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On trouve -

18, 2]° (e, &) = (200) (5, 8) = z({(2),¢) + z(e,((e)) = 2 = 2z (e, 9),
tandis que les autres valeurs de [(, z]° et de z sont zéro. Autrement dit,
[¢,z]° = 2z.

L’espace ne nous permet pas d’expliquer comment cette formule est liée
au fait que u est une structure de « saut »: il change une fois (dans chaque
direction de ¢); ensuite la structure reste constante. C’est un cas particulier
de la situation décrite dans la derniére remarque de la section 6.

PARTIE II1: Algébres de Lie et algébres de Vinberg
— plus sur les déformations —
systéemes de composition

Introduction.

Le produit de composition pour des algébres associatives a été introduit
dans la partie II, de méme que quelques applications — principalement
celles concernant les déformations de telles algébres. Cependant les possi-
bilités du produit de composition n’ont pas été 1a épuisées: il préte lui-méme
a d’autres questions de déformation qui sont mentionnées dans la partie
présente: déformations d’homomorphismes d’algébres et déformations de
sous-algébres. Le crochet [, ]° de la partie II était a vrai dire un commutateur
de produits de composition: on peut le comparer avec I’algebre de Lie des
commutateurs d’une algebre de Vinberg. On montre maintenant que le
produit de composition « plus fin » permet la construction d’autres struc-
tures graduées de Lie notées [,]" et [,] qu’on ne pourrait obtenir a partir de
[,]° seul. Les nouveaux crochets sont utilisés pour les déformations d’homo-
morphismes et de sous-algébres.

Les considérations de cette sorte ne sont nullement limitées aux algébres
associatives: notre premiere tache consiste & définir les produits de compo-
sition pour les algébres de Lie et les algébres de Vinberg de telle fagon qu’en-
suite toutes les discussions s’appliquent également aux trois types d’algébres.
(Elles s’appliquent aussi aux algébres associatives et commutatives; cf. les
notes bibliographiques.) Quoiqu’on n’ait pas beaucoup a dire en ce qui
concerne les produits de composition dans les algébres de Lie et les algébres
de Vinberg (tous les commentaires antérieurs s’appliquent presque mot pour
mot) nous avons pensé¢ appuyer sur leur utilit¢ en donnant un exemple de
déformation d’algebre de Lie.



L utilité « universelle » du produit de composition que nous avons ainsi
exhibé nous conduit & la question que peut-étre d’autres types d’algébres
pourraient admettre aussi des produits de composition. A vrai dire, s’il en
est ainsi, alors il y aurait pour chacun de ces types une théorie toute faite de la
cohomologie et des sortes variées de déformations attendant pour E€tre
appliquées. Les algébres de Vinberg peuvent par exemple €tre considérées
comme un exemple de type d’algébre pour lequel on attendait une théorie
toute faite.

De facon 2 asseoir la théorie de fagon suffisamment ferme pour per-
mettre de telles théories toutes faites, il est nécessaire de réduire non seule-
ment toutes les définitions mais aussi toutes les preuves de théorémes a des
propriétés explicitement énoncées du produit de composition. L’espace
ne nous permet pas la pleine exécution d’un tel programme. Cependant,
nous donnons un exposé explicite des propriétés requises du produit de
composition (introduisant 1a les systémes de composition), et montrons
comment certaines propriétés décisives suivent des axiomes.

8. Un deuxieme produit de composition.

On a montré que le produit de composition introduit dans la section 4
est justement la picce de mécanisme qu’il faut pour un certain nombre de
questions liées aux algébres associatives. Nous introduisons maintenant
— dans un style beaucoup plus bref — un deuxiéme produit de composition
qui fait de méme pour les algébres de Lie de fagon si semblable qu’il y a
réellement trés peu a dire. La répétition de la méme histoire ne servirait
aucun but; il est assez de suggérer que le lecteur se convainque lui-méme
en parcourant une fois encore le matériel.

Nous prenons a nouveau un espace vectoriel V" et prenons pour applica-
tions linéaires d’ordre n de V dans V seulement celles d’entre elles qui sont
alternées. Pour deux telles applications, f et g (la derniére étant linéaire
d’ordre m) on définit f & g (prononcez f « hook » g) par

(12) (fxg)(xla”'axn—}—m—l) -

= X Sg Tf(g (xr(l)a ceo xt(m))> xt(m-i-l)) e meap xt(n+m—1)) >

ou la sommation est sur les permutations ¢ de { I,..,n+m — 1} pour
lesquelles

(D <...<t(m) et t(m+)<..<t(n+m—-1).

On peut aussi sommer sur toutes les permutations et diviser par m ! (n—1) !.
Notons que pour que cette formule ait un sens les valeurs de f n’ont pas
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besoin d’€étre dans V' mais peuvent appartenir a n’importe quel espace
vectoriel.

La relation avec les algébres de Lie est la suivante: si u est une applica-
tion bilinéaire alternée de V" dans V, alors u définit une structure d’algébre
de Lie si et seulement si 4 7 ¢ = 0. Une copie donne la vérification immé-
diate de I'identité de Jacobi

(Wrw) (x,y,2) = u(p(x, ), z) —p(pE, 2),y) +u(p@®,2),x) =
= p(u(x,y),2) +u(u®y,2),x) + p(u(z,x),).

Une fois donnée la définition de & on répéte avec presque une monotonie
assommante en prenant 6 comme modele: (9) est valable (la preuve suit la
méme idée), [,]° est défini comme dans le dernier théoréme de la section 4
et donne a nouveau une structure d’algébre de Lie graduée. Le cobord o
est défini comme auparavant par 6f = — [u, /]°. En considérant le produit
semi-direct d’une algeébre de Lie et d’un module on trouve pour §f dans le
cas ou f est une application d’ordre #n alternée de V' dans M la formule:

(0f) (x05 -5 Xy) = Z (=1 % f (X0 w5 Xim 15 X 15 200 X) +

+ Z (= DT (1 (X0 X), Xy wves Xm0 X g oees Xjmgs X 15 eees Xn) 5
i<j
qui dans cette situation est exactement la formule classique.

Les applications et les exemples des sections 4 et 5 peuvent étre répétés
presque mot pour mot. La théorie de la déformation de la section 6 marche
sans changement perceptible.

