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Théorème. Soit (V, p) une algèbre de Vinberg et M un module sur cette

algèbre, avec 2, p comme actions gauche et droite. L'application 2, avec

X (x, m) X (x, m) — p (im, x) munit alors M d'une structure de module

sur l'algèbre de Lie (V, p).

L'application de ce théorème à l'exemple précédent donne X (x, a)

[Lx, a]; i.e. l'une des structures habituelles sur M. Ainsi l'exemple montre

que X, p est un raffinement de la structure de module bien connue X.

Il est alors clair que si M est un module sur une algèbre de Vinberg, il a

deux structures de module sur l'algèbre de Lie associée. La première est

donnée par le théorème ci-dessus; la seconde est obtenue à partir du théorème

en changeant p en zéro: cela donne la même structure que celle donnée

directement par la condition (5).

On veut espérer avoir une troisième structure de module sur l'algèbre
de Lie associée en prenant 2 0 — mais cela ne marche pas, car (6) suppose

déjà 2. Dans le cas associatif, cependant, cette troisième méthode marche

également.

Partie II: Algèbres associatives et applications multilinéaires

Introduction.

Une classe intéressante de propriétés des algèbres associatives devient
accessible si l'on considère les applications multilinéaires dans lui-même
de l'espace vectoriel sous-jacent. Le produit p de l'algèbre fournit un
opérateur ö qui associe à une application linéaire d'ordre n une application
linéaire d'ordre n + 1. On peut exprimer à l'aide de l'opérateur ô des

propriétés connues de l'algèbre. En général, les calculs avec 5 (comme de

prouver que ô2 0) sont assez encombrants. Cependant, en introduisant
un « produit de composition » qui associe à tout couple formé d'une
application linéaire d'ordre m et d'une application linéaire d'ordre n une application

linéaire d'ordre n + m — 1, et en prouvant la seule identité (9), on
fait presque tout le travail. (Il se trouve que (9) est une version inversée et

graduée de l'identité de Vinberg.) Les commutateurs du produit de composition

vérifient les axiomes d'une algèbre de Lie graduée. On montre que
l'opérateur ô est le commutateur avec l'application produit p. On définit
la cohomologie associée à ô et on expose ses relations vis-à-vis des dérivations
et des extensions. Du système des applications multilinéaires la cohomologie
hérite d'une structure graduée de Lie. Cette dernière et la cohomologie
sont appliquées dans la théorie des déformations des algèbres associatives.
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Un exemple simple de déformation illustre comment en pratique marche le

mécanisme.

Vu la nature d'exposition de l'article, on a limité les connaissances

préliminaires requises à celles de la partie I sans compter quelques facilités
à jongler avec les applications multilinéaires.
4. Le produit de composition.

Dans cette section nous recherchons, d'un point de vue « plus élevé »,
la nature de la propriété d'associativité. Des sections de la partie III en

feront de même des propriétés caractérisant les algèbres de Lie et les algèbres
de Vinberg. La ressemblance frappante de tous ces cas nous permettra
d'être beaucoup plus bref dans les deux derniers cas. L'expérience ainsi

gagnée avec ces types d'algèbres nous permettra de formuler des critères

généraux qui s'appliqueront quand, pour d'autres types d'algèbres, on aura
des connaissances analogues.

Soit V un espace vectoriel, p un produit associatif sur V (nous utiliserons
de façon interchangeable p (x, y) et xy), et M un module sur (V, p) d'action
gauche X et d'action droite p. (Nous utiliserons xm à la place de X (x, m)

et my à la place de p (m, j).) Le cas particulier M F, X p p est très

significatif pour les applications.
Supposons que / est une fonction à n variables dont le domaine est V,

qui prend ses valeurs dans M, et qui est linéaire par rapport à chaque variable

— nous appellerons / une application linéaire d'ordre n de V dans M.
Nous pouvons alors associer à / une application linéaire d'ordre n + 1

de V dans M par une méthode très ingénieuse. On note <5/Tapplication
nouvelle; ainsi <5 est un opérateur qui augmente les degrés d'une unité. On a

(<5 f)(x0, x0f(xu ...,xn)+

+ f(x0,x1x2,x3,...,xn)+ + (-l)"_1/(x0, ...,X„_2X„_1,X„) +

+ (-l)"/(Xo,Xl> xn)(-l)"+1/(^o>

ou encore

(ôf)(x0,... ,xn)px...+
n

+ E (-1)7 (x0,...,jU 0>Ct-XB) +
i= 1

+ (-l)"+1p(/7o.
Considérons quelques cas particuliers de cette formule.

n 0. Alors / est précisément un élément m de M, et on a

(ôm) (x) X (x, m) — p (m, x) xm — mx
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Ainsi dm : V -» M est la « dérivation intérieure » de V dans M déterminée

par m. A vrai dire, nous avons

(ôm)(xy) (ôm)(x)y + x(ôm)(y).

n 1. Alors / est une application linéaire V -» M. Supposons .ôf 0;
c'est-à-dire

0 (5/)(x,y) xf(y)+f(x)y
OU

f(xy)xf(y) + /(x) y

f est, d'une façon apparente, une dérivation de V dans M.
Comme autre interprétation nous considérons maintenant le cas M

-- V.fest alors une application linéaire de V dans V et, quel que soit le réel t,
etf (donné par une série de puissances) est une application linéaire inversible
de V sur V: son inverse est e~tf. On obtient un produit \ité quivalent (c.-à-d.

isomorphe) à ji en posant

(7) n, (x,y) e'tfn(etfx, e,f

Nous recherchons l'effet dans jit d'un changement du premier ordre:

d
~z&\ t=o{x,y) -fn(x,y)+n(f=dt

-f(xy)+f(x)y + (j) (<5f)(x,y).

