qu'un espace %—pseudo convexe est %-convexe.

De plus on a la

Proposition 1.

(a) Pour A dans J, un espace A-presque convexe est A'-pseudo presque
convexe pour tout L' < A de J.

1 .
(b) Un espace est i-presque convexe si et seulement s’il est J -pseudo

presque convexe.

Preuve. (a) 11 suffit de montrer que les conditions de A’-pseudo presque
convexité sont satisfaites pour & suffisamment petit. Or, posons 7 = ¢/2
pour 0 < ¢ <2 (A—A4"); la A-presque convexité entraine I’existence, pour
tout couple (a, b) de points distincts de I’espace, d’un point ¢ avec

|d(a,c) — Ad(a,b)| <nd(a,b), |d(b,c) —(1—A)d(a,b)| <nd(a,b);
on a alors

d(a,c) +d(c,b) < (1+2n)d(a,b) = (1+e&)d(a,b)

et

inf(d(a,c), d(c,b)) > (A—n)d(a,b) =1"d(a,b)

- d’ou le résultat.

(b) Compte tenu de (a), il suffit de montrer que la J -pseudo presque

~ convexité entraine laz-'presque convexité. Or la premiére propriété entraine

que, pour tout couple (a, b) de points distincts de I’espace et tout ¢ > 0,
on peut trouver ¢ tel que

d(a,c) +d(c,b) <(1+¢/2)d(a,b),
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1
inf(d(a,c), d(b,c)) = 3 (1—¢)d(a,b)
et on a alors, compte tenu de I'inégalité triangulaire,

1d(a, ¢) ——;—d(a,b)[ <ed(a,b), |d(c,b) — (L—A)d(a,b)| < ed(a,b).

Une premiére propriété des espaces uniformément presque convexes
est donnée par la

Proposition 2.

Si (E, d) est uniformément presque convexe, alors
(*) Pour tout couple (a, b) de points distincts de E et tout couple (n, n')
de nombres > 0, on peut trouver ¢ dans E, distinct de a et de b, tel que

d(a,c) +d(b,c) <(1+n)d(a,b), d(b,c) <n’.
En particulier, (E, d) est parfait.

Preuve. Soit Z, (a, b) ’'ensemble des points ¢ distincts de a et de b véri-
fiant d(a,c) + d(c,b) < (14n)d(a, b); posons ¢ = inf d (b, x); il faut

XeZ, (a.b)
montrer que ¢ est nul.

St ¢ # 0, pour tout ¢’ > 0, on peut trouver ¢ dans Z, (a, b) tel que
o <d(b,c) <o ((l4¢). Soit A dans J tel que E soit A-pseudo presque
convexe; pour tout £’ > 0 on peut trouver f dans E tel que

d(c,f) +d(f,b) <(1+EYd(b,c), d(c,f)=d(b,c).
Soit & > 0 tel que
d(a,c) +d(c,b) =(1+n—Ed(a,b).

On a
d(a,f) +d(f,b) =d(a,c) + d(c,f) +d(f,b)
<d(a,c) +d(c,b) + & d(c,b)
t =1 +n—-8d(a,b) + & p(1+¢)
B

db,f) <A +¢& —-1d(,c).

Il suffit alors de montrer qu’on peut choisir successivement &’ puis &
de fagon que simultanément on ait




— 294 —

Co(l+e)=8d@,Db), 1+&-H(1+e) =1
pour contredire la définition de ¢: pour cela on prend
0<é& <A(1=2)
0 <& =inf(A--(¢'/(1+¢"), &d(a,b)o(1+¢)).

Remarque. Silon prend £ = ]— o0, —1] U [+1, +oo[ muni de la topo-
logie induite par celle de R, dans E la condition (*) est vérifiée et cependant
E n’est pas uniformément presque convexe.

Dans la suite, on emploie toujours convexe au sens métrique.

En ce qui concerne la convexité sur Z, on peut énoncer la

Proposition 3.

(a) Toute partie convexe et fermée de I est un intervalle fermé.

(b) Toute partie uniformément convexe de I a pour adhérence un intervalle
fermé.

(c) 1l existe des parties convexes de I non uniformément convexes.

Preuve. (a) Soit A la partie considérée. Il suffit de montrer que si «, f§
(e < f) sont les abscisses de deux points de A, 'intervalle [«, f] est contenu
dans A. Soit A" = A n [a, f] et B le complémentaire de 4’ par rapport a
[, f]. Sil’ouvert B n’est pas vide, une de ses composantes connexes est un
segment Ja, b[ avec b # a; comme A’ est fermé a et b sont dans 4’; la
convexité de A4 entraine celle de 4’ et on peut trouver un point de 4’ dans
Ja, b] ce qui est contradictoire.