On doit faire une petite modification dans I’exemple 3 de la section 5.
Le groupe des automorphismes intérieurs d’une algebre de Lie doit étre
défini différemment. On utilise le fait qu’a chaque algebre de Lie correspond
un groupe de Lie (pas du tout unique) et que les automorphismes intérieurs
de ce groupe (donnés par les applications de la forme b |— aba™ ') induisent
un groupe d’automorphismes de I’algébre de Lie. (Le groupe est unique si
par exemple nous exigeons qu’il soit connexe.) L’algébre de Lie est exacte-
ment B! (V, V). Toutes les remarques ultérieures de ’exemple 3 continuent

a s’appliquer.

9. Un autre exemple.
Nous étudions maintenant les déformations d’une algébre de Lie V de
dimension trois ayant pour base p, g, 1 telle que

p(p,q) =1, p(g,1) =upud,p) =0;
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les physiciens la nomment d’aprés Heisenberg. En vue de la simplicité,
nous considérerons les équivalences sur les nombres complexes de sorte
que V sera un espace vectoriel complexe. (Autrement il faudrait distinguer
entre les racines réelles et les racines imaginaires des équations, etc.).

Soit £ : V' — V une application linéaire, on a alors
NP = uw(p.f(@) — 1(q.f(p) = f(ulp.9) = u(p,f(Q)) -
—u(q,f(p) —f(1),
0@, = u(g,fO) —u(1,f(@) —fulg, D) = u(g,fD)),
(0N, p) = u@,f(P) —ulp,f@) —f(u@,p) = — u(p,.f(D).

Soit
S =01+, X)p +f,()q,

de telle sorte que f; (x), etc., sont les composantes de f(x); on a alors
6N 0 =@+, -1 =f,Dp —f(Dq,
0f) g, 1) = —f,(DH1,
(01, p) = —f,(D1.
Par suite, f est une dérivation si et seulement si
(D) =1, =f(@+/f,(p—-fiD) =0.

De plus, B* est engendré par les applications bilinéaires alternées 0
pour lesquelles (en utilisant pour les composantes une notation analogue)

0@, ) =@, 9, o (1, p) = o,(p,q),
9,(q,1) = ¢,(.1) = ¢,(1,p) = ¢,(1,p) = 0.

Un espace complémentaire a B* est formé des ¢ pour lesquels @, = 0.
Soit @ € W; on calcule 6¢:

09) (.4, D) = p(p, @ (g, D) + u(q, ¢ (1, p) + u(1, ¢ (p, q) +
—ow®a).1) e 1D,p) —eud,p,q) =
¢, (0, D1 —,1,p)1 +0—-0—-0—-0.

Ainsi on a d¢p = 0 pour ¢ € W si et seulement si ¢,(q,1) = ¢,(1, p). Les
composantes encore libres d’un cocycle ¢ de W sont donc

¢, 9,1, o,1,p), @,(,9). 0,0, q),

L’Enseignement mathém,. t. XIV, fasc. 3-4. 18
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tandis que ¢, (1, p) doit étre égal & ¢, (¢, 1) et que ¢, = 0. Donc H? est de
dimension 5. Un espace complémentaire U? consiste en les ¢ pour lesquels
¢, (1, p) est libre tandis que les autres valeurs sont zéro.

L’équation de déformation est

ou —(z4+u)n(z4+u) =0,
ou on doit prendre z dans H? et u dans U?2. D’apres le calcul précédent on a

(514) (p: g, 1) = T U (13 p) 1.

Comme les valeurs de z et de u sont dans le sous-espace engendré par p
et g, il en est de méme de (z+u) & (z-+u). Puisque les valeurs de du sont des
multiples de 1, il s’en suit que u peut satisfaire a ’équation de déformation
seulement pour du = 0, i.e. u = 0. Par suite, nous trouvons que toutes les
déformations dans P sont donnéespar ' = u + zavecze H*etz 5 z = 0.
(La derniére équation est exactement Q (z) = 0.)

Nous avons donc

(z7z2)(p,q, 1) = z(z(p,q),1) + z(z,(q¢, D p + z,(q, D q,p) +
4+ z(z,(A,pp + 2,(1,p)q,9) .

Les deux derniers termes s’éliminent puisque z, (g, 1) = z, (1, p); ainsi
z » z = 0 est équivalent a

z(z(p,q),1) = 0.

Cela termine réellement la partie théorique du probléme de déformation.
Nous utilisons maintenant des méthodes classiques pour trouver les solu-
tions.

Pour résoudre I’équation, nous considérons I’application « : x |—
— z (x, 1) de x dans I’espace X engendré par p et gq. Les composantes relati-
vement a la base p, ¢ de X sont données par la matrice

z,(p, 1) z,(p, 1)
z,(q, 1) z,(q, 1)

Comme cette matrice a pour trace z€ro, la forme canonique de Jorden est

20 0 0
(a) [ 0 J on (b) [1 0].

Notons encore p, g la base par rapport a laquelle est assurée une de ces
formes. On peut supposer que la transformation qui méne de I’ancienne base
a la nouvelle a pour déterminant 1; alors u(p, g) ne change pas.




— 259 —

Nous distinguons plusieurs cas.
Cas 1. z(p, g) = 0. La forme (a) n’a lieu alors que pour A # 0, car
sinon on a z = 0 (donc aucune déformation). On trouve (cas 1a)

W(p,g) =1, wigl) =2, pw@p =7p.

En prenant la base (p/A}/?, /A2, 1/2) on obtient une réduction de plus

.u/(p>Q) =1,
cas la uw(g,1) =q,
w(@,p) =p.

Dans le cas (b) on trouve

1,
P,
0

wp,q) =
cas 1b u (g, 1)

n' (1, p)

Cas 2. z(p,q) # 0. Dans ce cas, z(p, q) est un vecteur nul pour a,
donc A = 0 et z(p, q) est un multiple de p; disons z (p, §) = ap par rapport
a une base convenable. Dans le cas (a) on trouve

Au,(p9Q): 1+ap9 ,LL,(C],I):O, #’(LP)ZO

Par rapport a la base (ap+1, g, 1) cela devient

w(p,q) =p,
cas 2a u(g,1) =0,
w(@,p) =0.

