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A NOTE ON ABSOLUTE SUMMABILITY FACTORS

by Ronald Lee IRwIN 1)

In this paper results which appear in [2] are extended, namely Theorem 3.
The notation used here and explanation of the problems are given there.
The notation ¢, € (| 4 |, | B|), means Y a, ¢, € | B| whenever Y a,e| 4 |.

The following theorem is a special case of Theorem 3 in [2]. However,
strictly speaking somewhat stronger, since it does not require the represen-
tation (4) in [2]. This is important later on.

TueoreM 1. If A is absolutely regular, normal, 4" = 0 and «a,, > 0]
for v{ (4’ <0 and a,,>0 imply 4 =0, see footnote 1)in [2]), then e, = 0 (a,,)

implies ¢, € (] Al |1 [),:

Proof. It suffices to prove ), | a,¢, | = M. Since Y |a,, | =
— — 1 (see, Lemma 1 in [1]), and | ¢, | = Ka,,, we have ) |a,, ¢, | =2K
avv n=y
using a,,} .

Proofs of the following lemmas can be found in [1]. The notation
| B| = | A| means Ya,e| 4| whenever Ya,e| B|.

Lemma 1. If A and B are absolutely regular and normal, and if [ B ] =
< | 4|, then given a bounded sequence ¢ = { ¢, } there exists a bounded
sequence ¢’ = { ¢, } such that ¢, (4, ¢) = ¢, (B, ¢').

Lemma 2. Let A = BP, P a weighted mean. Then,

[eir (A, 0) — 6 (4, )] 2=

p

= ¢,(4,¢) —¢,(B,c).

We now extend Theorem 1 to matrices of the form AP* where k is a
positive integer and P is a weighted mean. If P is a weighted mean, then

Da
PP, P,_y (Poo':l)-

Dny =
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THEOREM 2. Suppose P is a weighted mean with p, > 0, a,, > 0] (v1),
and p,.; = 0(p,). If & =0(a,,) implies e, (| 4|,|7]),, then §, =

avv pv . .
O( P)lmphes 6,e(| AP |, | I,

v

Proof. 1t suffices to prove Y |a, a,, }];3 | < oo whenever Ya, €| AP |.

v

Using the identity

1 v v—1
a, = >, Peoia; — >, Pioia, (v=1)

Pv—1k=1 v—1k=1

we conclude

Y la, 2P < Y ja,P@] + Y | Dt Prl g b (a))

v=1 Pv v=1 v=1 vy v
(P, (a) denotes the P-transform of Y a,.) Since, Y P, (a)e|4| we have
> |a, P, (a)| < oo by hypothesis. The same holds true for the second
sum, since all of the additional factors are bounded. This completes the
proof. To conclude the results of Theorem 2 with AP* (k an integer, k> 1)
in place of AP we need only show @, ,,; = 0 (a,,) implies (AP*),, ,+; =
0 ((4P%),,). This is done inductively using p,,; = 0(p,). Thus we have by
induction.

THEOREM 3. Suppose P is a weighted mean which satisfies the hypo-
theses of Theorem 2. If &, = 0(a,,) implies ¢, (| 4|, |I|),, then J, =

k
=0 (aw (?) ) implies 8, € (| AP, | I]),.

We now state and prove the main result of the paper.

THEOREM 4. Suppose A4 and B are normal, and absoluteiy regular.
Let P be a weighted mean with p, > O and | AP | 2 |4 |. If

(D) o, = 0(a,,) implies 6,e(| 4], |1]),
and

) e,(4,¢) = 0(?) implies e,e(| A|,|B]),
then N

avv pv

g, (AP,c) = 0 (b

> implies ¢,(AP,c)e(| AP |, |B}|),

vy v
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whenever

by T for v1I(v=n),
yi1ve1 = 0(a,), by = 0(bysy,y11), and pyey = 0(py).
Proof. If Ya,e|AP|, then YP,(a)e| 4| Since p, >0, we have
= i py, &, Where Y, €| A |. Using this we have
p=0

= Z bnvgv(APDC)av = ZOOCM Z b"VSV(AP’C)p"’”'
y=0 u= V=L

The matrix P’ = (p,,) is given by

P, P, _ _
Pw = —v, Poy=1i = = —v—z, Pys = 0 otherwise.
Y pv—l

Introducing the inverse we have

n

P _
B, =Y a, b, e, (AP, c) + Z o, % (b, e, (AP, ¢) —

©=0 r=0 Py

- bnu+18u+1 (AP> C)) .
Write

nu u(AP C) n pt+1 8u+1 (AP,C) = bnu (Su (APa C) - 8u+1 (AP, C)) +
8,u+1 (AP; C) (bn
From this it follows by Lemmas 1 and 2 that

u—-bnu+1) .

(3) Z bnvgv(APac)av = Z bn,u u(A C)OC +
v=0 n=0

n

Z Eu+1 (AP, ¢) (byy,

pu n,u+1) ’

wheree, (4,¢) =0 (b > by Lemma 2. Thus by (2) the first term is absolutely

vy

convergent. Write the second term of (3) in the form ) a,, o, A4,,, Where
u=0
n—1

np

1P
— X €,41 (AP, ¢) (b,

nu+ 1) .
pp  Pu

{Z | 4, | = O<b’“‘ Py—g Q1+ Pu+1>
np
n=pu

Ay Pu bu+1,u+1 Dy
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By hypothesis (1) ), ] ay, o, ] < o0. Hence the second term of (3) is abso-

lutely convergent if ) | A4,,| < M. Since b,,7 for uT we have

n=p

which is 0 (1).

THEOREM 5. Let 4, B be normal and absolutely regular with 4 = 0,
B = 0, and 4’ = 0. Furthermore, assume

(4) a1, vI (v=n)

(5) by, vl (v=n)

(6) Z:— I, vt (v=n)

-

(7 — (agy—ap,) |, v foralln =<k
(8) av+1,v+1 = O(avv)

(9) bvv = O(bv+1,v+1)

(10) pv+1 = 0(p)).

When these conditions are satisfied

k
6 (AP*, ) = 022 (2
bvv PV

&, (AP", c)e(| AP*|, | B]),.

Proof. With k = 0 these condition imply ¢, (4,c) € (4], |B]), (see Theorem
3 in [2]. Hence, the theorem follows by induction from Theorem 3 and 4.

Theorem 5 extends Theorem 3 in [2] to include all Cesaro methods
A = (C,a), B= (C, p) where « =0, and 0 < < 1.

implies
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