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On trouve

[Ç, z]°(e, e) (zöO(s,ß) z(Ç(e), s) + z(e,£(e)) 2 2z(e, e),

tandis que les autres valeurs de [£, z]° et de z sont zéro. Autrement dit,

[f,z]° 2z.

L'espace ne nous permet pas d'expliquer comment cette formule est liée

au fait que jl est une structure de « saut » : il change une fois (dans chaque
direction de t) ; ensuite la structure reste constante. C'est un cas particulier
de la situation décrite dans la dernière remarque de la section 6.

Partie III: Algèbres de Lie et algèbres de Vinberg
— plus sur les déformations —

systèmes de composition

Introduction.

Le produit de composition pour des algèbres associatives a été introduit
dans la partie II, de même que quelques applications — principalement
celles concernant les déformations de telles algèbres. Cependant les

possibilités du produit de composition n'ont pas été là épuisées: il prête lui-même
à d'autres questions de déformation qui sont mentionnées dans la partie
présente: déformations d'homomorphismes d'algèbres et déformations de

sous-algèbres. Le crochet [,]° de la partie II était à vrai dire un commutateur
de produits de composition: on peut le comparer avec l'algèbre de Lie des

commutateurs d'une algèbre de Vinberg. On montre maintenant que le

produit de composition « plus fin » permet la construction d'autres structures

graduées de Lie notées [, ]u et [, ] qu'on ne pourrait obtenir à partir de

[, ]° seul. Les nouveaux crochets sont utilisés pour les déformations
d'homomorphismes et de sous-algèbres.

Les considérations de cette sorte ne sont nullement limitées aux algèbres
associatives : notre première tâche consiste à définir les produits de composition

pour les algèbres de Lie et les algèbres de Vinberg de telle façon qu'ensuite

toutes les discussions s'appliquent également aux trois types d'algèbres.

(Elles s'appliquent aussi aux algèbres associatives et commutatives ; cf. les

notes bibliographiques.) Quoiqu'on n'ait pas beaucoup à dire en ce qui
concerne les produits de composition dans les algèbres de Lie et les algèbres
de Vinberg (tous les commentaires antérieurs s'appliquent presque mot pour
mot) nous avons pensé appuyer sur leur utilité en donnant un exemple de

déformation d'algèbre de Lie.
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L'utilité « universelle » du produit de composition que nous avons ainsi

exhibé nous conduit à la question que peut-être d'autres types d'algèbres

pourraient admettre aussi des produits de composition. A vrai dire, s'il en

est ainsi, alors il y aurait pour chacun de ces types une théorie toute faite de la

cohomologie et des sortes variées de déformations attendant pour être

appliquées. Les algèbres de Vinberg peuvent par exemple être considérées

comme un exemple de type d'algèbre pour lequel on attendait une théorie

toute faite.
De façon à asseoir la théorie de façon suffisamment ferme pour

permettre de telles théories toutes faites, il est nécessaire de réduire non seulement

toutes les définitions mais aussi toutes les preuves de théorèmes à des

propriétés explicitement énoncées du produit de composition. L'espace

ne nous permet pas la pleine exécution d'un tel programme. Cependant,

nous donnons un exposé explicite des propriétés requises du produit de

composition (introduisant là les systèmes de composition), et montrons
comment certaines propriétés décisives suivent des axiomes.

8. Un deuxième produit de composition.

On a montré que le produit de composition introduit dans la section 4

est justement la pièce de mécanisme qu'il faut pour un certain nombre de

questions liées aux algèbres associatives. Nous introduisons maintenant
— dans un style beaucoup plus bref — un deuxième produit de composition
qui fait de même pour les algèbres de Lie de façon si semblable qu'il y a
réellement très peu à dire. La répétition de la même histoire ne servirait
aucun but; il est assez de suggérer que le lecteur se convainque lui-même
en parcourant une fois encore le matériel.

Nous prenons à nouveau un espace vectoriel V et prenons pour applications

linéaires d'ordre n de V dans V seulement celles d'entre elles qui sont
alternées. Pour deux telles applications, / et g (la dernière étant linéaire
d'ordre m) on définit / X g (prononcez / « hook » g) par

(12) (/TflO(**..»,*„+«-0
L sg tf(cj (xt(1), xT(m+1), xr(n + m_ ^

où la sommation est sur les permutations i de { 1, n + m — 1 } pour
lesquelles

t(1) < < t (m) et t (m + 1) < <T(n + m- 1)

On peut aussi sommer sur toutes les permutations et diviser par m (n— 1) î.

Notons que pour que cette formule ait un sens les valeurs de / n'ont pas
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besoin d'être dans V mais peuvent appartenir à n'importe quel espace
vectoriel.

La relation avec les algèbres de Lie est la suivante : si jx est une application

bilinéaire alternée de V dans F, alors jx définit une structure d'algèbre
de Lie si et seulement si fx X \x 0. Une copie donne la vérification immédiate

de l'identité de Jacobi

QiKn) (x, y, z) n(n(x,y), z) - n (x, z), y) + n(n (y, z), x)

« H(fi(x, y), z) + fi (n (yz),x) + n 0> y)

Une fois donnée la définition de X on répète avec presque une monotonie
assommante en prenant ô comme modèle : (9) est valable (la preuve suit la
même idée), [,]° est défini comme dans le dernier théorème de la section 4

et donne à nouveau une structure d'algèbre de Lie graduée. Le cobord ô

est défini comme auparavant par ôf — [jx,f]°. En considérant le produit
semi-direct d'une algèbre de Lie et d'un module on trouve pour ôf dans le

cas où/est une application d'ordre n alternée de V dans M la formule:
n

(ô/)(x0,...,x„) X (-îyXj/tXo, ...,X;_1,xj+l9 ...,x„) +
i — O

+ £ (-i)i+J+1f(ß(xi,xj),x0,...,Xi_1,Xi+1, ...,x„),
i<j

qui dans cette situation est exactement la formule classique.
Les applications et les exemples des sections 4 et 5 peuvent être répétés

presque mot pour mot. La théorie de la déformation de la section 6 marche

sans changement perceptible.
On doit faire une petite modification dans l'exemple 3 de la section 5.