(b) Soit A4 la partie considérée. Il suffit de montrer que o, f(x<p)
étant les abscisses de deux points de A, 4" = A N [a, f] est dense dans
[, B] ou encore que le complémentaire B de A’ par rapport a [«, ] est vide.
Si B n’est pas vide, une composante connexe de B est un segment Ja, b[
dont les extrémités distinctes appartiennent & A’. Soient (a,), (b,) des suites
de points de A’ convergeant resp. vers a et b. La A-pseudo convexité de 4
pour A dans J entraine celle de 4"; on peut donc trouver y, dans [4, 1 —1]
tel que ¢, = p, a, + (1 —p,) by soit dans A’; on peut extraire de la suite
(i) une suite (u,) convergeant vers ’élément u de [1, 1 —A1]; si on associe
a cette suite les suites correspondantes (a,), (b)), (¢,/) ces suites convergent
resp. vers a,b et ¢ = pa + (1—p) b. On a cela, b[ d’une part et ce A’
d’autre part comme limite d’une suite de points de A’: contradiction.
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(c) D’aprés (b), il suffit de trouver une partie convexe de I dont 'adhé-
rence n’est pas un intervalle fermé. Cest le cas, par exemple de 'ensemble

, 1 1
parfait| 0, - ju|—, 1}].
4 2

Remarque. 1"énoncé (b) généralise un résultat de J.W. Green et W. Gus-
tin qui dans [3] ont montré que la conclusion de (b) est valable quand on
suppose que A est une partie A-convexe contenant les extrémités de 1.

2. CHaiNes. Dans (E, d) une suite de n 4 1 points a; (i=1, ..., n41)
est une n-chaine C = (a;) joignant, dans E, a; & a, . ;. La n-chaine est stricte
si les n + 1 points a; sont distincts. La Jlongueur de C est & (C) =

Y d(a; a;;4). Pour @ > 1, la chaine C joignant a et b est d’ordre o

f= 1

siZ(C) < ad(a, b); elle est d’ordrec.daeprés si,poure > 0,on a £ (C) <
(x+e) d(a, b).

On a Z (C) = d(a, b) si et seulement si C est une chaine d’ordre 1. ] C ]
support de C est la partie de £ union des points de C. Pour une chaine C,
on désigne par ¢ (C) la borne supérieure de la distance de deux points
consécutifs de C.

Si on note d la distance dans les deux espaces métriques E et F, une
application d’une partie A de E dans F est dite de type (0, «) ou une a-dila-
tation resp. de type (B, a) si, avec 0 < f < o, pour tout couple (a, b) de
points distincts de 4 on a les inégalités

0 < d(f(a), f(b)) = ad(a,b)

resp.
pd(a,b) =d(f(a), f(b)) =od(a,b).

€* (4, F), resp. %7 (4, F) désigne I’ensemble des applications de type
(0, @), resp. (B, @) de 4 dans F. Si fappartienta ¥**# (4, F), f~! appartient
A€’ 1 (4, F)etfcommef ™! est uniformément continue. Une application
de type («, o) est une similitude, une application de type (1, 1) une isométrie.

Proposition 4.

Dans (E, d), une n-chaine, resp. une n-chaine stricte joignant deux points
distincts a et b est une chaine d’ordre o si et seulement si ¢ est l’image par une
a-dilatation de n + 1 points x; de R vérifiant (*), resp. (**) avec:

I
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(*) x1 = O,xj+1 éxj'(j=1,...,n), .xn_|_1 = d(a,b)

(**) x1 = O,xj+1 > XJ(]——_l, ...,n), xn+1 == d(a, b).

Corollaire. Une n-chaine, resp. une n-chaine stricte joignant deux points
distincts a et b est une chaine d’ordre 1 si et seulement si ¢ ’est l’image isomé-
trique de n + I points x; de R vérifiant (*), resp. (**).

Preuve. Elle est laissée au lecteur.

Soit N, resp. N* I’ensemble des entiers > 0, resp. > 0. Une n-chaine
(a;) est une e-chaine si pour ¢ > 0 on a d(a;, a;+4) < & pour i =1, .., n.
On dit alors que (a;) est une (n, ¢)-chaine. (E, d) est un espace e-enchainé
si pour tout couple (a, b) de points de E, on peut trouver n dans N tel
qu’existe une (n, ¢)-chaine de F joignant a et b. Il est bien enchainé s’il est
e-enchainé pour tout ¢ > 0. Il est («, ¢)-enchainé si deux quelconques de
ses points peuvent €tre joints par une e-chaine d’ordre «; il est a-bien enchainé
s’il est (a, ¢)-enchainé pour tout & > 0; il est a-presque bien enchainé s’il
est, pour tout # > 0, (x-+n)-bien enchainé.