Cela donne de ôf une seconde interprétation comme l'effet du premier
ordre dans une famille à un paramètre de structures équivalentes.

n 2. Nous considérons maintenant une famille arbitraire (différen-
tiable) jit de structures d'algèbre associative ; de telle sorte que, pour tout t,
nous avons

Vt (*> i"t (y, z)) - Ht (x, y), 0

Nous différentions à nouveau et prenons t 0 (on pose notons
d/ pour —^nt

I t — o. Nous trouvons

/ (x, y (y, z)) + y(:x,f(y,z))- f(y (x, y) z) - (/(x, z) 0

OU

/(x, yz)+ xf(y,z)-f(xy, z) -/(x, y) z 0
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Après un réarrangement des termes, on voit que c'est exactement ôf — 0.

Ainsi, les applications bilinéaires/de V dans lui-même (cas M=V) vérifiant
ôf 0 sont les « déformations infinitésimales » de pi. Une autre façon
d'exprimer cela est que pi + tf vérifie la condition d'associativité jusqu'aux
termes du second ordre (i.e. modulo t2) si et seulement si ôf 0. La famille
(7) est un cas particulier (famille d'équivalences) des familles de structures
associatives. (Noter la différence de la signification de/dans les deux cas/)

Encore une interprétation: ce qu'on appelle le problème de l'extension.
Le produit semi-direct W V X M avec comme produit fi celui défini
dans (2) est une algèbre dans laquelle (i) M est un idéal vérifiant M2 0

(i.e. mn 0 quels que soient m, n e M) et dans laquelle (ii) le quotient
W/M est isomorphe à (V, pi), tandis que (iii) M est un module sur W/M par
l'intermédiaire de X et p. Le problème de l'extension consiste à trouver
toutes les multiplications fi! de W telles qu'on ait (i), (ii), (iii). Il n'est pas
nécessaire que V soit une sous-algèbre de W pour une de ses structures;
néanmoins nous continuerons à représenter W comme un espace vectoriel

produit de V et de M. Supposons que fi' est un tel produit, alors (i) implique
que fi et fi' coïncident sur M (ils valent tous deux zéro); (ii) implique que

fi et fi! diffèrent sur V par une application cp à valeurs dans M, tandis que

(iii) implique que fi et fi' coïncident quand on les évalue par un élément de

V *= W/M et un élément de M.
En une formule,

fi' ((x,m) (y,«)) (n(x,y) cp(x,+ (x, n) + p (m, y)).

On voit maintenant par un calcul direct que l'associativité de fi' est équivalente

à

À (x, <j o(y,z))- p(cp(x, y) z)+ i p(x, p (y, z)) - (x, 0

c'est-à-dire à ôcp 0. On considère comme équivalentes deux extensions

fi' et fi" quand elles sont liées par un automorphisme d'espace vectoriel
de W qui induit l'identité sur M et sur W/M. Une telle application i7 a la

forme

F (x, m) (x, m + f (x)), avec /: V -> M

L'application inverse est F~1 (x, m) (x, m— f (x)). Les structures équivalentes

à fi sont ainsi

fi'((x,m) (y, n)) F'1 fi(F(x,m) (y, n))

F'1 fi((x, m + f(x)), (y, +f(y))
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F1(p(x, y),X(x,n+ /0)) + p(m + f(x),y))

(p(x, y), -f(p(x,y))+ ?,{x,n)+ + p(m, y) (f(x), y)).

Ainsi, dans ce cas,

cp(x,y) -f(p(x,y)) + X(x,f(y)) + p(f(x), y) (ôf)(x,y).
De ces exemples émerge une certaine idée. Dans chacun des exemples

est un problème dont la solution a est n'importe quelle solution de ôx 0.

Parmi les solutions certaines moins intéressantes sont de la forme a öß.

Cela suggère ö2ß 0. A vrai dire, cela peut se vérifier — nous le ferons

plus tard. Cependant, une vérification directe serait maintenant extrêmement

laborieuse, et on peut s'attendre au même phénomène pour d'autres calculs.

Aussi introduisons nous certaines notations comme outil pour les mener à bien.

Pour le moment nous considérons un espace vectoriel V mais ne supposons

pas qu'il ait quelque structure d'algèbre. Nous prenons pour / une

application linéaire d'ordre n de V dans V et de façon analogue pour g
une application linéaire d'ordre m de F dans V. (En fait, g peut prendre ses

valeurs dans n'importe quel espace vectoriel.) Nous définissons le produit
de composition g of qui est une application linéaire d'ordre n + m — 1 par

(8) {göf){x1,=

X l)(l~1 )(n — 1} g(Xj,..„Xi-iJiXi, ...,Xi + J)_1),Xj+„, +
/= 1

Cette définition est motivée par la suite.