Le groupe des automorphismes intérieurs d'une algèbre de Lie doit être

défini différemment. On utilise le fait qu'à chaque algèbre de Lie correspond
un groupe de Lie (pas du tout unique) et que les automorphismes intérieurs
de ce groupe (donnés par les applications de la forme b !-* aba~x) induisent

un groupe d'automorphismes de l'algèbre de Lie. (Le groupe est unique si

par exemple nous exigeons qu'il soit connexe.) L'algèbre de Lie est exactement

B1 (V, V). Toutes les remarques ultérieures de l'exemple 3 continuent
à s'appliquer.

9. Un autre exemple.

Nous étudions maintenant les déformations d'une algèbre de Lie V de

dimension trois ayant pour base p, q, 1 telle que

H(p,q) l, p(q, 1) 0 ;
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les physiciens la nomment d'après Heisenberg. En vue de la simplicité,
nous considérerons les équivalences sur les nombres complexes de sorte

que V sera un espace vectoriel complexe. (Autrement il faudrait distinguer
entre les racines réelles et les racines imaginaires des équations, etc.).

Soit / : V -» V une application linéaire, on a alors

C 5f)(p,q)n(p,f(q)) - n(q,f(p))-
- p(q,f(p))

(ôf)(q,l) p(q,f(l)) -p(l,f(q))=
(ôf)(l,p) h(I,/'(/')) ~ ß(p,f(1)) — /(M(1 1)).

Soit

/(*) +fp(x)p + (x)

de telle sorte que fx (x), etc., sont les composantes de/(x); on a alors

(ôf)(p,q) (fq (q) +fp(p)-(1)1-f„(l)p ~fq(l)q,

(ôf)(q,l)-.^(1)1,
(<3/)(l,p) -/,(1)1.

Par suite, / est une dérivation si et seulement si

fp(l)=/,(!) /4(q) +/p(p) -/x(l) 0.

De plus, B2est engendré par les applications bilinéaires alternées <p

pour lesquelles (en utilisant pour les composantes une notation analogue)

(Pi (q,1) <pp (p,q),(1, cpq <j),

<Pp(g,l) «Pp(l,p) <p9(l,p) 0.

Un espace complémentaire à B2 est formé des pour lesquels 0.
Soit cp e W; on calcule ôcp :

(öcp)(p,q, 1) p(p,(p(q,1)) + p+ +

- (p(p(p,q) ,1) -(p(p(q,l),p)-
cpp (q,1) 1 - cpp(1, p)1 +0-0-0 - 0

Ainsi on a ôcp0 pour cp e Wsi et seulement si cpp {q, 1) q>p (1, p). Les
composantes encore libres d'un cocycle cp de W sont donc

<Pp(q,1) > (pq(q,1) > cpq(l,p), (pp(p,q),

L'Enseignement mathém,. t. XIV, fasc. 3-4. 1S
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tandis que cpp (1,p) doit être égal à cpq (q, 1) et que cpt 0 Donc H2 est de

dimension 5. Un espace complémentaire U2 consiste en les cp pour lesquels

<Pp P) est libre tandis que les autres valeurs sont zéro.

L'équation de déformation est

où on doit prendre z dans H2 et u dans U2. D'après le calcul précédent on a

Comme les valeurs de z et de u sont dans le sous-espace engendré par p
et q, il en est de même de (z+w) Ä" (z+w). Puisque les valeurs de bu sont des

multiples de 1, il s'en suit que u peut satisfaire à l'équation de déformation
seulement pour bu 0, i.e. u 0. Par suite, nous trouvons que toutes les

déformations dans P sont données par p — p + z avec z g H2 et z~K z 0.

(La dernière équation est exactement Q (z) 0.)
Nous avons donc

(zAz)(p,q, 1) z(z(p,q),l)+ z(zp(q,l)p + zq(q,l)q,p) +

Les deux derniers termes s'éliminent puisque zq (q, 1) zp (1, p) ; ainsi

z a z 0 est équivalent à

Cela termine réellement la partie théorique du problème de déformation.
Nous utilisons maintenant des méthodes classiques pour trouver les

solutions.

Pour résoudre l'équation, nous considérons l'application a : x !->

- z (x, 1) de x dans l'espace X engendré par p et q. Les composantes
relativement à la base p, q de X sont données par la matrice

Comme cette matrice a pour trace zéro, la forme canonique de Jordun est

Su — (z +u) a (z +u) 0

Càu)(p,q, 1) - (1, 1.

+ z (zp (1. p) P+ (1> p) •

z(z(p,q) ,1) 0

zP(p, î) z4o, iy
ZpO, 1) 2,(3,1)

on

Notons encore p, q la base par rapport à laquelle est assurée une de ces

formes. On peut supposer que la transformation qui mène de l'ancienne base

à la nouvelle a pour déterminant 1 ; alors p (p, q) ne change pas.
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Nous distinguons plusieurs cas.

Cas 1. z (p, q)0. La forme (a) n'a lieu alors que pour A 0, car

sinon on a z 0 (donc aucune déformation). On trouve (cas la)

p'(p,q) 1, p'{q,\)=Xq>'

En prenant la base (p/A1/2, qß1'2,lß) on obtient une réduction de plus

p'(p, q)1,
cas la p' (q, 1) q

p'(l,p) P •

Dans le cas (b) on trouve

p' (p, q) 1

cas 1b p! (q, 1) p

p'(l,p) =0.
Cas 2. z (p, q) #= 0. Dans ce cas, z (p, q) est un vecteur nul pour a,

donc A 0 et z (p, #) est un multiple de p; disons z (p, q) ap par rapport
à une base convenable. Dans le cas (a) on trouve

p! (p, q) 1 + ap p 1) 0 p! (1, p) 0

Par rapport à la base (ap+1, 1) cela devient

p' (p, q) P>

cas 2a p' {q> 1) 0

p'(l,p) 0

Considérons maintenant à nouveau le cas (b) ; alors

p' (p, q) 1 + ap p' te, 1) p p' (1, p) 0

où a ^ 0. Tout élément p qui n'est pas dans le plan Y de 1 et de p induit une

application jp |-> p (y, q) ; elles diffèrent toutes uniquement par un facteur.
j a i

Pour q q, nous avons ß : y l-> p (y, q). La matrice de ß est
-1 0

; son

polynôme caractéristique est X2 — aA + 1. Le discriminant a1 — 4 est
=£ 0 pour a 7^ + 2, de telle façon que les valeurs propres 2 et 1 /X sont soit
distinctes de + i (puisque a^0) ou toutes deux égales à ± 1. Dans le
premier cas une base pour Y existe (encore notée (p, 1) telle que

p'(p,q) Xp,p'(q,l)- 0.
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On divise p par 2, on pose — 1/A2 % et on trouve

v' (P, q) P> (t#0, ±1).
cas 2b' p (p, 1) rl,

p (1, p) 0

Les cas t et 1/t sont équivalents: changer p et 1 et remettre q à l'échelle.