Les notions précédentes s’appliquent a une partie 4 de £ si I’on suppose
que A les posséde en tant qu’espace muni de la métrique induite.

Proposition 5.
Pour A dans J,
(a) Si E est un espace A-pseudo convexe, pour tout couple (a,b) de

points distincts de E, on peut construire une suite (C,) de 2"-chaines strictes
d’ordre 1 joignant a et b telles que

c ‘ Cn+1 |
(i1) pour tout n > 1, 6 (C,) < (1—-4)"d(a, b)

(1) pour tout n > 0, ! C,

(b) Si E est un espace A-pseudo presque convexe, pour tout couple (a,b)
de points distincts de E et tout ¢ > 0, on peut construire une suite (C,) de
2"-chaines strictes d’ordre 1 -+ ¢ joignant a et b telle que la condition (1) soit
veérifiée et que

(iii) on peut trouver A* dans J tel que, pour toutn > 1,0 (C,) < (1—2A%)"
d(ab).

- Preuve. (a) On pose C, = (a, b), C; = (a, ¢, b) ou c vérifie la condition
(3) du § 1 d’ou résulte 6 (Cy) < (1—2)d(a, b) et on construit la suite (C,)
par récurrence: C,,; se déduit de C, ainsi qu’il suit.
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Le support | C, ., | est 'union de | C, | et de 2" points ¢ qu’on détermine
ainsi: (u, v) étant un couple de points consécutifs de C,, ¢ est tel que

d(u,1) + d(t,v) = d(u,v), inf(d(,1), d(,v)) = Ad (u,v).

On en déduit sup (d (u, 1), d (1, v)) < (1—2) d (u, v) et C,, est.compléte-
ment déterminée en convenant que u, ¢, v sont toujours trois points consé-
cutifs de C,,, . C, ., est une chaine d’ordre 1 en méme temps que C, et
0(Chiq) <(1—=2)0d(C,). La construction de la suite (C,) vérifiant (i) et
(i1) est alors immédiate.

(b) On peut supposer ¢ suffisamment petit. Pour ¢ < 24 on a une cons-
truction par récurrence analogue a celle de (a). Soit Cy = (a, b) et C; =
= (a, ¢, b) ol d’apres le (4) du § 1 on suppose

d(a,c) +d(c,b) < (1+ %) d(a,b), inf(d(a,c), d(c,b))=id(a, b)

d’ou résulte

5(C)) < (1—1——;———A>d(a,b).

Choisissons A * dans] 0, A— g} : alors (i) est vérifié pour n = 0, 1 et (iii)

pour n = 1.
Supposons qu’on a pu construire C, de fagon que (i) soit vérifié jusqu’a
Pordre n — 1, que 6 (C,) << (1—=2%)"d (a, b) et que

' 82”—2 lj
(iv) Z (C,) < (1+5 Y (—i))d(a, b)

la condition (iv) entrainant que C; est une chaine d’ordre 1 -+ ¢ pour
J << n et étant vérifiée pour n = 1.

On détermine C, ., ainsi qu’il suit. | C,,, | est Punion de | C, | et de
2" points ¢: (u, v) étant un couple de points consécutifs de C,, t est tel que

d(u,f) +d(t,v) < (1 + i) d(u,v), inf(d(u, 1), d(1,0))> id (u,0)
22

On en déduit

sup (d(u,1), d(t,v)) < (1+ g ~-~/1) d (u,v) = (1 —A*y"* 1 d(a, b)
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et C, . est bien déterminée en convenant que u, ¢, v en sont toujours trois
points consécutifs. C,,; est une 2"**-chaine joignant a et b; on a

1 Col = 1Chsa ], 6(Chruy) < (1—2%)"""d(a,b)

et aussi

(V) Z(Chsy) < <1+ S—n) Z(C).
22

Or, ¢ < ¢ entraine
e 82n—2 lj 82"—1 1j 822"+2"—2 1 j
1+ 1+ = ) =142 Z) + = -

( 22">< 2 jgo <2> ) 2 j;) (2> 2 jgo (2>

28412 j

g 1\

<1+ — =
. 2 (3)

et achéve de prouver la construction par récurrence de la suite (C,) vérifiant

(i) et (iii).

