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CONVEXITÉ ET ENCHAÎNEMENT

par Robert Bantegnie

Introduction. Dans les espaces euclidiens Rn et plus généralement
dans les espaces vectoriels topologiques réels la convexité est bien connue.
Le premier, Menger [4] a étudié la convexité dans les espaces métriques.
Nous en rappelons la définition. Si (.E, d) est un espace métrique, pour des

points a, b, c distincts de E, on dit que le point c est entre a et b si l'on a

d (a, c) + d (c, b) d (,a, b); s'il existe une image isométrique du segment
réel [0, d (<a, b)~\ joignant dans E les points a et b on dit qu'existe dans E

un segment joignant a et b; il peut exister plusieurs segments joignant deux

points de E. (E, d) est convexe quand, quels que soient les points distincts
de E, il existe dans E un point qui soit entre ces deux points ; il est segmenté

quand deux points quelconques de E peuvent être joints par un segment;
il est unisegmenté quand il est segmenté et quand le segment joignant deux

points quelconques est unique. Menger a montré (théorème de Menger)
qu'un espace convexe et complet est segmenté. Rinow [5] a introduit une
généralisation des espaces segmentés. Nous les appelerons espaces intrinsèques

(Räume mit innerer Metrik) : (.E, d) est intrinsèque quand, quels que
soient les points a et b de E, on a d (<a, b) =» inf $£ (F) où la borne inférieure
est prise sur la longueur JF (F) des courbes rectifiables F joignant a et b

dans E. Un espace segmenté est intrinsèque.
(F, d) est presque convexe si quel que soit s > 0 et quels que soient les

points a et b de E on peut trouver, dans F, c distinct de a et de b tel que

d (<a, c) + d (c, b) ^d (a, b) (1 + s) ;

il est totalement convexe si, pour tout X de / — [0, 1] et quels que soient
a et b dans F, on peut trouver c dans F tel que

(1) d (a, c) Xd(a,b), d(c,b) (1 —X)d(a,b);

un espace segmenté est évidemment totalement convexe.
(F, d) est totalement presque convexe si quel que soit e > 0 et X dans /

on peut trouver c dans F tel que
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(2) I d (a, c) — X d {a, b) | < s d (a, b)

I d(c,b) -(1-X)d(a,b)\ <ed(a,b).
Un espace totalement convexe est évidemment totalement presque convexe.

D'après [5], tout espace totalement presque convexe et complet est

intrinsèque. Or, si, dans le plan euclidien, on considère le complémentaire
d'un disque ouvert muni de la métrique induite c'est un espace connexe
complet presque convexe qui n'est pas intrinsèque. On peut donc se demander

sous quelle condition naturelle de presque convexité il est assuré qu'un
espace métrique complet est intrinsèque.

Introduisons les notations suivantes où J désigne l'intervalle réel
1'

"•2
On dit, pour XeJ, que (E, d) est X-pseudo convexe si, pour tout couple
(a, b) de points distincts de E on peut trouver c dans E distinct de a et de b

tel que

(3) d(a,c) + d(c,b) d(a,b) inf(d(a,c) ,d(c,b)) ^ Xd(a,b) ;

de même (E, d) est X-pseudo presque convexe (pour XeJ) si, quel que soit
s > 0 et le couple (a, b) de points distincts de E, on peut trouver c dans E
distinct de a et de b tel que

(4) d (a, c) + d (c, b) & (1 + s) d (a, b) inf (d (a, b) d (c, b)) ^ X d (a, b).

(E, d) est X-convexe resp. X-presque convexe, pour 2 e/, si quels que soient
les points a et b de E et s > 0 on peut trouver c dans E tel que (1) resp. (2)
soit vérifié.

(E, d) est uniformément convexe resp. uniformément presque convexe
si l'on peut trouver X dans /, donc > 0, tel que E soit 2-pseudo convexe

resp. 2-pseudo presque convexe.
On montre ici (théorème 1) qu'un espace uniformément presque convexe

est totalement presque convexe donc intrinsèque: c'est le résultat annoncé
dans [1]. Par contre, notons que l'ensemble réel [—1,0 [u] 0, 1] est un
espace métrique uniformément convexe qui n'est pas totalement convexe.

Rappelons aussi qu'on a montré ailleurs (cf. [2]) que les notions de 2-presque
convexité et de 2-convexité coïncident dans les espaces dits compacts
à distance finie où les fermés bornés sont compacts.