±2 rDans le dernier cas, la matrice de ß est

qui est équivalente à

resp.

1 0

1 0
1 1

-1 0
1 -1

Les p! correspondants sont équivalents; pour le premier on trouve

p! (p, q) p
cas 2b" p' (q,l) — — 1 — p

p'(l,p) 0

Toutes les structures suivantes peuvent à vrai dire être atteintes par
de petites déformations arbitraires:

Cas la. z (p, q) 0

Cas 1b. z (p, p) 0

Cas 2a. z (p, q) tp

Cas 2b. z(p, q) tap

z(p, 1) - tp z(<2, 1) - tp

z(p, 1) 0, z (p? 1) tp,

z(p, 1) 0 z(p, 1) 0

z(p, 1) 0 z (p, 1) - tp

10. Un troisième produit de composition

Pour étudier les algèbres de Vinberg on a encore besoin d'un autre produit

de composition. Le trait qui le distingue principalement est qu'il est

beaucoup moins connu que les deux autres. Nous le noterons Ç. Les fonctions

linéaires d'ordre n que nous considérons sont celles qui sont alternées

par rapport aux n — 1 premières variables. Il est parfois utile de les considérer

aussi comme des applications alternées, d'ordre n — 1, /' de Là
valeurs dans l'espace End (F), des applications linéaires V V.

Supposons maintenant que / est comme ci-dessus, et g de même mais

linéaire d'ordre m. Alors f Ç g est de la même sorte, linéaire d'ordre n +
+ m — 1 et donné par

(fÇg)(x1,xn+m„1)=
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ZiSg of (g (^ff(l)j •••> xtr(m-l)> X<r(m))> Xa(m + 1)> ' *' X<r(m + n-2)> Xn + m- l) +

+ _ ^(m-lHn-1) l2$g Gf(xo^ Xff(„_1)?

9 0^cr(n)' **•' *^(T(n + m — 2) » Yj+m-l))>

où porte sur toutes les permutations <rde{l,...,/2 + m- 2} telles que

er (1) < < ex (m-1) et or (m+1) < < c (n+m-2) tandis que la somme

5]2 porte sur les permutations cr vérifiant a (1) < < a {n- 1) et ö" (/z) <
< < a (n+m-2). Notons que g est complètement antisymétrique par

rapport à la première somme, mais ne l'est pas par rapport à la deuxième.

Notons aussi que xn+m_1 n'est dans aucune des permutations.
Une forme plus courte pour la définition dzfÇ g est obtenue à l'aide

de/' et g\ les applications alternées linéaires d'ordre (n — 1) resp. (m—1)

de V dans End V. Nous avons besoin aussi de g 1eg complètement alterné,

ainsi g est une application linéaire d'ordre m de V dans V.

Avec ces conventions on a

LfÇgï =f"K9 + A g' %

Notons que /' a gf est le produit extérieur de deux formes alternées à

valeurs dans l'algèbre (associative) End V; comme cette algèbre n'est pas

commutative, il n'y a pas de relation simple entre /' a g' et g A f. La
deuxième forme est plus commode pour prouver (9) en ce qui concerne Ç.

Lorsque /z est une application bilinéaire de V dans V, fi Ç fi 0 est

juste la condition (1); en fait

OxÇ/i) (x,y,z)n (jU (x, y),z)- p(y, x) z) - ß (x, ß (y, z)) +

+ ß (y, ß (x, z)).

Le produit de composition associé aux algèbres de Yinberg, comme on
l'a donné, diffère de celui qui a été donné pour les algèbres associatives et les

algèbres de Lie par un aspect important: les applications multilinéaires

pour lesquelles il est défini ont un degré positif : les produits fÇ x (avec

xeV) n'ont pas été définis. Nous les poserons arbitrairement égaux à zéro.
La signification la plus profonde de la difficulté à trouver une définition
naturelle de /Ç x vient du fait que les commutateurs (voir le cas n=0
de la section 4: « dérivations intérieures ») ne donnent pas des dérivations
dans les algèbres de Yinberg. Les exemples 1 et 3 de la section 5 deviennent
vides: B1 (V, M) 0 et le groupe des automorphismes intérieurs se réduit
à l'identité.

Toutes les autres remarques faites dans la section 8 pour les algèbres
de Lie valent maintenant pour les algèbres de Yinberg avec seulement les
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modifications évidentes. Nous copions la formule des cobords. Rappelons
qued/- -/Ç/i + (-irVÇ/:

n— 1

(ôf)(xo,...,x„)£ (-iyxif(x0, .„,xi_+
i= 0

n- 1

+ Z (-1)7(^05 -
/ 0

X] / (D^i? Y/J> • * ' ' ^i~ 1 ' + • * •> Xj — i XJ + 1, X,,« I, Xn)
i < ji < n

w-1
X! 1) fi^o, Xj_ i, Xj + i. X„_i, Xi%n) '

i 0

Les deux premières sommes viennent de la partie fi Çf, les autres defÇpi.
Notons à nouveau que xn est toujours la dernière variable; il n'est sujet à

aucune des sommations.
Nous récrivons, en utilisant/', le cobord et trouverons ainsi une relation

avec la cohomologie de l'algèbre de Lie.

