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TuEOREME. Soit (V, ) une algébre de Vinberg et M un module sur cette
algébre, avec 2, p comme actions gauche et droite. L’application A, avec
A (x,m) = A(x,m) — p (m, x) munit alors M d’une structure de module

sur ’algébre de Lie (V, 1).

L’application de ce théoréme & I'exemple précédent donne A (x,0) =
= [L,, «]; i.e. 'une des structures habituelles sur M. Ainsi I'exemple montre
que 2, p est un raffinement de la structure de module bien connue A

Il est alors clair que si M est un module sur une algébre de Vinberg, il a
deux structures de module sur I'algébre de Lie associée. La premiére est
donnée par le théoréme ci-dessus; la seconde est obtenue & partir du théo-
réme en changeant p en zéro: cela donne la méme structure que celle donnée
directement par la condition (5).

On veut espérer avoir une troisiéme structure de module sur I'algebre
de Lie associée en prenant 4 = 0 — mais cela ne marche pas, car (6) suppose
déja A. Dans le cas associatif, cependant, cette troisiéme méthode marche
également.

PARTIE I1: Algébres associatives et applications multilinéaires

Introduction.

Une classe intéressante de propriétés des algeébres associatives devient
accessible si I’on considére les applications multilinéaires dans lui-méme
de I’espace vectoriel sous-jacent. Le produit u de I'algebre fournit un opé-
rateur 0 qui associe a une application linéaire d’ordre n une application
linéaire d’ordre n + 1. On peut exprimer a l'aide de 'opérateur ¢ des
propriétés connues de I'algebre. En général, les calculs avec 6 (comme de
prouver que 6> = 0) sont assez encombrants. Cependant, en introduisant
un « produit de composition » qui assccie a tout couple formé d’une appli-
cation linéaire d’ordre m et d’une application linéaire d’ordre n une applica-
tion linéaire d’ordre n + m — 1, et en prouvant la seule identité (9), on
fait presque tout le travail. (Il se trouve que (9) est une version inversée et
graduée de I'identité de Vinberg.) Les commutateurs du produit de compo-
sition vérifient les axiomes d’une algeébre de Lie graduée. On montre que
Popérateur 0 est le commutateur avec I'application produit p. On définit
la cohomologie associée a 0 et on expose ses relations vis-a-vis des dérivations
et des extensions. Du systéme des applications multilinéaires la cohomologie
hérite d’une structure graduée de Lie. Cette derniére et la cohomologie
sont appliquées dans la théorie des déformations des algébres associatives.
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Un exemple simple de déformation illustre comment en pratique marche le
mécanisme.

Vu la nature d’exposition de l’article, on a limité les connaissances
préliminaires requises a celles de la partie I sans compter quelques facilités
a jongler avec les applications multilinéaires.

4. Le produit de composition.

Dans cette section nous recherchons, d’un point de vue « plus élevé »,
la nature de la propriété d’associativité. Des sections de la partie III en
feront de méme des propriétés caractérisant les algébres de Lie et les algebres
de Vinberg. La ressemblance frappante de tous ces cas nous permettra
d’étre beaucoup plus bref dans les deux derniers cas. L’expérience ainsi
gagnée avec ces types d’algébres nous permettra de formuler des critéres
généraux qui s’appliqueront quand, pour d’autres types d’algébres, on aura
des connaissances analogues.

Soit V un espace vectoriel, u un produit associatif sur ¥ (nous utiliserons
de fagon interchangeable u (x, y) et xy), et M un module sur (V, u) d’action
gauche A et d’action droite p. (Nous utiliserons xm a la place de A (x, m)
et my a la place de p (m, ).) Le cas particulier M = V, A = p = p est tres
significatif pour les applications.

Supposons que f est une fonction a n variables dont le domaine est V,
qui prend ses valeurs dans M, et qui est linéaire par rapport a chaque variable
— nous appellerons f une application linéaire d’ordre n de V dans M.
Nous pouvons alors associer & f une application linéaire d’ordre n + 1
de V dans M par une méthode trés ingénieuse. On note df ’application nou-
velle; ainsi 0 est un opérateur qui augmente les degrés d’une unité. On a

(OF ) (Xgs «ees X)) = Xof (X15 eees Xp) — F(X0X15 X0, oes X)) +
F F (%05 X1X25 X35 eees X)) F oo F (=17 f (Xgy eeey Xy p X 15 X)) +
F (=1 f (X0 X1 evvs X2 Xam1 %) + (= D" f (X0 o0y Xpmt) X
ou encore
() (Xos +ves X)) = A(X0o f (X1, -o0s X)) +
o+ i—zn1 (= 1) f(x0s ooes L (X1 %) 5 oees X,) +