Application l.Soit p une application bilinéaire de Vdans V; on a alors

(p 5 p) (x, y,z)p( p (x,— p. (y,

Ainsi jiô p 0 est la condition nécessaire et suffisante pour que p définisse
sur V une structure d'algèbre associative.

Application 2. Soit / une application linéaire d'ordre n de V dans V,
et p une structure associative sur VAlors, à l'aide de la formule donnant
ôf (avec À=p=p) on trouve

ôf (-1 r+ip5f-
— fö p correspond à la somme des termes « du milieu »; (—1
aux termes « extrêmes ».

Nous avons ainsi montré que l'introduction de o conduit à une notation
plus courte. Pour calculer avec elle, nous avons besoin de quelques propriétés.

L'Enseignement mathém., t. XIV, fasc. 3-4. 17
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Théorème. Soit/, g, h des applications linéaires d'ordre n, m, p de V dans

lui-même. On a alors l'identité suivante

(9) (fôg) oh- fô(gô h) og -fô(hôg)}
En particulier, pour n 1 alors fö g f o g et les deux côtés de (9)
valent zéro. Pour n 0, alors fd g 0.

L'identité (9) ressemble beaucoup à l'identité de Vinberg (1), excepté

en ce qui concerne l'ordre inverse des facteurs et la puissance de (—1) qui
reflète la graduation. Nous espérerons donc aussi quelques propriétés
analogues.

Pour prouver (9), on a besoin de quelque patience, d'une grande feuille
de papier, d'un crayon pointu et d'une bonne lumière. Cependant l'effort
sera récompensé puisque c'est l'un des quelques théorèmes dont la preuve
est un peu pénible. Nous indiquons ici la méthode, laissant les détails comme
les puissances de (—1) nécessaires aux soins du lecteur.

Dans la définition (8) de / ö g, la fonction g « visite » tous les espaces

possibles sur /, avec des signes appropriés. Quand ö h est ensuite appliqué
sur la droite, alors h « visite » tous les espaces possibles def ö g. Dans
certains termes h occupera un espace possible de /; dans d'autres un espace

possible de g. Les derniers termes constituent exactement / ö (göh) ; dans

les termes restants (les premiers) g et h occupent tous deux des espaces
possibles de /. Un observateur plus fin trouvera dans ces termes une certaine

symétrie en g et h. — Les détails sont laissés au lecteur...

Les commutateurs, des produits de composition forment une algèbre de

Lie graduée. Pour fixer la terminologie, nous appellerons zz — 1 le degré

réduit d'une application linéaire d'ordre n; le degré « ordinaire » est n.

Théorème. Si/, g sont des applications linéaires d'ordre n et d'ordre m
de l'espace vectoriel V dans lui-même (les degrés réduits valent n — 1 resp.

m — 1), et si

[f,gT göf-i-iy-^
alors [,]° est, par rapport à la graduation réduite, une structure d'algèbre de

Lie graduée sur l'espace des applications multilinéaires. C'est-à-dire

(i) [j\ g]° est une application linéaire d'ordre n + m — 1 (de degré réduit

n+m — 2) qui dépend linéairement def et de g.

(n) [f,gT
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Si h est une application linéaire d'ordre p, alors

(i/o (-i)("-1)(p"1)[[/,0]°,fc]° +(-i)<m"1)(n_I)[[0^]o./]° +

+ (-lYp-inm~1)[[hJY,g]°0.

La preuve de (iii) (identité de Jacobi) est la même que celle du théorème

de la section 2, excepté qu'il faut veiller aux signes. — Notons l'ordre inhabituel

des facteurs dans la définition de [,]°; il reflète le fait que, d'un certain

point de vue, l'ordre des facteurs dans fog est l'ordre « erroné ».

Des conséquences immédiates du théorème sont par exemple les sui-

vantes :

<5/=-[>,/]",
l'identité de Jacobi donne, elle,

ô2f [p,[p,n°]° =i[L o

lorsque (i est associatif. L'identité de Jacobi donne aussi

(10) <5 [/; gY [<5/, gy+ -1)""1 [/, SgY.

5. Cohomologie.

Dans la section précédente nous avons vu un exemple de la situation

suivante: on a un système (C")^ _œ d'espaces vectoriels (ou de modules si

on aime la généralité) et une application linéaire ô qui envoie chaque Cn

dans C"+1 telle que ô2 0. Nous pouvons ainsi prendre pour Cn l'espace
des applications linéaires d'ordre n de V dans V pour n ^ 0 et Cn { 0 }

pour n < 0. On peut représenter la situation par la suite

Q
<5

£0 ô ô ô
çm — l à çn à çyi + 1 à

A chaque Cn est associée une application entrante ô, dont on note Bn l'image
(de telle sorte que Bn 3Cn~x) et une application sortante <5, dont on note
le noyau (ensemble des zéros) par Zn. Le fait que ô2 0 dit que Bn est un
sous-espace de Zn. Les deux sections précédentes contiennent certaines
illustrations de ce que Bn et Zn signifient pour les petites valeurs de n dans le
cas des algèbres associatives.