(<5/)(x0, ...,x„)
n- 1

£ (-7{*;{/'(*o> .,„xi^uxi+1,..,x,.i)ï,}-
t 0

-/'(x0, ...,Xi_1,X(+1, +
+ {/'(*o> ...,xt-i,X;+i, ...,x„_t)x,-}x„} -

- Z (-l)i+ -' + 1/'([xi,XJ-], + L ..^X^.^Xy+i, ...,x„_1)x„
i<j<n

L'expression intérieure aux grandes accolades de la première somme peut
être écrite

{LXif'(x0, ...,xi^1,xi+l,...,xn_y)-/'(x0,...,xj_1,xj+1,..,îx„_1)L;c. +

+ Lf! (x0,..., X{_i,Xi + 1..., -"-n

En comparant cela avec l'exemple du module de Yinberg End (F) de

la section 3, on voit (en utilisant la même notation) que

(Sf)(x0,
n- 1

Z (-l)7(x;,/'(xo, ...,Xi-.i,X,+i, ...,x„_1))x„ -
1 0

- Z (-iy+ -/+1/'([>/,X,.] » ...,*/-!,*! + ...,Xy_1,XJ-+1, ...,X,-i)xB.
i<j<n

C'est la formule des cobords de la section 8 puisque, comme nous le

rappelons, x |-> X (x, a) est une représentation (à gauche) de l'algèbre de Lie
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VLie associée à l'algèbre de Vinberg F. Avec des notations évidentes par
elles-mêmes nous avons donc:

(^Vinbergf) ~ & Lief •

Une conséquence directe de cela est

Hn(V,V) iL1-1 (VLie9 End (F)).

De nombreuses propriétés de la cohomologie des algèbres de Vinberg

peuvent donc être déduites de la cohomologie des algèbres de Lie. Notons,
cependant, que la structure de Vinberg n'a pas été perdue dans cet isomor-

phisme. Elle a été utilisée essentiellement par la définition sur End (F)
d'une structure inaccoutumée (à savoir, X) de module sur VLîe.

Comme dans le cas associatif et le cas de Lie, la cohomologie de F à

coefficients dans F induit une structure graduée de Lie [, ]°. On peut se

demander si, vu l'isomorphisme précédent, cela peut être « expliqué » par
quelque structure graduée de Lie connue portant sur la cohomologie de

VLie à coefficients dans End (F). La réponse n'est pas connue pour l'instant.

11. Le cup-crochet.

Jusqu'à maintenant tous les problèmes que nous avons considérés

tournent autour du crochet [, ]° que nous pouvons appeler le crochet de

composition. Nous avons montré, par exemple, que l'opérateur cobord et
les problèmes de déformation peuvent s'exprimer au moyen de ce produit
seul. Si nous utilisons ö (ou X ou Ç) avant tout, c'est parce que cp ö cp

est plus facile à écrire (ou à copier) que \ [cp, cp]°.

Cependant en principe, [, ]° et ses propriétés suffiraient pour les parties
théoriques et la structure « plus fine » ö n'était pas nécessaire.

Dans cette section nous introduisons le cup-crochet [, ]u qui peut être
défini au moyen de o seul, mais ne peut pas l'être au moyen de [,]°. Ainsi
sa définition dépend de la structure disponible la plus fine.

En partant pour l'instant sur une ligne plus intuitive, nous considérons
un homomorphisme arbitraire h : F -» V' d'algèbres dont on désigne les

produits par fi et ji'. Ainsi h vérifie

hji(x,y) p'(hx9hy).

Si cp : F — F ' est linéaire, alors h + <p est un autre homomorphisme (à vrai
dire déformé) si

0h+<p)n(x,y) n'((h+(
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En utilisant la formule ci-dessus on peut récrire cela

g' (hx, cpy) — çg (x, y) + g' (<px9 hy) + g' (<cpx, <py) 0

Or V est un F-module via h ; dans le cas associatif et dans le cas de Yinberg
donné par

X(x,y') g' (hx, y') p{x',y) g'(x',yh),
et dans le cas de Lie par seulement la première de ces formules. Dans les

trois cas, les premiers trois termes sont exactement (ôcp) (x, y). Le dernier

terme est par une définition que nous allons donner tout à l'heure égal à

\ [<p, ç]u (x, y). L'équation de déformation devient ainsi

ôcp+yI>,<p]u 0 ;

c'est la forme habituelle (cf. (11)), quoique le degré de <p, l'image de (p et le

crochet soient différents.
Pour les algèbres associatives le cup-produit est bien connu. Soit /, g

des applications linéaires d'ordre n resp. m de V dans V ; alors / u g est

donné par

(fcjg)(x1, ...,xn+m)/<'(/01?

Le cup-produit est évidemment associatif, et on peut montrer aisément que
ö est une dérivation:

ô(fug) Öfug +(-1ffuôg.
Il s'en suit (voir la section 5) qu'un cup-produit est induit dans la cohomo-

logie de V à coefficients dans V. En prenant les commutateurs

lf,9T =fvg-(-rr'.r/u/
on obtient une structure graduée d'algèbre de Lie: le cup-crochet.
Naturellement ô est encore une dérivation.

Dans le cas des algèbres de Lie F, V on définit [, ]u directement :

lf,dT(xU ;xn+m)

X sg an' {f{xaW, xa(n)),g(xff(n+1),
avec

cr(l) < < a(n) et o (n + 1) < < a (n + m)

Le cup-crochet définit une structure graduée d'algèbre de Lie, et ô est une
dérivation par rapport à [, ]u.
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Dans le cas des algèbres de Vinberg on pose

(/uöO(*l> +

Z sg (J[lf (/..., ^o-(n-l)? X(7(n))> 9 iXa(n + l}9 **•> *<r(/i + m - 1 > -^n + m))

avec

ö (1) < < cr(n-l) et a(n + 1) < < a(n + m- 1)

Notons que l'on ne permute pas xn+m et qu'on a symétrisé à gauche/. Ce

produit vérifie

(/u/) u k -f u (öfufc) (-l)m?I{(#u/) u k - 0 u (/ufe)}

de telle sorte que les commutateurs définissent une algèbre de Lie graduée

(le cup-crochet) [, ]u ; cf. la fin de la section 4 pour une situation semblable.