+ (= D" p (f (s ves Xum1) 5 X) -

Considérons quelques cas particuliers de cette formule.
n = 0. Alors fest précisément un élément m de M, et on a

(dm)(x) = A(x,m) —p(m,x) = xm — mx.
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Ainsi om : V — M est la « dérivation intérieure » de ¥V dans M déterminée
par m. A vrai dire, nous avons

(om)(xy) = (6m)(x)y + x(6m)(y).
= 1. Alors f est une application linéaire ¥ — M. Supposons.o f = 0;

c’est-a-dire

0 =(5)(xp) =xf(y) —fGy) +f(X)y
ou

fxy) = xf(y) +f(x)y.

f est, d’une fagon apparente, une dérivation de ¥V dans M.

Comme autre interprétation nous considérons maintenant le cas M =
== V. fest alors une application linéaire de ¥ dans V et, quel que soit le réel ¢,
e’/ (donné par une série de puissances) est une application linéaire inversible
de V sur V: son inverse est e~ */. On obtient un produit p,é quivalent (c.-a-d.
isomorphe) a u en posant

(7 t(x,y) = e pex,ely).

Nous recherchons ’effet dans u, d’'un changement du premier ordre:

d
E#tlt=o (X,J’) = —fu(x,y) —{—'u(fx,y) +H(X,fy) _

= —f(xy) +f)y + xf(») = () (x, ).

Cela donne de ¢ f une seconde interprétation comme 1’effet du premier
ordre dans une famille & un paramétre de structures équivalentes.

n = 2. Nous considérons maintenant une famille arbitraire (différen-
tiable) p, de structures d’algébre associative; de telle sorte que, pour tout ¢,
nous avons

we (s 1 (v, 2)) — (1 (x, ), 2) = 0.
Nous différentions a nouveau et prenons ¢ = 0 (on pose u,=y), notons

£ pour Tk | t=0. Nous trouvons

Sxsn(,2) +u(x.f(,2) = f(ux,9),2) — u(fx,»),2) = 0,

ou

fyz) + xf(y,2) —f(xy,2) —f(x, )z = 0.
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Apres un réarrangement des termes, on voit que c’est exactement 6 f = O.
Ainsi, les applications bilinéaires f de V" dans lui-méme (cas M=V") vérifiant
0f = 0 sont les « déformations infinitésimales » de u. Une autre fagon
d’exprimer cela est que u + #f vérifie la condition d’associativité jusqu’aux
termes du second ordre (i.e. modulo #?) si et seulement si 6 f = 0. La famille
(7) est un cas particulier (famille d’équivalences) des familles de structures
associatives. (Noter la différence de la signification de f dans les deux cas!/)

Encore une interprétation: ce qu’on appelle le probleme de [’extension.
Le produit semi-direct W = V X M avec comme produit i celui défini
dans (2) est une algébre dans laquelle (i) M est un idéal vérifiant M? = 0
(i.e. mn = 0 quels que soient m, ne M) et dans laquelle (i) le quotient
WM est isomorphe a (V, u), tandis que (ii1) M est un module sur W/M par
Pintermédiaire de A et p. Le probleme de P’extension consiste & trouver
toutes les multiplications i’ de W telles qu’on ait (i), (ii), (iii). Il n’est pas
nécessaire que V soit une sous-algebre de W pour une de ses structures;
néanmoins nous continuerons a représenter W comme un espace vectoriel
produit de V et de M. Supposons que ji’ est un tel produit, alors (i) implique
que i et i’ coincident sur M (ils valent tous deux zéro); (ii) implique que
p et @’ différent sur V' par une application ¢ a valeurs dans M, tandis que
(iii) implique que j et i’ coincident quand on les évalue par un élément de
V = W/M et un élément de M.

En une formule,

g (G, m),(y,m) = (10, 3),0(x,») + A0, n) + p(m, ).
On voit maintenant par un calcul direct que I’associativité de i’ est équiva-
lente a
A(x,0(,2) —ple(,y),z) +o(x, 1y, 2) — ¢(u(x,»),2) =0,

c’est-a-dire & ¢ = 0. On considére comme équivalentes deux extensions
g’ et p” quand elles sont liées par un automorphisme d’espace vectoriel
de W qui induit U'identité sur M et sur W/M. Une telle application F a la

forme
F(x,m) = (x,m + f(x)), avec f:V—->M.

I’application inverse est F~ ' (x, m) = (x, m— f (x)). Les structures équiva-
lentes 4 i1 sont ainsi

g (x,my,(y,m) = F ' a(F (x,m),F(y,n) =
=F 1 a(x,m +f(x),(y,n + () =
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= F ' (ux, 9,4 n +f) +po(m +f(x),y) =
= (u(x, 1), = fuCe, ) + A(x,n) + A(x,f() + p(m,¥) +p(fx), ).