La suite ci-dessus est appelée exacte en Cn si Bn Zn ; elle est dite exacte
si elle est exacte en Cn pour tout n. Comme mesure du défaut d'exactitude
de la suite on introduit selon la coutume les quotients Hn Zn/Bn. On les

appelle les groupes de cohomologie ; dans la situation présente les groupes
sont en réalité des espaces vectoriels. Zn et Bn sont appelés les espaces de
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cocycles resp. de cobords. Dans le cas d'une algèbre F, comme dans la section
antérieure, on écrit Hn (F, F): c'est « la cohomologie de F à coefficients dans
F». Plus généralement, quand M est un module sur F, on a les groupes de

cohomologie Hn (F, M) de F à coefficients dans M. Nous les décrirons
brièvement.

Dans certaines situations, comme par exemple celle de la section précédente

on a des applications bilinéaires (les produits) Cn X Cm -> Cp (dans
notre cas, le produit est donné par [, ]° &tp n + m — 1), et <5 est une
dérivation par rapport au produit (dans notre cas voir (10)). Alors quand on
applique ô au produit de deux cocycles on obtient zéro ; ainsi le produit de

deux cocycles est un cocycle. De façon analogue, le produit d'un cocycle
et d'un cobord est un cobord. (Prendre dans (10) pour g un cocycle et pour
ôf un cobord. Alors le dernier terme disparaît de sorte que [ô/, g]° est égal

au premier terme qui est un cobord.) Ainsi, les produits avec la propriété
de dérivation induisent pour les groupes de cohomologie des produits
Hn X Hm Hp puisque le produit de deux cocycles est changé seulement
d'un cobord quand on change d'un cobord les facteurs. En particulier, dans

la situation de la section 4, on a des produits

Hn(V, V) x Hm(V, F) -» Hn+m~i (j/ )/)

produits qu'on note également [,]°. On a aussi une structure de Lie graduée

puisque toutes les propriétés qu'on peut décrire par des équations se

généralisent quand les opérations des équations se généralisent.
Dans le cas général de Hn (F, M\ nous avons déjà décrit les espaces Cn

et l'application <5 au début de la section 4. Tout ce qui nous reste à faire est

de prouver ô2 0 ce qui jusqu'ici n'a été fait que pour M F. A cette fin,
nous considérons à nouveau le produit semi-direct W F x M. Soit / un
élément de CM, i.e. une application linéaire d'ordre n de F dans M; on associe

à/ une application / linéaire d'ordre n de W dans W par le procédé évident

« d'extension »

/((*i, rnj),...,(xn,m„))(0,/(xl5

Notons que / 0 si et seulement si / 0. Le produit dans W est encore
noté fi (quoique fi n'est pas obtenu à partir de }i comme/l'est à partir de /;
fi contient aussi X et p). On invite le lecteur à vérifier que fi öfetföfi tous
les deux ont la propriété de valoir zéro chaque fois qu'une de leurs entrées

vient du facteur M et que les valeurs sont toujours dans le facteur M. Une
recherche soigneuse montrera, en fait, que ôf (qui est une application linéaire
d'ordre n + 1 de W dans W) est juste la même chose que la fonction obtenue
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en «étendant» 8/. C'est-à-dire ôf =*> ôf. Cela implique ô2 f ô2f_ 0,

donc ô2 f — 0

Les exemples discutés dans la section 3 ont les interprétations cohomolo-

giques suivantes:

F est une algèbre associative, M un F-module.

Exemple 1. B1 (F, M) est l'espace des dérivations intérieures de F dans

M. Z1 (F, M) est l'espace de toutes les dérivations de F dans M. L'espace

quotient H1 (F, M) mesure à quel point il y a d'autres dérivations que les

dérivations intérieures.
Exemple 2. B2 (F, F) est l'ensemble de toutes les déformations

infinitésimales du produit jj. obtenues par une famille de transformations inversibles

de F. Ces déformations en réalité ne déforment rien; elles effectuent

simplement un changement de base. Z2 (F, F) est l'espace de toutes les

déformations infinitésimales. Le quotient H2 (F, F) mesure à quel point il y a

de vraies déformations infinitésimales. Dans la section suivante nous verrons

que H3 (F, F) détermine à quel point une déformation infinitésimale appartient

réellement à une famille de déformations. Par exemple c'est toujours
le cas pour H3 (F, F) 0.

Exemple 3. Quand dans l'exemple 1 nous prenons M F alors B1 (F, F)
est une algèbre de Lie par rapport au produit [,]°. C'est l'algèbre de Lie du

groupe des opérations b |-> aba~1 (automorphismes intérieurs) de l'algèbre,
où a est un élément inversible quelconque. (S'il n'y a pas d'unité dans F,

on peut prendre b |-> (I+a) b (7+a)-1 où a est tel que la multiplication
gauche comme la multiplication droite par / + a est inversible.) Z1 (F, F)
est aussi une algèbre de Lie, à savoir celle du groupe de tous les automorphismes.

Comme le premier groupe est normal dans le dernier, le quotient
est un groupe. Son algèbre de Lie est juste H1 (F, F) avec le produit induit
par [,]°.

Exemple 4. H2 (F, M) mesure l'existence d'extensions de F par M à une
équivalente près. L'ensemble de toutes les extensions est paramétrée par
Z2 (F, M);les extensions inessentielles par B2 (F, M).