Considérons maintenant a nouveau le cas (b); alors

w(p,q) =1+ap,u (@1 =p,u(1,p) =0,

outa # 0. Tout élément n qui n’est pas dans le plan Y de 1 et de p induit une

application y |- u’ (y, n); elles différent toutes uniquement par un facteur.
[

Pour # = g, nous avons f :y |- u' (y, g). La matrice de f§ est la { (1)}, son

polyndme caractéristique est A* — al + 1. Le discriminant a® — 4 est
# 0 pour a # + 2, de telle fagon que les valeurs propres 4 et 1/ sont soit
distinctes de + 1 (puisque a #0) ou toutes deux égales & + 1. Dans le pre-
mier cas une base pour Y existe (encore notée (p, 1) telle que

p(p.q) =2p,u'(g,1) = —A"'1,4A,p) =0.
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On divise g par A, on pose — 1/4% == 7 et on trouve

1 (p,q) = p, (t#0, +1).
cas 2b’ w (g, 1) = 1,

W @p)=0.

Les cas 7 et 1/t sont équivalents: changer p et 1 et remettre g a I’échelle.

Dans le dernier cas, la matrice de f8 est | j:? (1)] ,

qui est équivalente a

1 O resp. —1 0
1 1 1 -1\

Les u' correspondants sont équivalents; pour le premier on trouve

w(p,q) =rp,
cas 2b"” wig,1) = —1—-p,
w(@p =0.

Toutes les structures suivantes peuvent a vrai dire €tre atteintes par
de petites déformations arbitraires:

Cas la. z(p,q) =0, z(p, 1) = —tp, z(q,1) =1tq,
Cas Ib. z(p,q) = 0, z(p,1) =0, z(q,1) = tp,
Cas 2a. z(p,q) =tp, z(p,1) =0, z(g,1) =0,
Cas2b. z(p,q) = tap, z(p,1) =0, z(g,1) = —tp.

10. Un troisiéme produit de composition

Pour étudier les algebres de Vinberg on a encore besoin d’un autre pro-
duit de composition. Le trait qui le distingue principalement est qu’il est
beaucoup moins connu que les deux autres. Nous le noterons €. Les fonc-
tions linéaires d’ordre n que nous considérons sont celles qui sont alternées
par rapport aux » — 1 premiéres variables. Il est parfois utile de les consi-
dérer aussi comme des applications alternées, d’ordre n — 1, /" de V a
valeurs dans I’espace End (V'), des applications linéaires V' — V.

Supposons maintenant que f est comme ci-dessus, et g de méme mais
linéaire d’ordre m. Alors f C g est de la méme sorte, linéaire d’ordre n +
+ m — 1 et donné par |

(fCPD Fis oy Xprm—1) =
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= leg O—f(g (xa(1)> cees xo-(m—l)a xa(m))s xa(m+1)9 sy xa‘(m+n—2)5 xn+m—1) +
+ (— 1)(m~1)(n_1) 2559 Gf(xa(l)a cees Xg(n—1)»
g (xa(n)’ ceeo xa(n+m—2)a xn+m—1))9

ol Y, porte sur toutes les permutations o de {1,..,n 4 m — 2} telles que
(1) <..<o(m—1ets(m+l) <..<o(ntm—2)tandisque la somme
Y, porte sur les permutations ¢ vérifianto (1) < .. < 0o (n—1eto@n) <
< ..< o (n+m—2). Notons que g est complétement antisymétrique par
rapport & la premiére somme, mais ne 1’est pas par rapport a la deuxi¢me.
Notons aussi que x,.,—; n’est dans aucune des permutations.

Une forme plus courte pour la définition de fC g est obtenue a I'aide
de /' et g, les applications alternées linéaires d’ordre (n—1) resp. (m—1)
de ¥ dans End V. Nous avons besoin aussi de g le g complétement alterné,
ainsi g est une application linéaire d’ordre m de V dans V.
Avec ces conventions on a

(fC9)' =f"7g + (=D DEDf A g,
Notons que f' A g’ est le produit extérieur de deux formes alternées a
valeurs dans I’algébre (associative) End V'; comme cette algébre n’est pas
commutative, il n’y a pas de relation simple entre f* A g'et g'A f. La
deuxiéme forme est plus commode pour prouver (9) en ce qui concerne .
Lorsque u est une application bilinéaire de V dans V, p Cp = 0 est
juste la condition (1); en fait

(G (x,y,2) = p(px,y),z) —p(u®y,x),z) — plx, 1y, 2)) +

+ u(y, u(x, 2).

Le produit de composition associ€¢ aux algebres de Vinberg, comme on
I’a donné, différe de celui qui a été donné pour les algébres associatives et les
algébres de Lie par un aspect important: les applications multilinéaires
pour lesquelles il est défini ont un degré positif: les produits f ' x (avec
xeV’) n’ont pas été définis. Nous les poserons arbitrairement égaux a zéro.
La signification la plus profonde de la difficulté a trouver une définition
naturelle de f (' x vient du fait que les commutateurs (voir le cas n=0
de la section 4: « dérivations intérieures ») ne donnent pas des dérivations
dans les algebres de Vinberg. Les exemples 1 et 3 de la section 5 deviennent
vides: B! (V, M) = 0 et le groupe des automorphismes intérieurs se réduit
a I'identité.

Toutes les autres remarques faites dans la section 8 pour les algébres
de Lie valent maintenant pour les algébres de Vinberg avec seulement les
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modifications évidentes. Nous copions la formule des cobords. Rappelons

quedf = —fCu+ (=) 'uCs:
(5f)(x09-"7 Z (_l)lx f(x09'°' l—laxi+19“'9xn—1>xn) .

+ Z (—l)f(xO,... l_l,xi+1, ...,xn_l,xi)xn

.<Z ( )l+]+1f([xwx] L—laxi+1a-°'axj—19xj+19'“7xn-19xn) -
i<j<n

2 (= 1) (X5 s Xim 15 X1 coos Xy 15 XiXy) -

Les deux premiéres sommes viennent de la partie u C f, les autres de f C pu.
Notons a nouveau que x, est toujours la derniére variable; il n’est sujet a
aucune des sommations.