Au § 1, sont introduites d'autres notions de convexité; on étudie aussi

la convexité sur l'intervalle /. Au § 2, on étudie les chaînes de points d'un

espace métrique et on prouve un résultat (proposition 5) liant la 2-pseudo
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presque convexité resp. la 2-pseudo convexité avec l'enchaînement d'ordre

1+8 resp. d'ordre 1, résultat essentiel pour la preuve du théorème 1.

Au § 3 figurent les résultats principaux. Enfin au § 4 et comme application

on étudie les espaces rectifiablement bien enchaînés (voir là la définition).
On a donné, en passant, une preuve du théorème de Menger. Rappelons

que les rapports entre le théorème 1 et la quasiconvexité (tout espace

uniformément presque convexe est uniformément quasiconvexe) ont été

donnés dans [1] ((E, d) est quasiconvexe si pour tout s > 0 et pour tout
couple (a, b) de points distincts de E on peut trouver ô > 0 et x dans E
tel que d (a, x) < d (a, b) — ô, d (b, x) < s; il est uniformément
quasiconvexe quand le choix du ô ci-dessus peut être fait indépendamment du

couple (a, b)). Le 1ecteur intéressé trouvera d'autres résultats dans la suite

d'articles « On convex metric spaces I-IV » (la partie I est due à A. Lelek,
W. Nitka, Fund. Math. 49 (1960/61), 183-204; un résumé de la partie II due

à W. Nitka est paru dans Bull. Acad. Polon. Sei. Ser. Math. Astronom.
Phys. 9 (1961), 77-78; la partie III est due à R. Duda, Fund. Math. 51

(1962/63), 23-33 et la partie IV à A. Lelek, J. Mycielski, Fund. Math. 61

(1967), 171-176). Rappelons aussi que le théorème 1 permet de montrer
(cf. [2]) qu'un espace uniformément presque convexe et localement compact
est convexe d'où résulte qu'un espace uniformément presque convexe
complet et localement compact est compact à distance finie; ce dernier
résultat généralise un des résultats de « On convex metric spaces, IV ».

1. Convexité. On désigne resp. par /, /, J, J, J les intervalles réels

[0 1

o,-
2

1' 1

En plus des notions rappelées ci-dessus,1] ]0, 1], 0,- 0,- 0,

on dit que

pour A a /, (E, d) est A-convexe si, pour tout X e A et tout couple
(a, b) de points de E on peut trouver c dans E tel qu'on ait (1); pour X I
ou /, (E, d) est totalement convexe; pour A { X } il est 2-convexe.

Pour A cz I, (E, d) est A-presque convexe si pour tout X e A, tout e > 0

et tout couple (a, b) de points de E, on peut trouver c dans E tel qu'on ait

(2); pour A Iou /, (E, d) est totalement presque convexe; pour A { X }
il est 2-presque convexe.

Pour A cz J, (E, d) est A-pseudo presque convexe si, pour tout X e A,
tout 8 > 0 et tout couple (a, b) de points distincts de E, on peut trouver c
dans E distinct de a et de b tel qu'on ait (4); pour A {X} il est 2-pseudo
presque convexe; pour A { 0 }, il est presque convexe.
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Pour A <= J, (E, d) est A-pseudo convexe si pour tout X e A et tout
couple (a, b) de points distincts de E, on peut trouver c dans E distinct
de a et de b tel qu'on ait (3); pour X { X }, il est 2-pseudo convexe; pour
A { 0 } il est convexe.

Pour X dans /, il est immédiat qu'un espace 2-convexe est 2-pseudo
convexe, qu'un espace 2-pseudo convexe est 2'-pseudo convexe pour tout

1 1

X' < X de J et qu'un espace --pseudo convexe est --convexe.

De plus on a la

Proposition 1.

(a) Pour X dans J, un espace X-presque convexe est X'-pseudo presque
convexe pour tout X' < X de J.

1

(b) Un espace est -^-presque convexe si et seulement s'il est J-pseudo

presque convexe.