6. Déformations d'algèbres associatives.

Dans la section 4, nous avons déjà discuté brièvement le concept de
déformation infinitésimale d'une algèbre associative F (cf. le cas n 2);
dans le cas n 1 nous avons identifié les déformations infinitésimales dues
à une famille de transformations inversibles de F. Dans la section 5,
exemple 2, nous avons indiqué la relation avec la cohomologie. Nous allons
maintenant recommencer en utilisant les opérations ô et [,]° et leurs pro-
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priétés y compris leurs relations avec la cohomologie. Au cours des calculs

nous essayerons de montrer l'efficacité de ö et de [,]° à accomplir les opérations

essentielles.

La condition que jà est une multiplication associative de l'espace vectoriel
V s'exprime par ji ö jâ 0. Supposons que pi + cp, où cp est une application
linéaire de V dans F, est aussi associatif; alors

0 (ß + <p) ö (fi + cp) =ßöii+iid(p+(pö]Ä+(pd(p

- ô(p+ ll(p,(pY
OU

(11) ôcp — 4- [ç>, cp~\° 0.

C'est l'équation de déformation. Nous serons intéressés à trouver toutes les

« petites » solutions cp de cette équation.
Il existe diverses méthodes pour résoudre (11). La méthode des séries

formelles de puissances est intuitivement la plus simple, quoique pas
toujours la plus pratique dans les situations réelles. Nous posons donc

<p t(px + t2cp2 + t3cp3 +

et substituons dans (11). (A strictement parler, t est une « variable » dans

un sens technique. Si l'on permet de considérer des séries de puissances en t
dont les coefficients sont des applications bilinéaires, on est obligé de façon
analogue de considérer des séries de puissances en t dont les coefficients sont
des applications multilinéaires quelconques ou des nombres réels

quelconques. Nous n'entrerons pas dans les détails et passerons tant bien que mal
à travers tout cela aussi bien que nous le pourrons.) La suite suivante d'équations

apparaît quand on annule les coefficients des puissances de t.

ôcp1 0

à(p2 ~ ilVi'ViY 0

<5Ç>3 - IVuVzY0

ô(pn+1 - i Z l<Pi,<Pn+ l-i]° 0
1=1

Ainsi, il est nécessaire que cp1 soit un cocycle. Les résultats de la section 5

impliquent que, alors, \ [cp1, (pj0 est aussi un cocycle, donc représente une
classe de cohomologie dans H3 (V, V). Si cette classe (appelée l'obstruction

première) vaut zéro, alors \ [<pu cp^0 est un cobord, et on peut trouver <p2.
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Naturellement, cp2 est unique à quelque chose dont le ô vaut zéro i.e. à un

cocycle près. Si l'on peut trouver <p2i on peut continuer avec cp3. Nous allons

montrer que à chaque étape nous trouvons un cocycle pour l'expression

à laquelle le ôcp suivant doit être égal. Si cette expression est un cobord ou si

on peut en faire un cobord en modifiant d'un cocycle le cp précédent, alors

nous pouvons considérer le pas suivant.

Ainsi supposons que l'on a trouvé cpl9 cp2, • i-e- qu'en posant

cp t (p1 + t2 (p2 + + tn cpn + tn+1 <p n+1 +

(les (pn+1 et les coefficients suivants sont arbitraires)

on a

[> + <?,/i + <p]° tn+1Fn+1 +
avec

n

Fn+1 2ô(pn+ i 4" ^2 \jPi> (Pn+ 1 — il
/ 1

A cause de l'identité de Jacobi pour les algèbres de Lie graduées nous
obtenons (3 termes sont égaux

0 [fi + cp, [p Fcp, fi + <pY~\° [/^ Ft q>1 4-..., f+1 Fn+1 + ...]°

f + 1[ß,Fn+1Y +

Comme le coefficient de tn+1 doit être zéro, on obtient

0 |>,F„+1]° - ÔFn+1 - ô f [<Pi,(p„+ i_i]°
i= 1

qui est ce que nous voulons montrer: l'expression à laquelle ôcpn+1 doit être

égale est toujours un cocycle. C'est seulement si sa classe de cohomologie
(«l'obstruction d'ordre n») s'évanouit qu'on peut trouver cpn+1. — Nous

voyons que H3 (F, V) 0 entraîne que chaque cocycle cp x peut « s'étendre »

à une famille à un paramètre de déformations.
Par souci de généralité, nous considérons brièvement une série pour cp

qui commence à un terme d'ordre plus grand:

(p tkcpk+ tk+i<pk+1 +...î).
Alors, en substituant dans (11), on montre comme auparavant que non seulement

cpk mais aussi cpk+1, cp2k-1 sont des cocycles.
L'« apparence » d'une famille de déformations peut changer quand on

la compose avec une famille Ft I + tf1 + t2f2 + de transformations
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inversibles de V;fl9f2, sont ici des applications linéaires V -» V et on peut
calculer Ft terme par terme, par exemple les premiers termes sont