Nous récrivons, en utilisant 1/, le cobord et trouverons ainsi une relation
avec la cohomologie de I’algébre de Lie.

i (5f)(x09""xn) =
Z (_l)l{x {f (XO,..- t——lﬂxi+19"'axn-1)xn} _'

= (X coes Xim g5 Xy 15 oees X 1) (XX,) +
F S (g vves Xim 15 Xit 15 oo X 1) Xi } X } —
Z ( 1)1+J+1f ([xwx] L—laxi+1a"'axj—laxj+19'--axn—l)xn

i<j<n

L’expression intérieure aux grandes accolades de la premiére somme peut

étre écrite

{Lx,f (%05 +evs Xim 15 Xt 15 eves Xpe1) =S (X eoes Xy 15 Xip g5 2evs Xp—1) L, +
+ Lf’ (Xp5eres Xj—15 Xi 41000y xn_l)xi} Xn

En comparant cela avec I'exemple du module de Vinberg End (V) de
la section 3, on voit (en utilisant la méme notation) que

(5.,f)(x09 ---’xn) =
n—1

= Z (_l)i}-(xi,j‘,(xO, ...,Xi_l,xi+1, ...,xn_l))xn _
i=0

Z( l)lﬂﬂf ([xl’x_]] z—1axi+19°“>xj—1’xj+13"'axn—l)xn
i<j<n

C’est la formule des cobords de la section 8 puisque, comme nous le rap-
pelons, x |— A (x, &) est une représentation (& gauche) de l'algébre de Lie




— 263 —

V. associée a I'algébre de Vinberg V. Avec des notations évidentes par
elles-mémes nous avons donc:

(5Vinbergf)/ = 5Lief/ .
Une conséquence directe de cela est
H*(V,V) = H™ ' (V, End (V)) .

De nombreuses propriétés de la cohomologie des algébres de Vinberg
peuvent donc étre déduites de la cohomologie des algebres de Lie. Notons,
cependant, que la structure de Vinberg n’a pas été perdue dans cet isomor-
phisme. Elle a été utilisée essentiellement par la définition sur End (V)
d’une structure inaccoutumée (a savoir, 1) de module sur V.

Comme dans le cas associatif et le cas de Lie, la cohomologie de V a
coefficients dans V' induit une structure graduée de Lie [,]°. On peut se
demander si, vu I'isomorphisme précédent, cela peut étre « expliqué » par
quelque structure graduée de Lie connue portant sur la cohomologie de
V5. a coefficients dans End (V). La réponse n’est pas connue pour 'instant.

11. Le cup-crochet.

Jusqu’a maintenant tous les problémes que nous avons considérés
tournent autour du crochet [,]° que nous pouvons appeler le crochet de
composition. Nous avons montré, par exemple, que I’opérateur cobord et
les problémes de déformation peuvent s’exprimer au moyen de ce produit
seul. S1 nous utilisons 0 (ou & ou ) avant tout, c’est parce que @ 0 @
est plus facile a écrire (ou a copier) que % [¢, ¢]°.

Cependant en principe, [,]° et ses propriétés suffiraient pour les parties
théoriques et la structure « plus fine » 0 n’était pas nécessaire.

Dans cette section nous introduisons le cup-crochet [,]Y qui peut étre
défini au moyen de o seul, mais ne peut pas I’étre au moyen de [,]°. Ainsi
sa définition dépend de la structure disponible la plus fine.

En partant pour 'instant sur une ligne plus intuitive, nous considérons
un homomorphisme arbitraire 4 : V' — V' d’algébres dont on désigne les
produits par u et y'. Ainsi 4 vérifie

hu(x,y) = w' (hx, hy).

S ¢ : ¥V — V' est linéaire, alors & + ¢ est un autre homomorphisme (3 vrai
dire déformé) si

(ht+o)u(x,y) = w(h+9)x,(h+9¢)y).
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En utilisant la formule ci-dessus on peut récrire cela

p' (hx, y) — ou(x,y) + p' (ox, hy) + u' (¢x, ¢y) = 0.

Or V' est un V-module via /; dans le cas associatif et dans le cas de Vinberg
donné par

A, y) = p (hx,y’), p(x',y) = w' (x',yh),
et dans le cas de Lie par seulement la premiére de ces formules. Dans les
trois cas, les premiers trois termes sont exactement (d¢) (x, y). Le dernier

terme est par une définition que nous allons donner tout a ’heure égal a
2 Lo, 1" (x, y). L’équation de déformation devient ainsi
Sp +1[p,0]° =0;

c’est la forme habituelle (cf. (11)), quoique le degré de @, I'image de ¢ et le
crochet soient différents. |

Pour les algébres associatives le cup-produit est bien connu. Soit f, g
des applications linéaires d’ordre n resp. m de V dans V’; alors fu g est
donné par

(fug) (xls "'9xn+m) = /‘L, (f('x1> "'>xn)’g (xn+1> °">xn+m)) .

Le cup-produit est évidemment associatif, et on peut montrer aisément que
0 est une dérivation:

0(fug) = dfug +(=1"fudg.

Il s’en suit (voir la section 5) qu’un cup-produit est induit dans la cohomo-
logie de V' a coefficients dans V'. En prenant les commutateurs

[f,9]Y =fug —(=D™guf

on obtient une structure graduée d’algébre de Lie: le cup-crochet. Natu-
rellement 6 est encore une dérivation. ,
Dans le cas des algébres de Lie V, V' on définit [, ]" directement:

[f: g]u(xl’ "'9xn+m) =

= Xsgou (f(xa(1)7 oo xa'(n)) » g (xa(n+1)9 ""xa(n-i-m))) )
avec
c()<..<a(m et on+l)<..<odg(m+m).

Le cup-crochet définit une structure graduée d’algébre de Lie, et 6 est une
dérivation par rapport a [,]".
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Dans le cas des algébres de Vinberg on pose

(fug)(xlﬁ"'ﬂxn+m) =
= X sgou (f(xo(1)> s Xg(n—1)> xa(n))a g (xa'(n+1)> ces Xogn+m—1)> xn+m))

avec
c(l)<..<om—1) et on+l)<..<om+m—1).

