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CONTINUITY OF FUNCTIONS OF SEVERAL VARIABLES

by Thomas E. MoTT

In a recent paper [1], R. L. Kruse and J. J. Deeley have proved an
interesting theorem concerning the continuity of a real valued function of
several real variables, when that function is continuous in each variable
separately and satisfies a certain monotonicity condition. The proof given
by Kruse and Deeley involves induction on the variables, however a some-
what shorter and simpler proof is given below. In addition, two interesting
corollaries are stated.

THEOREM 1. — Let f (x4, ..., X,) be a real valued function defined on an open
set G < R", and suppose that :

(1) Whenever n — 1 of the variables are fixed, f is a continuous function
of the remaining variable.

(i) For each permissible 1) value of (X1, ..., Xj_ 1, Xi4 15 os X,) iN R" 71
the function f (x4, ..., x,,) is a monotone function of x,, the direction of
monotonicity being dependent upon the choice of the point (x, ...,
ey Xim 15 Xia 15 ooy X)) 0 R Y5 all for i =1, ..., n.

Then f (x4, ..., X,) Is continuous in G.

Proof: Let (x4 g, ..., X, 0) be any point in G, then G being an open set
we may choose 6 > 0 such that the rectangle S = [x; ,—36, X1,0+0] X
X oo X [Xp,0—0, X, 0+0] is contained in G. In view of (i), given € > 0
we may choose ¢, in (0, §) such that

g
|f(x1:x2,0a cees Xn,0) ‘"f(x1,0>x2,0> o ug B g | H

whenever | x; — x; | <6, 8, in (0, d,) such that

e
|f(x1,o + 613x2’x3,05"'>xn,0) - f(xl,o + 04 x32,09X3,O>"'>xn,0) | < -
n

1) Permissible values of (xi, ..., Xi—1, XI+1, ..., Xn) in R"—1 being those for which
(X1, oo, Xxn) € G.
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whenever | Xy — X2.0 ] < 0,, and continuing in this manner we finally
choose 9, in (0, 0) such that

If(x1,o +04, X2.0 +06,, ..., Xn—1,0 +0,-1,%,) —

g
f(x1,o + 04, X2.,0 T Gay oy Xn—1,0 +0,-1, xn,O) | < '};

whenever | x, — x,0 | < 5,

Let S = [x;0—081, %10+ X e X [x,0—0, Xy 0+5,], then romf
(11) it follows that the function f assumes its maximum and minimum values
at vertices of S, let (X1 o071, v Xno+0n) aNd (X1 0875 woes Xno+0n)
be these maximum and minimum points respectively, then §; = <+ §, and
5;" =6, for i =1, ..., n and certain choices of the =% signs.

Now
If(x1,o +5si<> «ees Xp 0 +5ﬁ) _f(xl,m ooy xn,O) =

|f (X1 0+0%s s Xyog 04+ 0n 1, X,0+07) —
—f (104075 i Xum10H 0015 Xa0) | +
+ | f (104015 s Xum1,0+0n—15 X 0) —
—f (1040715 s Xm0+ 00 —25 X105 Xn0) | +
+ o [ f(xp +5f:x2,0a s Xg0) — (X105 s Xn0) | < &

and similarly |f(x; 0407, o Xn0F0,) — F(X1,05 e Xn0) | < & There-
fore, |f(x1.0F0%, s Xn0F82) — F(X1,0F075 s Xpo+6,) | < 2¢ and
consequently if (xj, ..., x,), (xi,...,x,) are any two points of S then
| f(x1, oos %) — (1, s X,) | < 2e. Since € is arbitrary it now follows
from the Cauchy Criterion that the function f is continuous at the point
(X105 +e» Xn0) I G.

Two rather interesting results which follow directly from this theorem
are:

Corollary 1: Let f(x4, ..., x,) be a real valued function defined on an
open set G < R". Let T be an invertible mapping from G into R" defined by
the equations u; = p; (xy, ..., X,) (i=1, ..., n) in such a manner that the
inverse mapping T~! is defined by the equations x; = q; (uy, ..., u,) (i=
=1, ..., n) where the functions p; (x4, ..., x,) (i=1, ..., n) are continuous in

G and the functions q; (uy, ..., 4,) (i=1, ..., n) are continuous in 7 (G).
Suppose that:



e
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(i) The function f is continuous along that portion of the curves { x; =
= gy Uyt Ugy ey Uy)y ooy Xy = G (U1, Ugy oy Uy) } s oy { X1 =
=gy (Uyy ooy Up 1y UpFE)y ey Xy = Gy (Uyy ooy Uy— 1, U,+1) } Wwhich
lie in G, for every (uq, ..., u,) in T (G).

(ii) For each permissible !) value of (i, ..., t;— 1, Ui 1, ..., Uy,) in R*~ ' the
function f(qy Uy, ..er Up)s <oy @u (Uy, ..., U,)) is @ monotonic function of
u;, the direction of monotonicity being dependent upon the choice of
the point (14, ..., U;_ 1, U;4 15 -or U,) in R*71; all for i = 1, ..., n. Then
f(xy, ..., x,) 1s continuous in G.

Corollary 2 : Let f(x, ..., x,) be a real valued function defined on an
open set G & R" and let v; = (4;4, ..., 4;,) (i=1, ..., n) be linearly inde-
pendent vectors in R". If the function fis continuous along that portion of
every line passing through G and parallel to v; (i=1, ..., n), and f is mono-
tonic along each of these lines (the direction of monotonicity depending upon
the choice of line), then f (x4, ..., X,) is continuous in G.
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1) Permissible values of (1, ..., ui- 1, Ui+, ..., Un) in R*=1 being those for which
(u1, ooy Lln) € T(G)
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