F t1 J ~ tjt + t2 — f2 +/i) + t3 — /3 + fif2 + fifi~ fi) + •••

La déformation modifiée est donnée par

n't(x,y) F71 ^(Ftx,Fty)F7

Supposons que la série de puissances de <p commence comme ci-dessus

par tk (,k^ 1) et décidons de la composer avec un Ft qui commence à la même

puissance: Ft 7+ ••• On trouve alors

Ft(x,y) + tk(-fkH(x,y) + + ni*, fky)) +

+ tk <pk + •••

où les points indiquent les termes d'ordre plus grand que k. Ainsi, en posant
cp' — jit — fi, on a

cp' + (pk) 4- ;

autrement dit, étant donné une famille de déformations de n, on peut par
le choix de Ft changer d'un cobord arbitraire le terme principal de l'expansion

en série de puissances. En ce sens, seule la classe de cohomologie du
terme principal « compte ». En particulier, si le terme principal est un
cobord, on peut le changer en zéro par un choix convenable de Ft. Comme

corollaire, si H2 (K V) 0, chaque terme principal, étant un cocycle, est

en fait un cobord et peut être changé en zéro. Nous pouvons montrer que,
en fait, on peut alors trouver une famille Ft telle que le cp' final est zéro
c'est-à-dire qu'on a le

Théorème. Si H2 (F, V 0, alors toute famille jit de déformations
d'une structure associative \i est triviale si c'est une famille à un paramètre
comme sérieformelle de puissances, i.e. existe unefamille Ft de transformations
inversibles de l'espace vectoriel sous-jacent développables en séries formelles
de puissances à un paramètre telle que

F (x,y) F~x n

(Dans ce cas, on dit que pi est rigide)

La seconde méthode pour résoudre (11) est à vrai dire la méthode
classique utilisée dans la résolution des équations linéaires — on exprime
certaines des inconnues au moyen d'autres, les paramètres. Dans ce cas,
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cependant, les équations ne sont pas linéaires et il peut y avoir en pratique

des difficultés à trouver explicitement les solutions.

La méthode est fondée sur deux idées: (i) partager (11) en trois ensembles

d'équations et les résoudre consécutivement, (ii) choisir les paramètres les

plus favorables. Les deux buts sont atteints en observant qu'on peüt décomposer

l'espace des applications linéaires d'ordre n de F dans F en une somme

directe de trois sous-espaces. Le premier est Bn, l'espace des cobords, le

second nous l'appellerons (par abus de notation) Hn; c'est tout sous-espace

de Zn complémentaire de Bn, il est isomorphe à Hn (F,F). Le troisième Un

est complémentaire de Z", de telle sorte que l'espace en entier est la somme

directe de Zn et de Un. La décomposition est ainsi Bn + Hn + Un, ou Zn +
+ Un, comme le dictera la nécessité. Les applications de projection
correspondantes sont notées nB, nH et nv.
L'équation (11) se partage maintenant comme il suit:

(IL) a) Ô(p - i;7lB[(p,(p]° 0

b) %H [>,<p]° 0

c) 7iv |>,<p]° 0

En se rappelant l'origine de (11), nous voyons que (lF.c) est équivalent à

(11'.F) tcv [/x + <p, // + cp]° 0.

Nous l'utiliserons sous cette forme.
Dans (IL.a) posons q> z + u, où z e Z2 et u e U2, et considérons z

comme un paramètre. (IL.a) devient alors, puisque ôz 0

(IL.a') ôu — ^nB [z +u9 z +w]° 0

Le côté gauche note, pour chaque z, une application qui envoie ue U2 dans

un cobord de B3. Pour z 0, cette application est justement u ]-» ôu qui
est un isomorphisms entre U2 et B3. Le théorème des fonctions implicites
nous dit alors que pour un petit z on peut trouver un voisinage de u 0

qui est appliqué de manière biunivoque sur un ensemble ouvert de B3 et

que l'origine de B3 est dans l'image. Désignons par (z) l'image inverse
de 0; ainsi u 0 (z) est une solution de (IL.a'). Le théorème des fonctions
implicites nous dit que 0 paramétrise toutes les solutions petites cp z +
+ 0 (z) et que 0 est analytique.

Nous substituons maintenant cp z + 0 (z) dans (lL.bj. Malheureusement

on n'a aucune garantie que l'équation qui en résulte

(IV.b') Q(z) defnH[z + <l>(z),z + <I>(zy]°0
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a de nombreuses solutions. Cette équation correspond aux obstructions

que nous avons trouvées dans la méthode des séries de puissances. C'est

pourquoi, on appelle Q l'application obstruction.
En ce qui concerne la troisième équation (ll'.c'), les choses vont mieux:

pour les petits cp c'est une conséquence des deux premières équations
(ll'a, b), qu'il n'y a pas de conditions supplémentaires. Cela correspond
au fait que dans la méthode des séries de puissances, Fn+1 est automatiquement

un cocycle. Pour prouver cela, nous avons seulement à montrer ce qui
suit: si cp est tel que w [p+cp, n-\-(p]° appartient à U3 et si cp est petit,
alors w — 0. Grâce à l'identité de Jacobi et avec les hypothèses faites nous
avons

o [ß + (p,[j"+<P,At+ </>]°]° [> + <?, w]°

Or, on peut prendre pour w n'importe quel élément de U3 pour lequel
[p+cp, w]° 0 et nous montrons que c'est zéro quand cp est petit. Or
w H» [p, w]° — ôw est une application de U3 dans l'espace des applications

linéaires d'ordre 4 qui est une injection. Un changement: remplacer
[ju, .]° par [p+cp, .]° ne change pas la propriété (biunivoque) de l'injection
quand cp est petit. (Le rang d'une application linéaire ne diminue pas par
un petit changement.) Par suite, il y a dans U3 un seul w pour lequel
[p+cp, w]° 0 quand cp est petit; la seule valeur est évidemment w 0.