Notons que I’on ne permute pas x,,,, et qu'on a symétrisé¢ a gauche f. Ce
produit vérifie

(fug vk —fulguk) = (=D™{(guf)uk —gu(fub)},

de telle sorte que les commutateurs définissent une algébre de Lie graduée
(le cup-crochet) [,]Y; cf. la fin de la section 4 pour une situation semblable.
L’application f |- /' ¢ u est une dérivation par rapporta u; donc aussi par
rapport 4 [,].Y De fagon analogue, f - (=1D)"uCf=(=1)"fuh —
— huf= — [hf]" est une dérivation par rapporta [,]" grace a 'identité
de Jacobi. Par suite § est une dérivation par rapport a [, ]"; cependant ce
n’est pas une dérivation par rapport a uU.

Ainsi, nous avons, dans les trois cas, un cup-crochet [, ] qui donne une
structure graduée de Lie et pour laquelle § est une dérivation. De plus, si
@ : V — V' est linéaire, alors dans les trois cas

e, 1% (x,9) = 1 (ox, @p) .

Cela justifie la notation de I’équation de déformation.

Comme affirmé au début de cette section, [f, g]° peut €tre exprimé au
moyen du produit de composition resp. o, » et C. Nous le montrons d’abord
pour V' = V. La preuve est assez simple dans les trois cas pourvu qu’on
aille réellement dans les détails de la déduction de (9) qui utilisent les sugges-
tions qui suivent (9). La comparaison de la preuve et de la définition de
[, ]¥ nous montrera alors que

[f,9]1° = (=D"" " {(uog)of —pua(gof)},

et de méme pour 1 et C. Dans les trois cas il est utile de considérer d’abord
le terme en p 0 g resp. u ¢ g pour lequel g occupe par rapport & p la seconde
place; pour 1 'a g nous bougerons simplement g pour qu’il soit & la seconde
place — ensuite nous appliquons sur la droite o /' (C fresp. & f). Le lecteur
peut 4 nouveau suppléer aux détails complémentaires. Notons que (9)
implique

[f.9]” = (=D™" [g,f]".
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La formule donnant [f, g]¥ peut étre résumée si on se rappelle que p 0 g
est un terme de dg; de fagon analogue u o (gof) est un terme de 6 (gof).
En insérant les termes omis et en appliquant (9) on trouve

[f,9]° =dg90f —(=1)"god6f+(—1)"d(g0f).

(Naturellement on a la méme chose pour » et ¢.) Cette formule a quelques
conséquences intéressantes. Elle nous indique tout d’abord que 6 n’est pas
en général une dérivation par rapport & o; deuxiémement il s’en suit que le
produit [,]” induit dans la cohomologie de V" a coeflicients dans V vaut zéro
(il n’en est pas ainsi quand les coefficients sont dans V.)

Une troisieme remarque est que la propriété de dérivation de 6 par
rapport a [,]” suit assez facilement de la derniére formule. Assez curieuse-
ment cependant, I'identité de Jacobi pour [,]” ne semble pas suivre de for-
mules générales telles que (9) et ses conséquences, mais dépend de quelques
propriétés délicates de o que nous n’avons pas encore formulées abstraite-
ment. Nous reviendrons sur cela dans la section 13.

De fagon a enlever la restriction V' = V des remarques précédentes,
nous passons, comme dans la section 5, au produit semi-direct W =
= J X V' dans lequel nous introduisons un produit i donné par

(G, x), (r,¥)) = (u(x, ), 1" (hx, y) + p' (x', hy) + p' (x, ) .

Il est du méme type (associatif, de Lie, de Vinberg) que u et u'. La significa-
tion de f et g est celle de la section 5. Avec ces notations nous avons alors

([f,91°)” = (=D" {(@og)of —fpo(@af)} = (=" ' (og)of
le dernier terme du membre du milieu vaut zéro car g o f = 0. (La méme
formule vaut & nouveau pour % et (). Ainsi, dans tous les cas, [,]” a été
réduit a des produits de composition.

Dans I’algébre de Lie graduée avec comme produit [,]" les éléments de

V' (applications linéaires d’ordre 0 de V dans V') forment une algébre de

Lie ordinaire.
On a

[x,y]° =pw &,y) —p (y,x") (cas associatif)
[x,y]Y =p(x',y) (cas de Lie),

tandis que pour les algebres de Vinberg le produit considéré dégénére en
zéro. Leur produit avec une application f linéaire d’ordre n est donné par

[V, f1° e e Xy) = Y f(Xg5 000 %,) — (X4, ..., %,) ¥’ (cas associatif)
[, f1° Koo %) = ' (V5 f (X1 005 X)) (cas de Lie)
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Alors que les opérateurs cobords pour les fonctions linéaires d’ordre n
de V dans W resp. M sont liés naturellement comme nous I’avons justement
vu, il n’y a pas de telle relation naturelle en ce qui concerne le cup-crochet
[£, g]°. Non seulement le cup-crochet n’est pas défini pour des fonctions
3 valeurs dans M mais si f et g prennent leurs valeurs dans M 1'opérateur
(f, g) 1= n* o [n*f, n*g]” dépend de fagon essentielle du choix de I’espace U.
Cependant, une modification de [,]” marche au moins partiellement pour
induire un produit: on définit ainsi une structure graduée d’algébre de Lie
pour la cohomologie de V a coefficients dans M.

La formule principale concernant le nouveau crochet est

[f,9] =[f,9]° +(=1)"godf+ (=)™ f5dg.

Cela a clairement un sens quand f et g sont des fonctions multilinéaires de
W a valeurs dans W. On peut montrer (avec beaucoup d’efforts) que ce
crochet définit une structure d’algébre de Lie. Si fet g sont des applications
multilinéaires de V & valeurs dans W la formule prend un sens seulement si
les valeurs de df et de dg sont a nouveau dans V; i.e. exactement si @ o f
et © 0 g sont des cocycles.

Des calculs assez simples (utilisant 7 et la formule donnant [f, g]"~)
montrent que si 6f et dg ont leurs valeurs dans V, alors ¢ [f, g] = [df, og]°
a aussi ses valeurs dans V; i.e. @ o [f, g} est un cocycle. De fagon analogue,
on montre que la classe de cohomologie de no [f, g] dépend seulement de
nofetde nmog L’espace ne nous permet pas d’entrer dans les détails.

