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EIN HOLOMORPH-SEPARABLER KOMPLEXER RAUM
MUSS NICHT HOLOMORPH-REGULAR SEIN

von Klaus-Werner WIEGMANN

In der Arbeit [2, Satz 2*] wird bewiesen, dass ein komplexer Raum
genau dann lokal-holomorph-separabel ist, wenn eine holomorph-regulédre
komplexe Unterstruktur mit gleicher globaler Funktionenalgebra existiert.
Es entsteht die Frage, ob nicht schirfer gilt, dass jeder holomorph-separable
komplexe Raum selbst holomorph-reguldr ist. Doch dazu geben wir das
folgende Gegenbeispiel an:

Wir betrachten das Gebiet
X:={(z(,2,)eC?: |z | # 1 oder z, # 0}

mit der Uiblichen komplexen Struktur @ : == ,0 I X. Die Holomorphiehiille
von (X, 0) ist (C?, ,0), und es gilt:

0(X) = 2@(C2) = C[szz];

die abgeschlossene Hiille in ,0 (C?) wird dabei bzgl. der Topologie der
kompakten Konvergenz gebildet. Es sei

M::{(ZI,ZZ)EX:ZZ':O und IZII<1}

die (offene) Einheitskreisscheibe in der z;-Ebene des C?. M ist eine analy-
tische Menge in (X, 0). Eine Garbe .o/ auf X definieren wir folgendermassen:

A (U): = {feO(U):foneCl<z;—a,z5,z3>] (a,0)e M n U},
falls U = X offen ist. Es gilt:

. _{C[<zl——a,z§,zg>] fiir x=(a,0)eM}

0. , sonst

Wir zeigen, dass (X, o) ein komplexer Raum ist.
Dazu missen wir zwei Fille unterscheiden: x = (a,0) e M und x —
= (x, x,) e X — M.

ist eine offene Umgebung von (g, 0), und (U, ﬂ]U) st direktes Produkt
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des (C*, ;0) mit der Neilschen Parabel (auf die offene Einheitskreisscheibe
beschrinkt).

Vi={(2y,2)eX:2z, #0 oder |z,|>1}=X/M
ist eine offene Umgebung von (x,, x,) mit (V, </ |V) = (V, (OIV), q.e.d.

Die globalen holomorphen Funktionen &/ (X) = C [z,, 23, z3] trennen
die Punkte von X, erzeugen aber keinen Cotangentialraum

T.(X, o) = m(L) | m(L)*, x = (b,0)eX/M;

denn fiir solche x gilt o/, = 0, und deshalb T, (X, «/) = T, (X, 0).
Damit ist gezeigt, dass (X, «/) holomorph-separabel, aber nicht holo-
morph-regulér ist.

BEMERKUNGEN

1. Es gibt kein eindimensionales Beispiel dieser Art, weil jeder ein-
dimensionale komplexe Raum ohne kompakte irreduzible Komponenten
Steinsch, insbesondere holomorph-regulér ist.

2. Unser Beispiel zeigt ausserdem: Ein komplexer Raum X, der eine
Steinsche Holomorphiehiille X besitzt, so dass die zugehdrige Abbildung
X — X injektiv ist, braucht nicht Teilraum dieser Hiille zu sein.

3. Ubrigens ist fiir einen pri-Steinschen Raum die zugehorige holo-
morphe Abbildung in die Holomorphiehiille genau dann injektiv, wenn er

holomorph-separabel ist. In beiden Fillen ist diese Abbildung sogar offen.
Das folgt etwa aus [1, § 1] und [2, Satz 2].
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