Ainsi, toutes les petites solutions de (11) sont de la forme cp z + F (z),

où $ est analytique dans un voisinage du 0 de Z2 et où de plus z est limité

par la condition Q (z) 0; Q est aussi analytique à valeurs dans H3.

(Notons que H3 (F, V) 0 entraîne que les petites solutions cp de (11)

forment une variété locale sans singularités; son espace tangent est Z2.)
Pour considérer les équivalences parmi les déformations, nous observons

que dans le cas où a : V -» V est inversible il lui correspond une transformation

sur une multiplication p! donnée par \x (x, y) a~1 p (ax, ocy).

De façon analogue, à toute application, linéaire d'ordre n, f correspond

une nouvelle application appelée o (a)/ :

(<7(a)/)(x1; a_1/(ax1,coc„)

On a p a (a) p. Il est facile de voir à partir de la définition de ö que

a (ce)(fög) a (a)fda (ce) g

Ainsi, si on a g ö p 0, on a aussi a (a) p ö o (ce) p 0. (Cela exprime
le fait évident que des algèbres isomorphes à des algèbres associatives sont
elles-mêmes associatives.) Si a est près de l'application identité /, a est de la

forme eß, où ß est une application linéaire.
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Lemme.Si ß :V->Fest linéaire et si/est une application linéaire d'ordre

n de V dans V, alors

a[e')f é">f

oüößf=[ß,f]°.
Pour montrer cela, nous remplaçons ß par tß et nous différentions par

rapport à t. Vu la définition de a on a

I a(e'ß)f - ßöa(e^)f + a(e^)f 5 ß(c«V]°
dt

Or — et ôo commutent puisque ß est indépendant de t et nous trouvons
dt p

(jxfa{e'ß)f 5"a{e'ß)f-

tN
Si l'on pose t *=» 0 c'est le coefficient de — dans le développement en série de

NI

Taylor de g {etß)f Pour t ~ 0, le côté droit coïncide avec ößf. Ainsi nous

trouvons

-X'k{(s)'-X'N-<"'
II suffit de faire t 1 pour prouver le lemme.

Comme pour la notation <5, on peut poser ôgf [g,f]°. On a alors
S f [ji,f]° — ôf de sorte que <5 — dß. Notons aussi que

dßix öß •

L'action d'un opérateur g (eß) sur ji donne quelque chose qui dépend
du choix de ß. Pour ß e Z1 (V, V) on a öß 6ßfi 0 de telle sorte que
g (eß) eöß ii n\ i.e. ß ne change pas. Pour ß e Z1 (V, V), les eß

appartiennent au groupe d'automorphismes de ß. On peut ainsi voir que les eß

pour ß g U1 sont à vrai dire les seuls intéressants si l'on veut que ß « bouge ».

Comme alors ößß n'est jamais zéro (excepté pour ß 0), les éléments

g (eß) ß, ß e U1, sont tous distincts l'un de l'autre pour ß petit et forment
en ß une variété locale dont l'espace tangent est B2 » ÖU1. Quand ß
est distinct de ß mais proche de ß, l'ensemble des g (eß) ß pour ß e U1

proche de 0 forme aussi une variété locale dont l'espace tangent en ß
est proche de B2. Ainsi on voit intuitivement que pour ß près de ß et ß
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dans un voisinage de 0 contenu dans U1 toutes les orbites a (eß) p se couperont

en p suivant un sous-espace transversal à B2. (Les considérations
précédentes sont purement intuitives; le théorème des fonctions implicites
fournit la preuve actuelle.) Ainsi si nous prenons le plan P passant par p
dans la direction de H2 + U2, alors P contient en particulier au moins

un point de l'ensemble des a (eß) p pour tous les p proches de p. Les p!
associatifs dans P ont, cependant, justement la forme p + z + $ (z) où z
est réduit à H2 et vérifie Ü (z) 0. Les p considérés représentent toutes
les classes d'équivalence des multiplications associatives proches de p et,

comme nous le voyons, sont paramétrés par les zéros d'une application
analytique Q de H2 à valeurs dans H3.

De façon plus explicite: chaque structure associative p proche de p
est de la forme p! — o (eß) (jxJrzJr<P (z)) où z appartient à un voisinage de 0

contenu dans H2 et vérifie Q (z) 0 tandis que ß appartient à un voisinage
de 0 contenu dans U1.

Dans le cas particulier où H2 (V, V) 0 cela signifie qu'il y a seulement

une classe d'équivalence: celle de p. C'est-à-dire que toutes les multiplications

associatives proches de jx sont équivalentes à p. C'est une autre forme
du théorème de rigidité.

On doit remarquer que bien que a (eß) fi fx pour ß e Z1, en général
er (eß) ß \x pour \x! proche de jx et pour le même ß. Pour trouver les

équivalences entre les p! proches de p on n'a pas pris les transformations en
considération. Comme résultat, on peut en général trouver leurs équivalents

parmi les p de P.