Il est facile de voir que la situation décrite dans cette section est une
généralisation de celle de la section 5 ou W était le produit semi-direct d’une
algébre V' et d’un module: a la fois 1a et ici le quotient W/} est un V-module;
dans le premier cas c’était le module dont on était parti. Par la construction
actuelle, la cohomologie a coefficients dans un module (situation de la sec-
tion 5) a un produit nul. De fagon analogue, la situation ici est une généra-
lisation de celle de la section 11; les produits gradués de Lie pour la cohomo-
logie sont les mémes dans les deux constructions (prendre V=V").

Nous indiquons briévement la relation entre la cohomologie qu’on vient
de discuter dans cette section et les déformations de sous-algébres.

Supposons que V', est un sous-espace de W qui est proche de V; alors
W est (comme espace vectoriel) la somme directe de V', et de U. Soit w e W,
alors w = vy + u (décomposition par rapporta Vet U)etaussiw = v, + u;
(décomposition par rapport a V, et U). L’application 4 :w |- u; —u |
est linéaire et envoie Wdans U. Pourwe U,onav = v; = 0,etu = u, =
= w de telle sorte que 4 vaut zéro sur U. Ainsi 4 est entiérement déterminé

§

|
e
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tandis qu’a nouveau on trouve zéro dans le cas de Vinberg. Dans tous les
cas, c’est I’action de y’ sur les valeurs de f par des dérivations intérieures de
V'; i.e. par Paction infinitésimale du groupe des automorphismes intérieurs
de V' sur les valeurs de f. Il est donc naturel que I’étude des déformations
d’homomorphismes 4 : V' — V' prend sa forme la plus simple quand les
équivalences de déformation de 4 sont données par le groupe d’automor-
phismes intérieurs de V'. Les résultats précis, que le manque de place ne
nous permet pas de citer totalement, sont trés semblables a ceux formulés
dans la section 6. Les déformations infinitésimales modulo celles qui sont
triviales sont données par H* (V, V'); l’espace d’obstruction est H* (V, V).
En particulier, 4 est rigide quand H' (V, V') = 0.

12. Sous-algebres et encore un autre crochet.

Dans cette section nous discutons briévement un autre crochet défini
au moyen des seuls produits de composition et indiquons (sans aucune
tentative vers la perfection) comment on peut 'appliquer aux déformations
de sous-algébres.

Nous considérons un espace vectoriel W muni d’un produit p d’un des
trois types (associatif, de Lie, de Vinberg) considérés. Pour la simplicité,
nous utiliserons seulement la notation o pour représenter 6, A ou ¢. Soit V'
un sous-espace de W qui en méme temps est une sous-algebre;i.e. u (V, V)<
< V. La restriction & V' X V de u est notée u'. Il est évident que W est un
module sur V; il suffit de poser A (v, w) = u (v, w) et p (w, v) = u(w, v).
Quand W est ainsi considéré comme un V-module, V' lui-méme est un sous-
module. Grace a des principes généraux, l’espace quotient M = W/V
est alors aussi un V-module. Si n : W — M est la projection naturelle et U
un espace de W complémentaire a V, alors la restriction de = a U est un
isomorphisme d’espaces vectoriels. L’application inverse M — U est notée
n*. La structure de V-module (1, p’) de M est ainsi donnée par

I

A(v,m) = nu(v,n*m) = nA(v, n*m),

p' ' (m,v) = nu(n*m,v) = np(n*m,v).

Soit f une application linéaire d’ordre n de V' dans W (alternée dans le cas
de Lie; alternée sauf en ce qui concerne. la derniére variable dans le cas de
Vinberg); alors §f est donné par les formules habituelles. On peut aussi

calculer 6 (= o f); on utilise la structure de V-module de M puisque 7 o f

prend ses valeurs dans M. On voit que les termes (nof) o u' et mwo (fou)
sont égaux tandis que A (v, nof) = nd (v, n¥o wof) = nwA (v, f); et de
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facon analogue pour p. Il s’en suit que @ 0 6f = 6 (mo /). En particulier
5 (mof) = 0 si et seulement si Jf prend ses valeurs dans V.
par son action sur V. Au sous-espace }'; nous avons ainsi associé une appli-
cation linéaire 4 : ¥ — U. On peut vérifier que les applications A parame-
trent tous les espaces ¥, complémentaires a U. Soit P la projection de W
sur U, O la projection sur V; de telle sorte que u = Pw, v = Ow; u; =
= (P+Awetv, =(Q—A)w.

Le sous-espace V; est une sous-algébre si le produit de deux ¢léments
quelconques (Q—A4) x et (Q—A) y tombe a nouveau dans V,; i.e. donne
zéro quand on applique P + A4:

P+AHpu((Q—Ax,(Q—-4y) =0.
On en tire:

Pu(0x,0y) + { Au(Qx, Qy) — Pu(Ax,Qy) — Pu(Qx, Ay) } +
+ { — Au(Ax, Qy) — Au(Qx, Ay) + Pu(Ax, Ay)} + Ap(4x, Ay) = 0.

Le premier terme vaut zéro puisque ¥ est une sous-algebre. Aux autres
termes nous appliquons 7: comme tous les termes ont leurs valeurs dans U,
cela donne une condition équivalente. Nous posons ¢ = m 0 A. De plus,
nous remplagons Qx, Qy par x, y en comprenant bien que x, y € V. Cela
ne donne aucun affaiblissement de la condition puisque 4 et Q valent tous
deux zéro sur U. Finalement, nous utilisons les applications 1’ et p’ quand
elles sont applicables. On obtient alors

0 = {ou' (x,y) = p'(ox,) — 2 (x, 09} +

+ no{A064 +L[A,A]"} +Lp0Qo0[A4,A4]" =

= —0p +3ino[4,A] + J00Q0[A4,A]" =

= —0¢ + ino[n*p,n*¢] + 9 o0Qo[n*p, n*@]"
Cette équation de déformation peut comme les précédentes étre résolue.
En posant ¢ = t@p,; + t*¢, + ... on trouve immédiatement que ¢ €
e Z' (V, M) et que ’on peut trouver ¢, seulement si 7 o [n*p,, n*p,] est
un cobord; ce qu’on a dit ci-dessus implique que c’est toujours un cocycle.
Ainsi, ’obstruction premiére est dans H>* (V, M).