L'application / |f Ç fi est une dérivation par rapport à u ; donc aussi par
rapport à [, ].u De façon analogue, / |-> (—1)" }iÇf= — 1)"/ u h —

— h u/ — [h,f]u est une dérivation par rapport à [,]u grâce à l'identité
de Jacobi. Par suite ô est une dérivation par rapport à [,]u ; cependant ce

n'est pas une dérivation par rapport à u.
Ainsi, nous avons, dans les trois cas, un cup-crochet [, ]u qui donne une

structure graduée de Lie et pour laquelle <5 est une dérivation. De plus, si

cp : V -» V est linéaire, alors dans les trois cas

21>> <p]u (*> y) i«' (vx,

Cela justifie la notation de l'équation de déformation.
Comme affirmé au début de cette section, [/, g]u peut être exprimé au

moyen du produit de composition resp. ö, Ä" et Ç. Nous le montrons d'abord

pour V' V. La preuve est assez simple dans les trois cas pourvu qu'on
aille réellement dans les détails de la déduction de (9) qui utilisent les suggestions

qui suivent (9). La comparaison de la preuve et de la définition de

[, ]u nous montrera alors que

lf,gY (-l)m_1 {(nôg)df-fiô(g

et de même pour ^ et Ç. Dans les trois cas il est utile de considérer d'abord
le terme en ji ö g resp. ju Ç g pour lequel g occupe par rapport à ju la seconde

place; pour juj g nous bougerons simplement g pour qu'il soit à la seconde

place — ensuite nous appliquons sur la droite ~ôf{Çf resp. X/). Le lecteur
peut à nouveau suppléer aux détails complémentaires. Notons que (9)
implique

u,gr(-ir+li>,/r.
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La formule donnant [/, g]u peut être résumée si on se rappelle que g o g
est un terme de ôg; de façon analogue g o (gôf) est un terme de <5 (gôf).
En insérant les termes omis et en appliquant (9) on trouve

U,9T ôgôf ~(~lf go ôf+ (-!)
(Naturellement on a la même chose pour et Ç.) Cette formule a quelques
conséquences intéressantes. Elle nous indique tout d'abord que ô n'est pas
en général une dérivation par rapport à o ; deuxièmement il s'en suit que le

produit [,]u induit dans la cohomologie de F à coefficients dans F vaut zéro

(il n'en est pas ainsi quand les coefficients sont dans F'.)
Une troisième remarque est que la propriété de dérivation de ô par

rapport à [,]u suit assez facilement de la dernière formule. Assez curieusement

cependant, l'identité de Jacobi pour [, ]u ne semble pas suivre de

formules générales telles que (9) et ses conséquences, mais dépend de quelques

propriétés délicates de o que nous n'avons pas encore formulées abstraitement.

Nous reviendrons sur cela dans la section 13.

De façon à enlever la restriction V' — F des remarques précédentes,

nous passons, comme dans la section 5, au produit semi-direct W
F X V' dans lequel nous introduisons un produit fi donné par

fi ((x, x'),(y,y')) (/x (x, y), fi' (y)+ (x', hy) + jx' (x, y'))

Il est du même type (associatif, de Lie, de Yinberg) que fi et jx La signification

de / et g est celle de la section 5. Avec ces notations nous avons alors

([/>0]ur (—l)m_1 {(fiôg)of - fiô(gôf)}(-1
le dernier terme du membre du milieu vaut zéro car g öf= 0. (La même

formule vaut à nouveau pour 7" et Ç). Ainsi, dans tous les cas, [, ]u a été

réduit à des produits de composition.
Dans l'algèbre de Lie graduée avec comme produit [,]u les éléments de

V (applications linéaires d'ordre 0 de F dans F') forment une algèbre de

Lie ordinaire.
On a

[V,j/]u — g' {y', xr) (cas associatif)

[x', y'~\ u g' (x', y') (cas de Lie),

tandis que pour les algèbres de Vinberg le produit considéré dégénère en

zéro. Leur produit avec une application / linéaire d'ordre n est donné par

ly',fY(x1, •••>*«) y'f(xu x„) —/(*!, (cas associatif)

[/,/]u(*i> •••>*«) H'(y',f(xî,•••,*„))(cas de Lie)
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Alors que les opérateurs cobords pour les fonctions linéaires d ordre n

de F dans JLresp. M sont liés naturellement comme nous l'avons justement

vu, il n'y a pas de telle relation naturelle en ce qui concerne le cup-crochet

[/; g]u. Non seulement le cup-crochet n'est pas défini pour des fonctions

à valeurs dans M mais si / et g prennent leurs valeurs dans M l'opérateur

(j9 g) [_> n* o [71% 7r*g]u dépend de façon essentielle du choix de l'espace U.

Cependant, une modification de [,]u marche au moins partiellement pour
induire un produit: on définit ainsi une structure graduée d'algèbre de Lie

pour la cohomologie de h à coefficients dans M.
La formule principale concernant le nouveau crochet est

[/;<?] - lf,gy +(-i)Hgoöf + (~iyn"+m+1fôôg.

Cela a clairement un sens quand / et g sont des fonctions multilinéaires de

W à valeurs dans W. On peut montrer (avec beaucoup d'efforts) que ce

crochet définit une structure d'algèbre de Lie. Si /et g sont des applications
multilinéaires de F à valeurs dans W la formule prend un sens seulement si

les valeurs de ôf et de ôg sont à nouveau dans F; i.e. exactement si n 0 f
et n 0 g sont des cocycles.

Des calculs assez simples (utilisant n et la formule donnant [/, g]u)
montrent que si ôf et ôg ont leurs valeurs dans F, alors <5 [/, g] [ôf <5g]°

a aussi ses valeurs dans F; i.e. n 0 [/, g] est un cocycle. De façon analogue,

on montre que la classe de cohomologie de no [/, g] dépend seulement de

n of et de nog. L'espace ne nous permet pas d'entrer dans les détails.