Preuve, (a) Il suffit de montrer que les conditions de E'-pseudo presque
convexité sont satisfaites pour s suffisamment petit. Or, posons rj s/2

pour 0 < s < 2 (2 — 2'); la 2-presque convexité entraîne l'existence, pour
tout couple (a, b) de points distincts de l'espace, d'un point c avec

] d (a, c) — Xd (a, b) | < rjd (a, b) | d (b, c) — (1 — X) d (a, b) | < r\d (a, b) ;

on a alors

d (a, c) + d (c, b) < (1 +2rj) d (a, b) — (1 + s) d (a, b)

et

inf (d (a, c), J (c, Z?)) > (X — rj)d (a, b) ^ X' d (a, Z?)

d'où le résultat.

(b) Compte tenu de (a), il suffit de montrer que la J-pseudo presque

convexité entraîne la ^-presque convexité. Or la première propriété entraîne

que, pour tout couple (a, b) de points distincts de l'espace et tout s > 0,

on peut trouver c tel que

d (a, c) + d (c, b) < (1 + e/2) d (a, Z>),



— 293 —

inf (d(a,c), d(b,c)) ^ - (1 —s)d(a,b)

et on a alors, compte tenu de l'inégalité triangulaire,

| d Ça, c) — -- d (a, b) | < sd (a, b) \d (c, b) — (1 — A) d (a, b) | < sd (a, b)

Une première propriété des espaces uniformément presque convexes

est donnée par la

Proposition 2.

Si (E, d) est uniformément presque convexe, alors

(*) Pour tout couple (a,b) de points distincts de E et tout couple (rj, rj')
de nombres > 0, on peut trouver c dans E, distinct de a et de b, tel que

d(a, c) + d(b, c) < (1 +rj)d(a, b) d(b, c) < r\'

En particulier, (E, d) est parfait.

Preuve. Soit Zn (a, b) l'ensemble des points c distincts de a et de b

vérifiant d (a, c) + d (c, b) < (1 +rj) d (a, b) ; posons (p inf d (b, x) ; il faut
XeZn(a,b)

montrer que cp est nul.
Si cp 0, pour tout s' > 0, on peut trouver c dans Zn (a, b) tel que

q> < d(b, c) < <p (l+£/)- Soit A dans J tel que E soit 2-pseudo presque
convexe; pour tout > 0 on peut trouver /dans E tel que

d (c,/) + d (/, b) < (1 + £') d (b, c) J (c,/) ^ Ad(b,c).

Soit £ > 0 tel que

J (a, c) + d (c, 6) ^ 1 + n - 0 d (a, 6)

On a

d (a,f) + d(f,b) e^d (a, c)+ (c,/) + (/, fe)

< d(a,c) + d (c, b) + Ç' d (c, b)

sS (1 + rç - 0 d (a, b)+ £' (1 + e')
et

d(b,f) <(1+Ç'-X)d
Il suffit alors de montrer qu'on peut choisir successivement e' puis ç

de façon que simultanément on ait
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ê>(l+8') ^Çd(a,b),(l+5'-A)(l+e')^l

pour contredire la définition de (p : pour cela on prend

0 < e' < 1/(1-/1)

0 < <r ^ inf (2 — (e'/(l + s')) (a9b)l<p (1 + e'))

Remarque. Si l'on prend £ ]- oo, -1] u [+1, +oo[ muni de la topo-
logie induite par celle de R, dans E la condition (*) est vérifiée et cependant
E n'est pas uniformément presque convexe.

Dans la suite, on emploie toujours convexe au sens métrique.
En ce qui concerne la convexité sur /, on peut énoncer la

Proposition 3.

(a) Toute partie convexe et fermée de I est un intervalle fermé.

(b) Toute partie uniformément convexe de I a pour adhérence un intervalle
fermé.

(c) Il existe des parties convexes de I non uniformément convexes.

Preuve, (a) Soit A la partie considérée. Il suffit de montrer que si a, ß

(oc<ß) sont les abscisses de deux points de A, l'intervalle [a, ß] est contenu
dans A. Soit A! A n [a, ß] et B le complémentaire de A! par rapport à

[a, ß]. Si l'ouvert B n'est pas vide, une de ses composantes connexes est un
segment ]a, b[ avec b # a; comme A' est fermé a et b sont dans A'\ la
convexité de A entraîne celle de A' et on peut trouver un point de Ä dans

]a, b[ ce qui est contradictoire.

