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EIN HOLOMORPH-SEPARABLER KOMPLEXER RAUM
MUSS NICHT HOLOMORPH-REGULÄR SEIN

von Klaus-Werner Wiegmann

In der Arbeit [2, Satz 2*] wird bewiesen, dass ein komplexer Raum

genau dann lokal-holomorph-separabel ist, wenn eine holomorph-reguläre
komplexe Unterstruktur mit gleicher globaler Funktionenalgebra existiert.
Es entsteht die Frage, ob nicht schärfer gilt, dass jeder holomorph-separable
komplexe Raum selbst holomorph-regulär ist. Doch dazu geben wir das

folgende Gegenbeispiel an:

Wir betrachten das Gebiet

X : {(z1? z2) e C2 : | z1 | # 1 oder z2 A 0 }

mit der üblichen komplexen Struktur 0 : -- 20 | X. Die Holomorphiehülle
von (Z, (9) ist (C2, 2(9), und es gilt:

die abgeschlossene Hülle in 2(9 (C2) wird dabei bzgl. der Topologie der
kompakten Konvergenz gebildet. Es sei

M : {(z1, z2) eX : z2 0 und j zx j < 1 }

die (offene) Einheitskreisscheibe in der Zj-Ebene des C2. M ist eine analytische

Menge in (Z, (9). Eine Garbe sé auf Z definieren wir folgendermassen:

jtf(U): {/e & (U) '-f(a,o)e C [ <z i ~a, z\,z\>](a,0)eMn
falls U czXoffen ist. Es gilt:

Wir zeigen, dass (X,sé)ein komplexer Raum ist.
Dazu müssen wir zwei Fälle unterscheiden : x 0) e und x
(*!, x2) e X-M.

ist eine offene Umgebung von (a,0),und s/\U) ist direktes Produkt

&(X) 2(9{C2) [z1; z2]

C \_<zl-a, z\, z\>]für x=(a,0)eM
sonst

V : {(Zl, z2)eX<1}
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des (C1, J0) mit der Neilschen Parabel (auf die offene Einheitskreisscheibe

beschränkt).

V: {(z1,z2)eX:z2 # 0 oder \zx \ > 1} X / M

ist eine offene Umgebung von (x1? x2) mit (V, sé\V) (V, @\V), q.e.d.

Die globalen holomorphen Funktionen sé (X) C [zl9 z\, z\] trennen
die Punkte von X, erzeugen aber keinen Cotangentialraum

Tx (X, sé) x (b,0)eX / M ;

denn für solche x gilt ^ und deshalb Tx (X, stf) Tx (X, 0).
Damit ist gezeigt, dass (X, j/) holomorph-separabel, aber nicht

holomorph-regulär ist.

Bemerkungen

1. Es gibt kein eindimensionales Beispiel dieser Art, weil jeder
eindimensionale komplexe Raum ohne kompakte irreduzible Komponenten
Steinsch, insbesondere holomorph-regulär ist.

2. Unser Beispiel zeigt ausserdem: Ein komplexer Raum X, der eine

Steinsche Holomorphiehülle X besitzt, so dass die zugehörige Abbildung

X X injektiv ist, braucht nicht Teilraum dieser Hülle zu sein.

3. Übrigens ist für einen prä-Steinschen Raum die zugehörige
holomorphe Abbildung in die Holomorphiehülle genau dann injektiv, wenn er

holomorph-separabel ist. In beiden Fällen ist diese Abbildung sogar offen.

Das folgt etwa aus [1, § 1] und [2, Satz 2].
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