7. Un exemple simple.

Nous calculerons les petites déformations de l'algèbre associative à deux
dimensions V dont les éléments sont de la forme a + ùe, où a et b sont réels

et s2 0. Une base de V sur les nombres réels est constituée par les

éléments 1 et e. Soit/ : V -> V une application linéaire, <5/ est donnée par

(5/)(1,1) l./(l) -/(1.1) +/(l).l =/(1),

(ôf)(M) (Ôf) (S, 1) l./(8) -/( 1.8) +/(1).8 8/(1),

(5/) (e, 8) e./(e) -f(e.e) +/(s).8 2e/(e)

Par suite, / est une dérivation si /(l) 0 et si f (s) est un multiple de s.

L'espace Z1 H1 des dérivations est à une dimension et une base en est

donnée par l'élément avec

£ (a +bs) bs
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Soit maintenant une application bilinéaire cp. On peut alors calculer Ôcp

de façon analogue. Cependant nous savons déjà que ô (<ôf) 0 quand/est
linéaire. Aussi pouvons nous restreindre cp à un sous-espace W
complémentaire à B2 et dont les éléments ont la propriété que <p(l,l) 0et
(p (a, a) e R. Pour ces cp là, on trouve

(ôcp) (1, 1, 1) (ôcp) (1, e, 1) (ôcp) (a, e, e) 0

(ôcp)( 1, 1,8) <p(l9a)9(ôç)(a9 1,1)= - <p(e9 1),

(ôcp)( 1,8,8) - ecp(l9 a) 9(ôcp)(s9 8, 1) (p (s, 1)

(5q9) (e, 1, e) e(<p( 1, s) - <p(s9 1))

Les cp pour lesquels ôcp 0 donnent H2. Ils sont caractérisés par cp (1, a)

cp (e, 1) 0 — et naturellement cp (1, 1) 0 et cp (a, e) e R. Donc H2

est à une dimension et est engendré par l'application z avec z (a, a) 1,

z étant nul pour toutes les autres paires d'éléments de la base. Pour ce z,

onazôz 0. Si cp z + u est une solution de (11), alors on a dans ce cas

ôu +(zöu+uöz+uöu) 0,

qui est vérifié pour u 0. Ainsi si t est un paramètre réel, les multiplications
déformées sont \x — }i + tz; i.e.

Ii' (a + be, c + da) ac + (ad + bc) a + t. bd

ou encore

\x' (1, 1) 1 \x' (1, a) (e, 1) 8 \i' (a, a) t.
On distingue t > 0 et t < 0 en posant t ± k2. Avec le nouvel élément
de base a! a/k on a

jU'(8',8') ± 1

et

ti' (a+ba',c+da') (ac±bd) + (ad + bc)af.

Ainsi toutes les structures correspondant à t > 0 sont isomorphes et il en
est ainsi pour celles qui correspondent à t < 0. Les dernières sont justement
les nombres complexes.

Comme exercice, on peut vouloir calculer le produit de z et de C- On
observe que C (e) et z (e, e) sont les seuls éléments non nuls et que les valeurs
de C sont des multiples de a ; celles de z des multiples de 1. D'où C ô z — 0.
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On trouve

[Ç, z]°(e, e) (zöO(s,ß) z(Ç(e), s) + z(e,£(e)) 2 2z(e, e),

tandis que les autres valeurs de [£, z]° et de z sont zéro. Autrement dit,

[f,z]° 2z.

L'espace ne nous permet pas d'expliquer comment cette formule est liée

au fait que jl est une structure de « saut » : il change une fois (dans chaque
direction de t) ; ensuite la structure reste constante. C'est un cas particulier
de la situation décrite dans la dernière remarque de la section 6.

Partie III: Algèbres de Lie et algèbres de Vinberg
— plus sur les déformations —

systèmes de composition

Introduction.

Le produit de composition pour des algèbres associatives a été introduit
dans la partie II, de même que quelques applications — principalement
celles concernant les déformations de telles algèbres. Cependant les

possibilités du produit de composition n'ont pas été là épuisées: il prête lui-même
à d'autres questions de déformation qui sont mentionnées dans la partie
présente: déformations d'homomorphismes d'algèbres et déformations de

sous-algèbres. Le crochet [,]° de la partie II était à vrai dire un commutateur
de produits de composition: on peut le comparer avec l'algèbre de Lie des

commutateurs d'une algèbre de Vinberg. On montre maintenant que le

produit de composition « plus fin » permet la construction d'autres structures

graduées de Lie notées [, ]u et [, ] qu'on ne pourrait obtenir à partir de

[, ]° seul. Les nouveaux crochets sont utilisés pour les déformations
d'homomorphismes et de sous-algèbres.

Les considérations de cette sorte ne sont nullement limitées aux algèbres
associatives : notre première tâche consiste à définir les produits de composition

pour les algèbres de Lie et les algèbres de Vinberg de telle façon qu'ensuite

toutes les discussions s'appliquent également aux trois types d'algèbres.

(Elles s'appliquent aussi aux algèbres associatives et commutatives ; cf. les

notes bibliographiques.) Quoiqu'on n'ait pas beaucoup à dire en ce qui
concerne les produits de composition dans les algèbres de Lie et les algèbres
de Vinberg (tous les commentaires antérieurs s'appliquent presque mot pour
mot) nous avons pensé appuyer sur leur utilité en donnant un exemple de

déformation d'algèbre de Lie.
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