Il est facile de voir que la situation décrite dans cette section est une
généralisation de celle de la section 5 où IL était le produit semi-direct d'une

algèbre Fet d'un module: à la fois là et ici le quotient WjVest un F-module;
dans le premier cas c'était le module dont on était parti. Par la construction
actuelle, la cohomologie à coefficients dans un module (situation de la
section 5) a un produit nul. De façon analogue, la situation ici est une
généralisation de celle de la section 11 ; les produits gradués de Lie pour la cohomologie

sont les mêmes dans les deux constructions (prendre V—V').
Nous indiquons brièvement la relation entre la cohomologie qu'on vient

de discuter dans cette section et les déformations de sous-algèbres.
Supposons que Vt est un sous-espace de W qui est proche de V; alors

W est (comme espace vectoriel) la somme directe de V1 et de U. Soit w e W,
alors w v + u (décomposition par rapport à F et U) et aussi w vx + ux
(décomposition par rapport à Vî et U). L'application A : w \-> u± ~ u
est linéaire et envoie W dans U. Pour w e U9 on a v vx 0, et u u1

w de telle sorte que A vaut zéro sur U. Ainsi A est entièrement déterminé
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tandis qu'à nouveau on trouve zéro dans le cas de Vinberg. Dans tous les

cas, c'est l'action de y1 sur les valeurs de/ par des dérivations intérieures de

V' \ i.e. par l'action infinitésimale du groupe des automorphismes intérieurs
de V' sur les valeurs de /. Il est donc naturel que l'étude des déformations
d'homomorphismes h : V - V prend sa forme la plus simple quand les

équivalences de déformation de h sont données par le groupe d'automor-
phismes intérieurs de V. Les résultats précis, que le manque de place ne

nous permet pas de citer totalement, sont très semblables à ceux formulés
dans la section 6. Les déformations infinitésimales modulo celles qui sont
triviales sont données par H1 (V, V); l'espace d'obstruction est H2 (V', V').
En particulier, h est rigide quand H1 (V, V) 0.

12. Sous-algèbres et encore un autre crochet.

Dans cette section nous discutons brièvement un autre crochet défini
au moyen des seuls produits de composition et indiquons (sans aucune
tentative vers la perfection) comment on peut l'appliquer aux déformations
de sous-algèbres.

Nous considérons un espace vectoriel W muni d'un produit p d'un des

trois types (associatif, de Lie, de Vinberg) considérés. Pour la simplicité,
nous utiliserons seulement la notation ö pour représenter ô, ~Â ou Ç. Soit V

un sous-espace de W qui en même temps est une sous-algèbre; i.e. ji (F, V)a
œ V. La restriction h V X V de p est notée p Il est évident que W est un
module sur V\ il suffit de poser X (v, w) p (v, w) et p (w, v) p (w, v).

Quand W est ainsi considéré comme un F-module, V lui-même est un sous-
module. Grâce à des principes généraux, l'espace quotient M W/V
est alors aussi un L-module. Si n : W M est la projection naturelle et U
un espace de W complémentaire à V, alors la restriction de n à U est un
isomorphisms d'espaces vectoriels. L'application inverse M -> U est notée

7i*. La structure de F-module (V, p) de M est ainsi donnée par

X'(y, m) np (y, n*m) — nX (v, n*m),

p' (m,v) 7ip(n*m,v) np (7i*m, v)

Soit / une application linéaire d'ordre n de V dans W (alternée dans le cas

de Lie ; alternée sauf en ce qui concerne la dernière variable dans le cas de

Vinberg); alors ôf est donné par les formules habituelles. On peut aussi

calculer ô (tz o f); on utilise la structure de L-module de M puisque n of
prend ses valeurs dans M. On voit que les termes (nof o p! et n o (fopf
sont égaux tandis que X' (v, nof) nX (v,n*onof) nX(v9f); et de
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façon analogue pour p. Il s'en suit que n o ôf — S (nof). En particulier
S (nof) 0 si et seulement si ôf prend ses valeurs dans V.

par son action sur F. Au sous-espace F1 nous avons ainsi associé une

application linéaire A : F —> U. On peut vérifier que les applications A paramétrent

tous les espaces V1 complémentaires à U. Soit P la projection de W

sur £7, Q la projection sur V; de telle sorte que u Pw, v Qw; u1

(Pf-A) wet Vi (Q — A) w.

Le sous-espace V1 est une sous-algèbre si le produit de deux éléments

quelconques (Q — A)x et (Q — A)y tombe à nouveau dans V1; i.e. donne

zéro quand on applique P + A:

(P + A) ju((Q - A) x, (Q - A) y) 0.
On en tire:

Pp (Qx, Qy) + { Afj. (Qx, Qy) - Pp (Ax, Qy) - Pp (Qx, Ay)} +

+ { — Ap (Ax, Qy) — Ap (Qx, Ay) + Pp (Ax, Ay) } + Ap (Ax, Ay) — 0

Le premier terme vaut zéro puisque V est une sous-algèbre. Aux autres

termes nous appliquons n: comme tous les termes ont leurs valeurs dans U,

cela donne une condition équivalente. Nous posons cp n o A. De plus,

nous remplaçons Qx, Qy par x, y en comprenant bien que x, y e V. Cela

ne donne aucun affaiblissement de la condition puisque A et Q valent tous

deux zéro sur U. Finalement, nous utilisons les applications X et p' quand
elles sont applicables. On obtient alors

0 { cpp' (x, y) - p' (cpx, y) - X (x, <py) } +

+ no { A ö SA + j [A, Ä] + *
(p o Q o [A, Ä] u

- ôcp + i n o [A, A] + ^cp oQo [A, A~\ u

— ôcp + 2 n o [n*(p, 7r*ç?] + cp o Q o ['n*(p, 7r*<p] u

Cette équation de déformation peut comme les précédentes être résolue.

En posant cp tcp1 + t2cp2 + on trouve immédiatement que cp1 e

e Z1 (V, M) et que l'on peut trouver cp2 seulement si no [n*cp1, n^cp^ est

un cobord; ce qu'on a dit ci-dessus implique que c'est toujours un cocycle.

Ainsi, l'obstruction première est dans H2 (F, M).
Deux déformations V1 et V2 de V sont dites équivalentes quand un auto-

morphisme intérieur de W envoie l'une dans l'autre. On peut montrer que les

déformations infinitésimales triviales de V sont en correspondance biuni-

voque avec les éléments de B1 (F, M). Ainsi, H1 (F, M) l'espace quotient de
Z1 (F, M)et de B1 (F, M) donne les «vraies» déformations infinité-simales
de F. En particulier, lorsque H1 (F, M) 0, F est une sous-algèbre rigide.
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Beaucoup de détails nécessaires à une discussion complète de la situation
ont été sautés par manque de place. Cependant le modèle est clair: c'est la
même chose que ce qui a été montré dans la section 6 avec beaucoup plus
de détails. En outre, nous avons montré que la définition de l'opération de

base [fi g] requiert seulement celle des produits de composition.