(b) Soit A la partie considérée. Il suffit de montrer que oc, ß (a < ß)
étant les abscisses de deux points de A, A* A n [a, ß] est dense dans

[oc, ß] ou encore que le complémentaire B de Ar par rapport à [a, ß] est vide.
Si B n'est pas vide, une composante connexe de B est un segment ]a, b\_

dont les extrémités distinctes appartiennent à A'. Soient (ak), (bk) des suites

de points de A! convergeant resp. vers a et b. La A-pseudo convexité de A

pour X dans J entraîne celle de A' ; on peut donc trouver fik dans [X, l—X]
tel que ck ßkak + (1 —pk) bk soit dans A'; on peut extraire de la suite

(jik) une suite (p,k>) convergeant vers l'élément pi de [A, 1— X]; si on associe

à cette suite les suites correspondantes (ak,)9 (bkf {ch) ces suites convergent

resp. vers a, b et c pia + (l—p) b. On a c e]a, b[ d'une part et c e A!
d'autre part comme limite d'une suite de points de A! : contradiction.



(c) D'après (b), il suffit de trouver une partie convexe de I dont l'adhérence

n'est pas un intervalle fermé. C'est le cas, par exemple de l'ensemble

parfait
1

0, -4 u
1

-, 1

2

Remarque. L'énoncé (b) généralise un résultat de J.W. Green et W. Güstin

qui dans [3] ont montré que la conclusion de (b) est valable quand on

suppose que A est une partie 2-convexe contenant les extrémités de I.

2. Chaînes. Dans (E, d) une suite de n + 1 points at(i= 1, n+l)
est une n-chaîne C (a$) joignant, dans E, at à ax + 1. La 72-chaîne est stricte
si les 72 + 1 points a{ sont distincts. La longueur de C est S£ (C)

n

d(at, ai+l). Pour a > 1, la chaîne C joignant a et b est d'ordre a
i= î
si se (C) < ad (ia, b); elle est d'ordre oc à a près si, pour s > 0, on a S£ (C) <
(a+s) d (a, b).
On a Se (C) d (a, b) si et seulement si C est une chaîne d'ordre 1. | C |

support de C est la partie de E union des points de C. Pour une chaîne C,

on désigne par ö (C) la borne supérieure de la distance de deux points
consécutifs de C.

Si on note d la distance dans les deux espaces métriques E et F, une
application d'une partie A de E dans F est dite de type (0, a) ou une a-dilatation

resp. de type (ß,a) si, avec 0 < ß < a, pour tout couple (a, b) de

points distincts de d on a les inégalités

0 < d(f(a) f(b))^ ad (a,

resp.

ßd (a, b) ^d(/(a), /(b)) ^ ad (a,

(A F), resp. (A, F) désigne l'ensemble des applications de type
(0, a), resp. (ß, a) de A dans F. Si /appartient à (A, F),/"1 appartient
à ~1 1 (A,F) et/comme/-1 est uniformément continue. Une application
de type (a, a) est une similitude, une application de type (1, 1) une isométrie.

Proposition 4.

Dans (E, d), une n-chaîne, resp. une stricte joignant deux points
distincts a et b est une chaîne d'ordre a si et seulement si c 'est l'image par une
a-dilatation de n+ 1points Xj de R vérifiant (*), resp. (**) avec:
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(*) *i 0,xJ+1^Xj(j l

(**) Xl 0,xJ+1 > Xj(jlxn+1

Corollaire. Une n-chaîne, resp. une n-chaîne stricte joignant deux points
distincts a et b est une chaîne d 'ordre 1 si et seulement si c 'est l 'image isométrique

de n Ar 1 points Xj de R vérifiant (*), resp. (**).

Preuve. Elle est laissée au lecteur.
Soit N, resp. TV* l'ensemble des entiers > 0, resp. > 0. Une «-chaîne

(at) est une s-chaîne si pour s > 0 on a d(ab ai+1) < & pour i 1, n.

On dit alors que (aest une (n, s)-chaîne. (E, d) est un espace e-enchaîné

si pour tout couple (a, b) de points de E, on peut trouver n dans N tel

qu'existe une («, enchaîne de E joignant a et b. Il est bien enchaîné s'il est

e-enchaîné pour tout e > 0. Il est (a, s)-enchaîné si deux quelconques de

ses points peuvent être joints par une e-chaîne d'ordre a; il est a-bien enchaîné

s'il est (a, e)-enchaîné pour tout s > 0; il est a-presque bien enchaîné s'il
est, pour tout rj > 0, (a+f/)-bien enchaîné.