3. LES RESULTATS PRINCIPAUX.

Théoréeme 1. Pour une partie A d’un espace métrique E
(a) il y a équivalence entre les propriétés

(i) A est uniformément convexe

(i) A est I-bien enchainé

(1) A est J -pseudo convexe.
(b) il y a équivalence entre les propriétés
(i") A est uniformément presque convexe
(ii") A est I-presque bien enchainé
(iii") A est J -pseudo presque convexe
(iv') A est totalement presque convexe.

Preuve. On se raméne au cas A = E.
(a) Que (iii) entraine (i) est évident. Que (1) entraine (ii) résulte de la
proposition 5 (a). Montrons que (it) entraine (iii).

o

1
Pour A dans J, soit ¢ avec 0 < ¢ < <§—l) d (a, b) et C = (a;) une

(n, &)-chaine d’ordre 1 joignant les points a et b de E; pour tout point ¢
de Con ad(a,c)-+ d(c,b) = d(a,b); il suffit donc de trouver ¢ dans C
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1 . :
tel que Ad(a, b) < d(a,c) < Ed (a, b); si cela n’était pas possible, on
pourrait trouver a; et a;,, dans C tels que
1
d(a9 ai) < }‘d (aa b) > d(aa a’i+1) == 5 d((l, b)
d’ou
1
d(a;,a;44) = d(a,a;.;) —d(a,a;) > (5 'i> d(a,b) > e¢:
c’est exclu.
(b) Que (iv') entraine (i') résulte de la proposition 1 (a), que (i’) entraine
(i1") de la proposition 5 (b).
Que (ii’) entraine (iii’) se prouve par un raisonnement voisin de celui

montrant que (i) entraine (ii1).
Montrons que (iii") entraine (iv’). Nous avons besoin du

1
Lemme. 1. Si [’espace métrique E esti-presque convexe pour tout couple

(a,b) de points distincts de E et tout n > 0, il existe une application f de
[’ensemble des nombres dyadiques de I dans E telle que, pour tout couple
(t,t') de nombres dyadiques de I on ait

f(O) =a, f(1) =b, d(f(t), fA)) <[t —1t|d(a,b)(1+n)
Preuve du lemme. Cf. § 18, prop. 21, p. 156 de [5].

1
D’aprés la proposition 1 (b), un espace vérifiant (iii’) est ~2——presque

convexe. Soit alors f I’application qui pour # > 0 donné est définie dans le
lemme 1. Pour tout A de J et tout ¢ > 0, on peut trouver u et v entiers tels
que 27 F <eget (v—1)27* <o <0274

On a

d(a,f(v27%) <v27*d(a,b)(1+n) <(A+e+n+en)d(a,b).

Soit alors ¢’ > 0 donné; on peut trouver ¢ > Oety > Otels quee + n +
+ en < &' et alors pour ¢ = f(v27¥%) on a

d(a,c) <(A+¢)d(a,b), d(b,c) <(1—=A+¢&")d(a,b)
et compte tenu de I'inégalité triangulaire, les relations
ld(a,c) — Ad(a,b)| < &' d(a,b),
ld(c,b) —(1—-A)d(a,b)| <& d(a,b).
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Cela établit la J-presque convexité de E pour tout A de J ce qui suffit
pour établir la totale presque convexité de E.

Théoréeme 2.

(a) Tout espace métrique uniformément presque convexe et complet est
intrinseque

(b) Tout espace convexe et complet est segmenté.

1
Preuve. (a) Rinow [5], p. 156, a montré que tout espace E—presque

convexe et complet est intrinséque. C’est donc un corollaire du théoréme 1
(b).
(b) C’est le théoréme de Menger. On peut en donner la preuve suivante.

On sait que st E, F sont deux espaces métriques, si F' est complet et si
A < E, tout élément de ¥*f (4, F) admet des prolongements maximaux

dans U %** (4, F)le domaine de définition M d’un de ces prolongements m
ACE
étant fecrmé; de plus si E est complet, m (M) est fermé dans F.

D’aprés ce résultat, si a et b sont deux points distincts de E, I’application
isométrique f, de {a} U {b} dans le segment I’ = [0, d (a, b)] définie
par f,(a) =0, f, (b) = d(a, b) s’étend en une application isométrique
maximale m dont I'image dans I’ est une partie fermée. Il suffit de montrer
que cette image est convexe car alors, d’aprés la proposition 3, elle coincide
avec I’ et le domaine de définition M de m est un segment joignant a et b.

