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A NOTE ON ABSOLUTE SUMMABILITY FACTORS

by Ronald Lee Irwin x)

In this paper results which appear in [2] are extended, namely Theorem 3.

The notation used here and explanation of the problems are given there.

The notation sv e (| A |, | B |)r means £v e | B | whenever Yßv e | ^ |-

The following theorem is a special case of Theorem 3 in [2]. However,

strictly speaking somewhat stronger, since it does not require the representation

(4) in [2]. This is important later on.

Theorem 1. If A is absolutely regular, normal, A' ^ 0 and avv > Oj
for v| (A' ^0 and ann>0 imply A ^0, see footnote 1)in [2]), then gv 0(avv)
implies s„e(| A\,|/|)r.

oo oo

Proof. It suffices to prove | a'nven | ^ M. Since £ | anv |

n—\ n=v
2 00

1 (see, Lemma 1 in [1]), and | s„ | ^ we have £ \a'nve„ \ ^
n v

using ann\.

Proofs of the following lemmas can be found in [1]. The notation
\B\£\A\ means e | A | whenever J^av e | B |.

Lemma 1. If A and B are absolutely regular and normal, and if | B | ç
S I A |, then given a bounded sequence c { cv} there exists a bounded
sequence c {c'v} such that ev (A, c) sv (B, c

Lemma 2. Let A BP, P a weighted mean. Then,

p
[Sv+i (A,c)- Ev (.4, c)] -Li. - gv (A, c) - sv c)

Pv

We now extend Theorem 1 to matrices of the form APk where k is a
positive integer and P is a weighted mean. If P is a weighted mean, then

P ~
p p

* Pv- 1 Oo0=0.
*n*n-1
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Theorem 2. Suppose P is a weighted mean with pv > 0, avv > (v j),
and pvxl 0 (pv). If £v 0 (avv) implies sv e (| A |, | / |)r, then Sv

0 implies ôve(| AP \, \I|)r.
Proof. It suffices to prove Z | av avv — | < oo whenever Zöv e | AP |.

Pv

Using the identity

1 1 v-i
av — — Z Pk-lak — Z pk-lak (V—1)

v 1 fe 1 "v-lk l

we conclude

oo °° oo

Z. vv .r v I^Y^I 7~) / \ I
I

Pv+l r»/\iI av —— I ^ E I aw Pv(a) I + E I • ' «W Pv (a) I

V 1 V V 1 V 1 ffiv Pv

(Pv (a) denotes the P-transform of Zflv) Since, Z^v (ß) e | we have

Z I £Vv A (ö) I < oo by hypothesis. The same holds true for the second

sum, since all of the additional factors are bounded. This completes the

proof. To conclude the results of Theorem 2 with APk (k an integer, k> 1)

in place of AP we need only show av + ljV+1 0 (avv) implies (APk)v+1 ,v+1
0 ((APk)vv). This is done inductively using pv+1 0 (pv). Thus we have by
induction.

Theorem 3. Suppose P is a weighted mean which satisfies the
hypotheses of Theorem 2. If sv 0 (avv) implies sv e (| A ], | / |)r, then <5V

0 ^vv (~fj ^ implies <5V e (| APk, 11 |)r.

We now state and prove the main result of the paper.

Theorem 4. Suppose A and B are normal, and absolutely regular.
Let P be a weighted mean with pv > 0 and | AP | 3 | A |. If
(1) <5V 0 (avv) implies |)r

and

(2) ev (A, c)0 implies e (| | | |)r,

then

ev (AP, c) 0 (ffy) implies sv (AP, c)e(\AP\,\B |)r
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whenever

b„Afor v|(v^n),

ßv+i.v+i 0(flvv), b„ 0 (6V+1>V+1), and 0

Proo/. If £>v e I 4P |, then £PV (a) e | 4 |. Since />„ > 0,. .we have
V

av= Y Pvn af where IX e M I- Usin§ this we have

n=o
n n n

ßn — X bnv 8v J C) av — E Z ^»v 8v C) Pvß '
v 0 ß=0 v=ß

The matrix P' (/?^) is given by

P P
Pvv —>Pv,v-1 — .Pv, 0 Otherwise.

Pv Pv-1

Introducing the inverse we have

;i n p
ßn« I <*„ baß eß (AP,c)+ «, — (K s, (^> c) -

/z= 0 At=0 Pß

- bntl+lsß+1(AP,c
Write

0*P, c) _ ^+ie„+i(^p,c) - e„+1(4P,c)) +

sll+1(AP,c)(bnil-bntt+1).

From this it follows by Lemmas 1 and 2 that
n /t

(3) X bnvev(AP,c)avY +
v 0 ju= 0

" P
Ej 8m+1 (finp — bnß+l) 5

/t 0 Pß

where ev (^4, c') 0 — by Lemma 2. Thus by (2) the first term is absolutely
V'w/

n

convergent. Write the second term of (3) in the form £ aocß Anß, where
ß=0

1 Pß-i
AUß X £p+1 (AP, c) (bn/x bHß+1) •

& ßß Pß

Y \Anfl\
ofhatlpzi1*1}

n — ß \ttßß P*
ß

b
ß-\- \ ,ß~\r 1 Pß
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By hypothesis (1) £ | afl)l aß | < co. Hence the second term of (3) is abso-
00

lutely convergent if £ | AnjU | ^ M. Since bnflf for fi\ we have
n fi

which is 0 (1).

Theorem 5. Let A, B be normal and absolutely regular with A > 0,
B > 0, and Ä ^ 0. Furthermore, assume

(4) n„vT » vt(v^n)
(5) bnv1,vf
(6) vt(v^w)

(7) — (akn- atv) J,,
&nv

(8) av+lp+1 0 (avv)

(9) hw 0(&v+i,v+i)

(10) Pv+i=0(pv).
When these conditions are satisfied

implies

Proof. With k 0 these condition imply sv (^4,c) e (|A1, |B |)r (see Theorem
3 in [2]. Hence, the theorem follows by induction from Theorem 3 and 4.

Theorem 5 extends Theorem 3 in [2] to include all Cesaro methods

A tm (C, a), B (C, ß) where a ^ 0, and 0 < ß < 1.
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