Deux déformations V, et V', de V' sont dites équivalentes quand un auto-
morphisme intérieur de W envoie 'une dans I’autre. On peut montrer que les
déformations infinitésimales triviales de 7 sont en correspondance biuni-
voque avec les éléments de B (V, M). Ainsi, H* (V, M) I’espace quotient de
ZY(V, M)et de B* (V, M) donne les «vraies » déformations infinité-simales
de V. En particulier, lorsque H* (V, M) = 0, V est une sous-algébre rigide.




— 270 —

Beaucoup de détails nécessaires a une discussion compléte de la situation
ont été sautés par manque de place. Cependant le modéle est clair: c’est la
méme chose que ce qui a été montré dans la section 6 avec beaucoup plus
de détails. En outre, nous avons montré que la définition de I’opération de
base [f, g] requiert seulement celle des produits de composition.

13. Systémes de composition.

L’un des buts de cet article était d’exhiber un type de propriétés com-
munes aux algeébres associatives, aux algébres de Lie et aux algébres de
Vinberg. Le type le plus important, celui des algébres commutatives et
associatives peut aussi €tre inclus dans la théorie, mais comme nous I’avons
déja mentionné, de notre point de vue présent assez formel, les propriétés
ne sont pas dans ce cas la vraiment trés différentes de celles des algebres
associatives pour qu’il vaille la peine de les mentionner ici. La méthode
pour exposer la similitude des propriétés consiste en ceci:

(i) établir pour chacun des trois types un systéme gradué d’applications
multilinéaires munies d’un produit de composition vérifiant (9).

(i) montrer comment un assez grand nombre de problémes significatifs
peut se réduire & ’étude d’un nombre d’opérations (applications cobords,
produits de Lie gradués) qui peuvent €tre définies au moyen du seul produit
de composition, sans égard au type d’algébre d’ou il provient.

Cependant, nous avons indiqué que certaines des propriétés des opéra-
tions définies a ’aide des produits de composition ne pouvaient pas €tre
prouvées a partir de (9) seul. L’exemple mentionné dans la section 11 était
I’identité de Jacobi pour le cup-crochet [, ]”. Un autre exemple, d’importance
pour une étude ultérieure, est la propriété de dérivation des compositions
a droite (i.e. des applications du type f |— f 0 h) par rapport au cup-crochet.

Dans cette section, nous introduisons des opérateurs y, déduits du pro-
duit de composition. Nous montrons qu’une certaine supposition de « nil-
potence » des y — qui est satisfaite dans tous les cas connus — donne les
proprié¢tés mentionnées dans le paragraphe précédent sans difficulté. Les
systétmes de composition sont des systemes gradués avec un produit de
composition pour lequel les opérateurs y associés ont ces propriétés de
nilpotence. Nous les mentionnerons tout & I’heure mais donnons d’abord
quelques commentaires les motivant dans le cas de Lie.

Les applications multilinéaires que nous considérons sont toutes alter-
nées, de ¥ dans V. L’expression de f 7 g était (cf. (12))

2 ) O-f(g (xa(l): cee xo-(m)) ’ xa(m+1)a EED) xo-(m+n—1)) ’
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avec

c(l) <..<o(m) et c(m+1) <..<o(m+n-1).
Notons cela (y1 (8)f ) (X 15 voor Xutm—1) considérons aussi g agissant sur f:
(13) y1(9)f =fog.

De fagon analogue, on peut prendre g;, g, linéaires respectivement d’ordre
m, et m, et former y, (g4, 82) /-

(VZ(glagz)f)(xla--- n+m1+m2 2)
2 Y O-f(gl (xa(1)5 cee xa'(ml)) » 92 (xo(m1+1)a sees xa'(m1+mz))7 xa(tn1+n12+1)’ ceto

xo'(rn1+7112+n—2)) ’
avee

o() <..<o(m),c(m+1) <..<ao(mg+m,)
et
c(m+my—1) < ...<ao(m +my+n-2).

L’opération y; (g4, g4, &3) f est analogue et définie par une somme dont les
termes sont de la forme =+ f(g; (...), &, (...), &5 (...), ...) dans lesquels les
variables sont diiment permutées.

En continuant ainsi, on obtient une suite d’opérations y, 5, ...

On peut exprimer les opérations y, au moyen des produits de compo-
sition; pour y, c¢’est vrai par définition. Pour voir qu’il en est de méme pour
v,, on observe que le cdté gauche de (9) donne une expression du type de
droite. Plus précisément, on a

Y2 (91,90 f = (=)™} {7190 v1(92) — 74 (V1 (91) gz)}f-

La formule (9) dit, en effet, que au sens gradué y, est antisymétrique:

Y2(91,92) = (D)™™ 1y, (92,9¢) -

De fagon analogue, 75 (g4, g2, &3) est défini quand on connait y,. Tout
d’abord, observons que si Y, (g,, g3) f est écrit de telle fagon que g, apparait
dans la seconde place de f, et g5 dans la troisiéme, on doit pour compenser
multiplier par (—1)"s~'"™"2" 1 Appliquer y, (g,) place g, dans la premiére
place, faisant naitre y; (g4, g, £3) f puis place g, dans la premiére place de

g, et apres cela dans la premiére place de g5, chaque fois avec des signes |
appropriés. On trouve

73 (91,92,93) = (=" +m3{)’1 (91)72(92,93) — 2 (Vl (91)92:93) -
— (=D 7™y, (95,71 (91) g3) } -
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Plus généralement, on a, par récurrence

(14) yp-i-l (g05 ) gp) = (_l)m1+...+mp—p{,y1 (gO) ))p(gla seey gp) -
- 'Zl (_ 1)(m0_1)(m1+w+mi_l)yp(gln uriey yl (QO) Gis oees gp)}

On peut montrer comme conséquence de (9) (la déduction est assez compli-
quée) que y, (g4, ..., g,) est antisymétrique en g4, ..., g,; 1.e. que si on inter-
change g; et g;,; on doit avoir comme facteur (—1)™™i+1"1 Une preuve
beaucoup plus simple peut s’obtenir en utilisant les propriétés alternées de f
et de g (puisque, somme toute, nous sommes en train de discuter le cas de
Lie), mais 1’observation faite ici est qu’en vérité (9) seul suffit.