Les notions précédentes s'appliquent à une partie A de E si l'on suppose

que A les possède en tant qu'espace muni de la métrique induite.

Proposition 5.

Pour A dans /,

(a) Si E est un espace A-pseudo convexe, pour tout couple (a, b) de

points distincts de E, on peut construire une suite (Cn) de 2n-chaînes strictes
d'ordre 1 joignant a et b telles que

(i) pour tout n > 0, | Cn | c | Cn+l |

(ii) pour tout n > 1, ö (Cn) < (1 —A)nd (a, b)

(b) Si E est un espace A-pseudo presque convexe, pour tout couple (a, b)
de points distincts de E et tout s > 0, on peut construire une suite (Cn) de

2n-chaînes strictes d'ordre 1 + s joignant a et b telle que la condition (i) soit

vérifiée et que

(iii) on peut trouver A* dans J tel que, pour tout n >7,5 (Cn) < (i —A*)n
d (a, b).

Preuve, (a) On pose C0 (a, b), Q {a, c, b) où c vérifie la condition
(3) du § 1 d'où résulte ô (CJ < (1 —A) d (<a, b) et on construit la suite (C„)

par récurrence: Cn+1 se déduit de Cn ainsi qu'il suit.
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Le support | Cn + 1 | est l'union de | Cn | et de 2n points t qu'on détermine
ainsi: (u, v) étant un couple de points consécutifs de Cm t est tel que

d(u,t) + d (t, v) d (u,v) inf (d (;u, t), d (t, v)) ^ Ad (u, v)

On en déduit sup (d (iu, 0? d (t, v)) < (1 — A) d (w, v) et Cn+1 est complètement

déterminée en convenant que u, t, v sont toujours trois points consécutifs

de Cn + 1 Cn + 1 est une chaîne d'ordre 1 en même temps que Cn et
à (Çn+1) < (1 — A) ô (C„). La construction de la suite (Cn) vérifiant (i) et

(ii) est alors immédiate.

(b) On peut supposer s suffisamment petit. Pour a < 2A on a une
construction par récurrence analogue à celle de (a). Soit C0 — (a, b) et C1

(a, c, b) où d'après le (4) du § 1 on suppose

d (a, c) + d (c, fi) < ^1 + d (a, fi), inf(d(a, c), d(c, fi)) ^ 2d (a, fi)

d'où résulte

<5(Cj) < 1 +~~A

Choisissons dans 0,1--
2

: alors (i) est vérifié pour 0, 1 et (iii)

pour n1.

Supposons qu'on a pu construire C„ de façon que (i) soit vérifié jusqu'à
l'ordre n - 1, que S (C„) < (1 -À*)" (a, b) et que

2"-2
(iv) <£ (C„) < { 1 + - £ - )d(a,b)2 j o

la condition (iv) entraînant que C, est une chaîne d'ordre 1 + s pour
j < « et étant vérifiée pour n 1.

On détermine C„+1 ainsi qu'il suit. | C„ + 1
| est l'union de | | et de

2" points t:(n, v) étant un couple de points consécutifs de C„, t est tel que

d(u,t)+ d(t,v)<^1+ lAjd(u,v),

On en déduit

s up(d{u,i), d(t,v))<(l+ 1 -l)d(u,u) ^(1-!*)»+!
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et Cn + 1 est bien déterminée en convenant que u, t, v en sont toujours trois
points consécutifs. Cn + 1 est une 2"+1-chaîne joignant a et b\ on a

ICJcz | Cn+i | ô(Cn+1) <(l-l*)n+1d(a,b)
et aussi

(V) i?(C„+1)<(l +^i?(C„).
Or, s2 < s entraîne

et achève de prouver la construction par récurrence de la suite (Cn) vérifiant
(i) et (iii).

3. Les résultats principaux.

Théorème 1. Pour une partie A d'un espace métrique E

(a) il y a équivalence entre les propriétés
(i) A est uniformément convexe

(ii) A est 1-bien enchaîné

(iii) A est J -pseudo convexe.

(b) il y a équivalence entre les propriétés
(i') A est uniformément presque convexe

(ii') A est 1-presque bien enchaîné

(iii') A est J-pseudo presque convexe

(iv') A est totalement presque convexe.