13. Systèmes de composition.

L'un des buts de cet article était d'exhiber un type de propriétés
communes aux algèbres associatives, aux algèbres de Lie et aux algèbres de

Yinberg. Le type le plus important, celui des algèbres commutatives et
associatives peut aussi être inclus dans la théorie, mais comme nous l'avons
déjà mentionné, de notre point de vue présent assez formel, les propriétés
ne sont pas dans ce cas là vraiment très différentes de celles des algèbres
associatives pour qu'il vaille la peine de les mentionner ici. La méthode

pour exposer la similitude des propriétés consiste en ceci:

(i) établir pour chacun des trois types un système gradué d'applications
multilinéaires munies d'un produit de composition vérifiant (9).

(ii) montrer comment un assez grand nombre de problèmes significatifs
peut se réduire à l'étude d'un nombre d'opérations (applications cobords,

produits de Lie gradués) qui peuvent être définies au moyen du seul produit
de composition, sans égard au type d'algèbre d'où il provient.

Cependant, nous avons indiqué que certaines des propriétés des opérations

définies à l'aide des produits de composition ne pouvaient pas être

prouvées à partir de (9) seul. L'exemple mentionné dans la section 11 était
l'identité de Jacobi pour le cup-crochet [, ]u. Un autre exemple, d'importance

pour une étude ultérieure, est la propriété de dérivation des compositions
à droite (i.e. des applications du type/ l-> / o h) par rapport au cup-crochet.

Dans cette section, nous introduisons des opérateurs yp déduits du produit

de composition. Nous montrons qu'une certaine supposition de « nil-

potence » des y — qui est satisfaite dans tous les cas connus — donne les

propriétés mentionnées dans le paragraphe précédent sans difficulté. Les

systèmes de composition sont des systèmes gradués avec un produit de

composition pour lequel les opérateurs y associés ont ces propriétés de

nilpotence. Nous les mentionnerons tout à l'heure mais donnons d'abord

quelques commentaires les motivant dans le cas de Lie.
Les applications multilinéaires que nous considérons sont toutes alternées,

de V dans V. L'expression de ffi g était (cf. (12))

S sg Gf {g (x<r(l)? •••? X<r(m+1)5 Xa(m + n- 1))
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avec

<r(l) < < o-(m) et cr(m +1) < < a (m+n — l).
Notons cela (y1 (g)/ (x1?..., xÏI+fl<_1); considérons aussi g agissant sur/:

(13) yi(9)f=fôg.
De façon analogue, on peut prendre gl5 g2 linéaires respectivement d'ordre

et m2 et former y2 (gi, g2)/:

(72 ($1 ^2)/) (^1 * -^M + mi +m2~2)

£ SQ of iß 1 C*ff(l)î * ' ^<r(mi)) 5 02 C*ö-(mi+1)» ^(mi + «2))' •X'<T(mi + m2 + 1 ' * * ' '

X(r(mi + m2 + it — 2))

avec

er(1) < <cr(m1) a(ml + 1) < < a(m1 + m2)

et

(j(ml + m2 — 1) < < o(m1 + m2 +n — 2).

L'opération y3 (gi, g2, g2)/ est analogue et définie par une somme dont les

termes sont de la forme ± /(gx g2 g3 (.../ •••) dans lesquels les

variables sont dûment permutées.
En continuant ainsi, on obtient une suite d'opérations yu y2,

On peut exprimer les opérations yp au moyen des produits de composition;

pour yx c'est vrai par définition. Pour voir qu'il en est de même pour
y 2, on observe que le côté gauche de (9) donne une expression du type de

droite. Plus précisément, on a

72(01,02)/ — i)m2_1 {71(01)71(02)-71(71(01)02)}/•
La formule (9) dit, en effet, que au sens gradué y2 est antisymétrique:

72 (01 ' 02) (-l)mlm2+1 72 (02>0l) •

De façon analogue, y3 (g1? g2, g3) est défini quand on connaît y2. Tout
d'abord, observons que si y 2 (g2, g3)/est écrit de telle façon que g2 apparaît
dans la seconde place de /, et g3 dans la troisième, on doit pour compenser
multiplier par (— l)m3-1 + w2-1. Appliquer yt (gx) place g1 dans la première
place, faisant naître y3 (g1? g2, g3)/puis place gx dans la première place de

g2 et après cela dans la première place de g3, chaque fois avec des signes

appropriés. On trouve

7s (01, 02, 03) (-l)m2 + m3{ 7l (0l)72(02,03) - 72(7l (0l) 02,0s) -
- (-l)(mi"1)m2 72(02,7l(0l)03)} •
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Plus généralement, on a, par récurrence

(14) Tp+i (do,—,9p) (-l)mi+~+mp-p(g0)yp(g1, ...,gp) -
- £(-1 Ymo-^1+- + -i^yp(g1,...,y1(g0)gi,.

i= 1

On peut montrer comme conséquence de (9) (la déduction est assez compliquée)

que yp (gl5 gp) est antisymétrique en gl9 gp; i.e. que si on
interchange gi et gi+t on doit avoir comme facteur (— + Une preuve
beaucoup plus simple peut s'obtenir en utilisant les propriétés alternées de/
et de g (puisque, somme toute, nous sommes en train de discuter le cas de

Lie), mais l'observation faite ici est qu'en vérité (9) seul suffit.

L'opérateur y peut être défini dans le cas associatif et le cas de Vinberg
par la même formule de récurrence commençant par le produit de composition.

Dans le cas associatif, yp(gl9 gp)f est une somme de termes dans

chacun desquels les gt occupent p places de /, de toutes les façons possibles,
les signes étant appropriés. Les variables xl7 xnii + + mp + n-P restent
dans leur ordre naturel. Dans le cas de Vinberg deux sortes de mélanges
interviennent mais les gt occupent toujours dans chaque terme des places
différentes de /.