L’opérateur y peut €tre défini dans le cas associatif et le cas de Vinberg
par la méme formule de récurrence commengant par le produit de compo-
sition. Dans le cas associatif, y, (g4, ..., g,) f est une somme de termes dans
chacun desquels les g; occupent p places de f, de toutes les fagons possibles,
les signes étant appropriés. Les variables xi, ..., X, 4 ot mp +n—p Testent
dans leur ordre naturel. Dans le cas de Vinberg deux sortes de mélanges
interviennent mais les g; occupent toujours dans chaque terme des places
différentes de f.

Il est clair, dans chacun des cas ci-dessus, que si f est une fonction d’un
nombre de variables plus petit que p, y, ne peut plus se mettre sous la forme
indiquée. D’ailleurs si on se référe a la formule de récurrence, si y,.; (...)
s’applique a une f linéaire d’ordre p, alors les termes a droite de ’expression
s’annulent et y,., (...)f = 0. Par récurrence y,(...)f = 0 pour g > p.
C’est la propriété de « nilpotence » de y qui pour les calculs variés est néces-
saire en plus de (9).

DEFINITION. Un systéme de composition est une algebre graduée munie
d’un produit o compatible avec la graduation réduite, vérifiant (9) et pour
laquelle les opérateurs 7y, définis par (13, 14) vérifient y, (g4, ..., &,) f =
st le degré de fest < p.

La propriété de nilpotence est déja intéressante pour les petites valeurs
de p. Pour p = 1, elle dit que les produits de composition x o f valent zéro
quand x appartient a V; pour p = 2, elle dit que pour flinéaireon a(f o0 g,)o
g, =/f0(g,0g,); ces deux propriétés furent déja énoncées comme une
partie du théoréme de la section (4) dont (9) fait partie.

Le cas p = 3 donne de nouvelles propriétés. Nous observons d’abord
que y, (f, &) u = [, gl”. De plus, on a
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0 =(=1""ps(hfo ) =y Wy () — 12 (1 (WS g) 1 +

+ (“ 1)(p—1)n,y2 (f9 71 (h) g)/l s
c’est-a-dire

[f,g]1°ah =[foh,g]" + (D" "[f,g0h]".

C’est justement la propriété de dérivation de la composition a droite.

De facon a déduire 'identité de Jacobi pour le cup-crochet, nous avons
besoin d’une formule pour y; (g4, g2, &3) ¥1 (/). Nous avons déja une for-
mule pour 7y, (g5) 74 (f), en permutant quelques termes dans la définition
de y,:

71(g3) 71 (f) = (‘1)n_17’2 (93.f) + 11 (V1 (gs)f)

Ensuite nous essayons de remplacer y, (g3) par 7y, (g2, g3)- D’abord nous
appliquons 7y, (g,) a la formule ci-dessus

Y1 (92) 71 (@3) v (f) = (= 1)’1—1 {(— 1)m3+nV3 (92,93,F) + 72 (Y1 (gz)gsaf) +
| + (=)™, (g3,7: (92 1)} +
+ (=)™ "y, (92,71 (@) ) + 11 (7’1 (92) 71 (93)f) -

Ensuite, nous remplagons g, par y,; (g,) g; dans la méme formule:

71 (7192) 93) 7. () = (=" Ty (21 (92) 93, f) + 71 (01 (71 (92) 93) f) >

et soustrayons les deux résultats. Aprés avoir supprimé un facteur (—1)™ !
nous obtenons

Y2 (92, 93) 71 (f) = v3(92,93,f) + v1 (9292, 93)f) +
+ (=)™, (93,71 (@2)F) + (=192 (92,71 (g3)f) -

Ensuite, on répéte le procédé. La formule qu’on vient de dériver est utilisée
trois fois; tout d’abord elle est multipliée sur la gauche par y, (g,); ensuite
g, est remplacé par — y, (g) g,; enfin g, est remplacé par — (—1)(m1~Dm2
v, (g4) g3; alors on ajoute les trois résultats. On trouve ainsi

(=)™ y5(91,92,93) 71 (f) = (=)™ ™ " 1y, (91,95, 95) +
= o = 1)m= D matms )}’3 (gza 93,71 (91)f) +
+ (=DM D=y (g, 95, 7, (g)f) +
+ (=" ™ y5(gy, 92,71 (93)f) +
+ (=D™T™T Ty, (91,72 (92, 93) f) +
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+ (—1ymmermymstly, (g9, (91,93)f) +
+ (= DtmtmomsTmrmstatly (94,79,(91,92)f) +
+ (=)™ (y3 (91,92, 93)f) -

On observe un terme unique en premier, y,, et en dernier, y, (y3). Les termes
du milieu forment deux groupes, y; (y;) et v, (y,), et comprennent g, g,, g3
dliment permutés. On applique la formule & y, en prenant f = u. Alors le
coté gauche vaut zéro, puisque y; (W) u = p o pu = 0. Le terme y, donne
zéro grace a la propriété qu’on vient de trouver; la méme chose vaut pour
le terme y5 (y,). Le dernier terme donne zéro puisque y; (...) f = v5 (...)
w = 0. Il reste les trois derniers termes du milieu; on les multiplie par
(—1) m2¥matntmmstl of on obtient

(—1)m1m3 ]:gl’ [QZags:!u]u + (__1)m1m2+m1m3+1 [92, [91993] u]u +

+ (_1)m2m3 [939[91592]U]U = Oa

c’est justement I'identité de Jacobi.

Ce qui précéde est juste un échantillon des applications de la propriété
de nilpotence. L’utilité de y est également claire si on observe que, avec la
notation de la section 6, pour f linéaire d’ordre #, on a

L,
c()f =—a to{y,(ct,....0)f}.

n!
Par cette formule, on peut définir et manipuler 'action de groupe des él¢-
ments inversibles de degré 1.
Tout type d’algebre pour lequel on peut trouver un systéme de compo-
sition, partage les propriétés que nous avons déduites au moyen des systémes

de composition. Il est maintenant clair que ces propriétés couvrent un large
domaine.
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