Preuve. On se ramène au cas A E.

(a) Que (iii) entraîne (i) est évident. Que (i) entraîne (ii) résulte de la

proposition 5 (a). Montrons que (ii) entraîne (iii).

Pour X dans J, soit s avec 0 < s < — 2^ d (a, b) et .C (at) une

(n, a)-chaîne d'ordre 1 joignant les points a et b de E; pour tout point c

de C on a d (a, c) + d (c, b) d (a, b) ; il suffit donc de trouver c dans C



— 299 —

tel que M (a, b) < cl (a, c) <^d (a,b) ; si cela n'était pas possible, on

pourrait trouver a; et ai+1dans Ctels que

d(a,at) < Xd(a,b),d^d'où

d (cq, ai+1) d (a, cii+i) — d (a,a2^ d (a, b) > s.

c'est exclu.

(b) Que (iv') entraîne (i') résulte de la proposition 1 (a), que (i') entraîne

(ii') de la proposition 5 (b).
Que (ii') entraîne (iii') se prouve par un raisonnement voisin de celui

montrant que (ii) entraîne (iii).
Montrons que (iii') entraîne (iv'). Nous avons besoin du

1

Lemme. 1. Si l'espace métrique E est -^-presque convexe pour tout couple

(a,b) de points distincts de E et tout rj > 0, il existe une application f de

l'ensemble des nombres dyadiques de I dans E telle que, pour tout couple

(t, t') de nombres dyadiques de I on ait

/(0) a /( 1) b d(f(t),+»,)

Preuve du lemme. Cf. § 18, prop. 21, p. 156 de [5].

D'après la proposition 1 (b), un espace vérifiant (iii') est --presque

convexe. Soit alors / l'application qui pour q > 0 donné est définie dans Je

lemme 1. Pour tout A de J et tout s > 0, on peut trouver \x et v entiers tels

que 2~ ß < s et (d — 1) 2~11 < v < v2~ ß.

On a

d (aj(v2~0) <ü2~^d(a,b)(l+q) <(A + s + q + sq) d(a,b)
Soit alors s > 0 donné; on peut trouver s > 0 et q > 0 tels que s + q +

+ sq < s' et alors pour c f (o2-/i) on a

d (a, c) < (2 + e') d(a,b) d(b,c) < (1 — A + ß') d (a, b)

et compte tenu de l'inégalité triangulaire, les relations

| d(a, c) — Ad (a, b) | < s' d (a, b)

| d (c, b) — (1 — A) d (a, b) | < e' d (a, b).
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Cela établit la 2-presque convexité de E pour tout X de J ce qui suffit

pour établir la totale presque convexité de E.

Théorème 2.

(a) Tout espace métrique uniformément presque convexe et complet est

intrinsèque

(b) Tout espace convexe et complet est segmenté.

1

Preuve, (a) Rinow [5], p. 156, a montré que tout espace --presque

convexe et complet est intrinsèque. C'est donc un corollaire du théorème 1

(b).

(b) C'est le théorème de Menger. On peut en donner la preuve suivante.
On sait que si E, F sont deux espaces métriques, si F est complet et si

A a E, tout élément de ^x,ß (A, E) admet des prolongements maximaux

dans u ^,ß (A, F) le domaine de définition M d'un de ces prolongements m
acze

étant fermé; de plus si E est complet, m {M) est fermé dans F.

D'après ce résultat, si a et b sont deux points distincts de E, l'application
isométrique f0 de { a } u { 6 } dans le segment T [0, d (a, b)~\ définie

par f0 (a) 0,/0 (b) d{a, b) s'étend en une application isométrique
maximale m dont l'image dans T est une partie fermée. Il suffit de montrer
que cette image est convexe car alors, d'après la proposition 3, elle coïncide

avec F et le domaine de définition M de m est un segment joignant a et b.