Il est clair, dans chacun des cas ci-dessus, que si / est une fonction d'un
nombre de variables plus petit que p, yp ne peut plus se mettre sous la forme
indiquée. D'ailleurs si on se réfère à la formule de récurrence, si yp+1
s'applique à une /linéaire d'ordre p, alors les termes à droite de l'expression
s'annulent et yp+ ± (...)/= 0. Par récurrence yq (...)/ 0 pour q > p.
C'est la propriété de « nilpotence » de y qui pour les calculs variés est nécessaire

en plus de (9).

Définition. Un système de composition est une algèbre graduée munie
d'un produit ö compatible avec la graduation réduite, vérifiant (9) et pour
laquelle les opérateurs yp définis par (13, 14) vérifient yq (g 1, ...,£/)/ =0
si le degré de / est < p.

La propriété de nilpotence est déjà intéressante pour les petites valeurs
de p. Pour p 1, elle dit que les produits de composition xdf valent zéro

quand x appartient à V; pour p 2, elle dit que pour/linéaire on a (fd g2)ô

g1=fö feög/ ces deux propriétés furent déjà énoncées comme une

partie du théorème de la section (4) dont (9) fait partie.

Le cas p — 3 donne de nouvelles propriétés. Nous observons d'abord

que y2(/, g)n [/> • De Plus> on a



— 273 —

o _,)»+» y3 (hj-t g)n =7l (h) y2 (/, 2 (?i (A)/, 0) 0

+ (-1yp-1)"y2(f,y1(h)g)n,
c'est-à-dire

[/,ff]uöÄ Uöh,gY +(-i)(p-1
C'est justement la propriété de dérivation de la composition à droite.

De façon à déduire l'identité de Jacobi pour le cup-crochet, nous avons

besoin d'une formule pour y3 (gl9 g2, g3) 7i (/). Nous avons déjà une
formule pour y1 (g3) yx (/), en permutant quelques termes dans la définition
de y 2

7i(03)7iCO (-1)"_172(03J) + 7i(vMf)-
Ensuite nous essayons de remplacer y± (g3) par y2 (g2^3)- D'abord nous

appliquons y1 (g2) à la formule ci-dessus

7l (g2) 7! (g3)7l(/) - ir:1 { - l)m3 + " 73 3,/) + 72 (7i (02) 03,/) +

+ — 1)<m2_1)m3 72 (03> 7l (02)/) } +

+ - 1)"'3+" 72 (02, 7i (03)/) + 7i (71 (02) 7i (0s)/) •

Ensuite, nous remplaçons g3 par y! (g2)g3 dans la même formule:

7i (71 (02) 03) 7i (/) (-1)"-1 72 (7i (02) 03./) + 7i(7I(7I(02) 03)/)

et soustrayons les deux résultats. Après avoir supprimé un facteur (— l)'"3"1
nous obtenons

72(02,03)71 (/) 73 (02, 03,/) + 7l(72(02>03)/) +

+ - l)m2m3 + " 72 (03, 7l (02)/) + - 1)" 72 (02, 7l (03)/) •

Ensuite, on répète le procédé. La formule qu'on vient de dériver est utilisée
trois fois; tout d'abord elle est multipliée sur la gauche par yt (gi); ensuite

g2 est remplacé par — y1 (g1)g2; enfing3 est remplacé par — (—

?i (gi)g3l alors on ajoute les trois résultats. On trouve ainsi

— l)m2+m3 y3(0j,02, 03) 7i (/) (-l)m2 + m3 + "+174(01,02,03) +

+ - + >?3 (02, 03, 7l (0l)/) +

+ - 73 (âr2)/) +

+ (-l)m2+m373 (0i,02,7l(03)/) +

+ (-l)m2 + m3 + "+1
72 (01,72 (02,03)/) +
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— 274 —

+ - l)mim2 + m2 + m3+1y2 (92, 72 (9u93)f) +

+ - iym1 + m2)m3 + m2 + m3 + n+l y2 ^35 ?2 (gug2)f) +

+ (_1r* + m*yi(y3(gl9g29g2)f).

On observe un terme unique en premier, y4, et en dernier, y1 (y3). Les termes
du milieu forment deux groupes, y3 (yj et y2 (y2), et comprennent gu g2, g3

dûment permutés. On applique la formule à jli, en prenant / ju. Alors le

côté gauche vaut zéro, puisque y1 (fi) ju ju ö jli — 0. Le terme y4 donne
zéro grâce à la propriété qu'on vient de trouver; la même chose vaut pour
le terme y3 (yx). Le dernier terme donne zéro puisque y3 / y3

jli 0. Il reste les trois derniers termes du milieu; on les multiplie par
(_1) m2 + m3 + n + m1m3+l et on obtient

(-irim3[g1,[92,93]u]u +(-i)mim2+mim3+1[g2,[g1,g3]u]u +

+ (-Dm2m3[03,[0i,02]u]u o,

c'est justement l'identité de Jacobi.
Ce qui précède est juste un échantillon des applications de la propriété

de nilpotence. L'utilité de y est également claire si on observe que, avec la
notation de la section 6, pour /linéaire d'ordre /?, on a

c (a)/ 4f X~1 ôa)/}n

Par cette formule, on peut définir et manipuler l'action de groupe des

éléments inversibles de degré 1.

Tout type d'algèbre pour lequel on peut trouver un système de composition,

partage les propriétés que nous avons déduites au moyen des systèmes
d-e composition. Il est maintenant clair que ces propriétés couvrent un large
domaine.

RÉFÉRENCES

[1] Bourbaki, N., Groupes et algèbres de Lie, chap. I: Algèbres de Lie. Hermann,
Paris 1960.

[2] Jacobson, N., Lie algebras. Interscience Publishers, 1962.

[3] Vinberg, E. B., Theory of convex homogeneous cones. Trudy Moscow Mat. Obshch.
12 (1963) 303-358 Transi. Moscow Math. Soc. 12 (1963) 340-403.

[4] Gerstenhaber, M., The Cohomology structure of an associative ring. Ann. of Math.
78 (1963) 267-288.

[5] Gerstenhaber, M., On the deformations of rings and algebras. Ann. of Math. 79

(1964) 59-104.


	Partie III: Algèbres de Lie et algèbres de Vinberg — plus sur les déformations — systèmes de composition