Si m (M) n’est pas convexe, on peut trouver y, et y, dans m (M) tel
que ]yy, y,[ n’appartienne pas & m (M). Soit, pour i = 1,2, x; = m™* ()
et x dans E distinct de x; et x, tel que

d(xy,x) +d(x,x,) = d(xq,x3);
associons a x le point y de ]y, y,[ défini par
d(ylay) = d(xlax); d(yayZ) = d(x:x2)

et soit m* I’application dans /" dovnt le domaine de définitionest M U { x }
définie par m* (z) = m (z) pour ze M, m* (x) = y. Du fait que tout point
z de M est tel que, pouri =1 o0u 2, on a

d(z,x;) + d(x;,x) = d(z,x)

résulte que m* est un prolongement isométrique strict de m: c’est exclu.
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4. ESPACES RECTIFIABLEMENT BIEN ENCHAINES. Dans un espace métrique
g-enchainé E, on pose, pour tout couple (x, y) de point de E.

d,(x,y) = 0pour x =y

d, (x,y) = inf & (C,) pour x # y, la borne inférieure étant prise sur
les e-chaines C, joignant x et y.

Dans un espace métrique bien enchainé E on pose, pour tout couple

A
(x, ) de points de E, d (x, y) = sup d, (x, »).
e>0
A

L’espace E est rectifiablement bien enchainé si d (x, y) est borné pour
tout couple (x, y).

L’espace métrique E est enchainé sans détour si pour tout x de Eet tout
n > 0 on peut trouver 6 > 0 tel que pour tout ¢ > 0 tout point de U; (x) =
={z \ d(x,z) < 0} peut étre lié & x par une e-chaine de longueur infe-
rieure & #7; il est uniformément enchainé sans détour si le choix du ¢ ci-dessus
peut étre fait indépendamment du point x considére.

Proposition 6.

(a) Sur tout espace e-enchainé E, d, définit une métrique ; on a, pour tout
couple (x,y) de points de E, d, (x,y) >d (x,y).

A
(b) Sur tout espace rectifiablement bien enchainé, d définit une métrique

A A

et (E, d) est un espace totalement presque convexe. Les métriques d et d
sont topologiquement resp. uniformément équivalentes si et seulement si
[’espace est enchainé sans détour resp. uniformément enchainé sans détour.

(c) Un espace métrique est I-presque bien enchainé si et seulement si,

A

sur lui, les métriques d et d coincident.

Preuve. (a) L’inégalité est évidente; de plus d, (x, y) = d (x, y) pour
e > d(x,y). L’inégalité triangulaire portant sur trois points x, y, z de E
est évidente si deux de ces points sont confondus; on peut donc supposer
qu’ils sont distincts; montrons que dans ce cas pour tout#n > O on a d, (x, y)
< d, (x, z) + d, (z, x) 4 21 ce qui suffit. On peut choisir une e-chaine C,
joignant x et z telle que £ (Cy) < d (x, z) + 5 et une e-chaine C, joignant
z et y telle que Z(C,) < d,(z,y) +n; C,uU C, est alors une e-chaine
joignant x et y de longueur % (C,) + £ (C,) d’ou le résultat puisque
d, (x,y) < £ (C,uC,).

(b) Que d est une métrique est immédiat, compte tenu de (a). Pour
tout couple (¢, ) de nombres > 0 on peut trouver une e-chaine C, telle
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que 4, (x,y) < (C) < (+n) d. (x, ) £<(14+n) d (x,y) ce qui montre

que (E, d) est 1-presque bien enchainé, donc totalement presque convexe
d’aprés le théoréme 1. Ce qui concerne I’équivalence des métriques est
immédiat.

(c) Si l’espace est 1-presque bien enchainé on a pour tout ¢ > 0,

d, (x,y) = d(x,y)donc d (x, y) = d(x, y) pour toutc ouple (x, y). Récipro-
quement c’est encore plus évident.

On dit qu'un espace (E, d) est rectifiablement lié si pour tout couple
(x, ¥) de points de E on peut trouver un arc rectifiable I' joignant x et y
dans E. On pose alors d; (x, y) = inf & (I'), la borne inférieure étant celle
des longueurs des arcs comme ci-dessus, d; définit sur E une métrique appelée
métrique intrinseque associée a d.

Proposition 7.

Tout espace métrique (E, d) localement compact complet enchainé sans
détour et rectifiablement bien enchainé est rectifiablement lié. Par rapport
a sa métrique intrinseque d; il est compact a distance finie et segmenté.

A

Preuve. (E, d) est aussi localement compact et complet; il est totalement
presque convexe d’aprés la proposition 6, donc compact a distance finie et
segmenté d’aprés le corollaire 1 du théoréme 3 de [2]. Mais alors (E, d)

A
est rectifiablement li€ et d; et d coincident, d’ou le résultat.
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