Si m (M) n'est pas convexe, on peut trouver y1 et y2 dans m (M) tel

que ]yu y2[ n'appartienne pas à m (M). Soit, pour i 1, 2, xt m-1 (yt)
et x dans E distinct de xx et x2 tel que

d(xl9x) + d (x, x2) d(xu x2) ;

associons à x le point y de ]yt, y2[ défini par

d(yuy) d (x1? x) d(y,y2) d(x,x2)

et soit m* l'application dans T dont le domaine de définition est M u { x }
définie par m* (z) m (z) pour z e M, m* (x) y. Du fait que tout point
z de M est tel que, pour i 1 ou 2, on a

d(z,xf) + d(xhx) d(z,x)

résulte que m* est un prolongement isométrique strict de m: c'est exclu.
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4. Espaces rectifiablement bien enchaînés. Dans un espace métrique
fi-enchaîné E, on pose, pour tout couple (x, y) de point de E.

de (x, y) 0 pour x y
dE (x, y) inf if (Ce) pour x f y, la borne inférieure étant .prise sur

les fi-chaînes C£ joignant x et y.
Dans un espace métrique bien enchaîné E on pose, pour tout couple

A

(x, y) de points de E, d (x, y) ~ sup dE (x, y).
s > 0

A

L'espace E est rectifiablement bien enchaîné si d (x, y) est borné pour
tout couple (x, y).

L'espace métrique E est enchaîné sans détour si pour tout x de E et tout
rj > 0 on peut trouver <5 > 0 tel que pour tout s > 0 tout point de Uô (x)

{ z | d (x, z) < <5 } peut être lié à x par une fi-chaîne de longueur
inférieure à r] ; il est uniformément enchaîné sans détour si le choix du <5 ci-dessus

peut être fait indépendamment du point x considéré.

Proposition 6.

(a) Sur tout espace fi-enchaîné E, dE définit une métrique ; on a, pour tout
couple (x, y) de points de E, dE (x, y) > d fx, yj.

A
(b) Sur tout espace rectifiablement bien enchaîné, d définit une métrique

A A
et (E, d est un espace totalement presque convexe. Les métriques d et d

sont topologiquement resp. uniformément équivalentes si et seulement si
l'espace est enchaîné sans détour resp. uniformément enchaîné sans détour.

(c) Un espace métrique est 1-presque bien enchaîné si et seulement si,
A

sur lui, les métriques d et d coïncident.

Preuve, (a) L'inégalité est évidente ; de plus dE (x, y) — d (x, y) pour
e > d (x, y). L'inégalité triangulaire portant sur trois points x, y, z de E
est évidente si deux de ces points sont confondus; on peut donc supposer
qu'ils sont distincts ; montrons que dans ce cas pour tout rj > 0 on a dE (x, y)
< dE (x, z) + dE (z, x) + 2rj ce qui suffit. On peut choisir une e-chaîne C1

joignant x et z telle que if (Cf) < d(x,z) + rj et une s-chaîne C2 joignant
z et y telle que if (C2) < dE (z, y) + rj ; Cx u C2 est alors une fi-chaîne
joignant x et y de longueur if (Q) + if (C2) d'où le résultat puisque
dE (x, y) < if (QuCy.

A

(b) Que d est une métrique est immédiat, compte tenu de (a). Pour
tout couple (s, rj) de nombres > 0 on peut trouver une a-chaîne C£ telle
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que d, (x, y) < (Q < (l-frf) cfe (x, y) ST < (1 -\-rf) d (x, y) ce qui montre
A

que (E, d est 1-presque bien enchaîné, donc totalement presque convexe
d'après le théorème 1. Ce qui concerne l'équivalence des métriques est

immédiat.

(c) Si l'espace est 1-presque bien enchaîné on a pour tout s > 0,
A

dE (x, y) d (x, y) donc d (x, y) — d (x, y) pour toute ouple (x, y).
Réciproquement c'est encore plus évident.

On dit qu'un espace (E, d) est rectifiablement lié si pour tout couple
(x, y) de points de E on peut trouver un arc rectifiable r joignant x et y
dans E. On pose alors dt (x, y) inf S£ (T), la borne inférieure étant celle
des longueurs des arcs comme ci-dessus, d-t définit sur E une métrique appelée

métrique intrinsèque associée à d.

Proposition 7.

Tout espace métrique (E, d) localement compact complet enchaîné sans

détour et rectifiablement bien enchaîné est rectifiablement lié. Par rapport
à sa métrique intrinsèque dt il est compact à distance finie et segmenté.

A
Preuve. {E, d) est aussi localement compact et complet; il est totalement

presque convexe d'après la proposition 6, donc compact à distance finie et

segmenté d'après le corollaire 1 du théorème 3 de [2]. Mais alors (E, d)
A

est rectifiablement lié et dt et d coïncident, d'où le résultat.
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