Ainsi, dans ce cas,

p(x,¥) = —f(u(x,1) + A(x.f) +p(fX),y) = ()&, ).

De ces exemples émerge une certaine idée. Dans chacun des exemples
est un probléme dont la solution « est n’importe quelle solution de éx = 0.
Parmi les solutions certaines moins intéressantes sont de la forme o = Jp.
Cela suggére 625 = 0. A vrai dire, cela peut se vérifier — nous le ferons
plus tard. Cependant, une vérification directe serait maintenant extrémement
laborieuse, et on peut s’attendre au mé€me phénomene pour d’autres calculs.
Aussi introduisons nous certaines notations comme outil pour lesmener a bien.

Pour le moment nous considérons un espace vectoriel ¥ mais ne suppo-
sons pas qu’il ait quelque structure d’algébre. Nous prenons pour f une
application linéaire d’ordre » de V dans V et de fagon analogue pour g
une application linéaire d’ordre m de V dans V. (En fait, g peut prendre ses
valeurs dans n’importe quel espace vectoriel.) Nous définissons le produit
de composition g 0 f qui est une application linéaire d’ordre n + m — 1 par

(8) (g 5f) (xl’ °-'9xn+m—1) =
= Z«l (~ 1)(i—1)(n_1)g (Xgs oo X 15 f (Xgs oevs Xigp—1) s Xigns ooes Xntm—1)

Cette définition est motivée par la suite.

APPLICATION 1.Soit u une application bilinéaire de ¥ dans ¥; on a alors

oW,y 2) = p(ux,9),2) —pux, uly,2).

Ainsi p 0 p = 0 est la condition nécessaire et suffisante pour que u définisse
sur V une structure d’algébre associative.

APPLICATION 2. Soit f une application linéaire d’ordre n de V dans V,
et u une structure associative sur V. Alors, a 'aide de la formule donnant
0 f (avec A=p=u) on trouve

of =(=D"""nof~fou.

— f 0 p correspond & la somme des termes « du milieu »; (—1)"*! uof
aux termes « extrémes ».

Nous avons ainsi montré que I’introduction de o conduit & une notation
plus courte. Pour calculer avec elle, nous avons besoin de quelques propriétés.

L’Enseignement mathém., t, XIV, fasc. 3-4. 17
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THEOREME. Soit f, g, h des applications linéaires d’ordre n, m, p de V dans
lui-méme. On a alors [’identité suivante

©) (fog)oh—fo(goh) = (D" D™D {(foh)og — fo(hog)} .

En particulier, pour n = 1 alors fo g = fo g et les deux cotés de (9)
valent zéro. Pour n = 0, alors fo g = 0.

L’identité (9) ressemble beaucoup a I'identité de Vinberg (1), excepté
en ce qui concerne I'ordre inverse des facteurs et la puissance de (—1) qui
refléte la graduation. Nous espérerons donc aussi quelques propriétés ana-
logues.

Pour prouver (9), on a besoin de quelque patience, d’une grande feuille
de papier, d’un crayon pointu et d’une bonne lumiére. Cependant I’effort
sera récompensé¢ puisque c’est I'un des quelques théorémes dont la preuve
est un peu pénible. Nous indiquons ici la méthode, laissant les détails comme
les puissances de (—1) nécessaires aux soins du lecteur.

Dans la définition (8) de f 0 g, la fonction g « visite » tous les espaces
possibles sur f, avec des signes appropriés. Quand o 4 est ensuite appliqué
sur la droite, alors & « visite » tous les espaces possibles de /0 g. Dans cer-
tains termes /& occupera un espace possible de f; dans d’autres un espace
possible de g. Les derniers termes constituent exactement f o (gok); dans
les termes restants (les premiers) g et 4 occupent tous deux des espaces pos-
sibles de f. Un observateur plus fin trouvera dans ces termes une certaine
symétrie en g et #. — Les détails sont laissés au lecteur...

Les commutateurs,des produits de composition forment une algébre de
Lie graduée. Pour fixer la terminologie, nous appellerons n — 1 le degré
réduit d’une application linéaire d’ordre n; le degré « ordinaire » est n.

THEOREME. Si f, g sont des applications linéaires d’ordre n et d’ordre m
de [’espace vectoriel V dans lui-méme (les degrés réduits valent n — 1 resp.
m— 1), et si

[f.9]° =gof — (=D V" Dfsyg

alors [,1° est, par rapport a la graduation réduite, une structure d’algébre de
Lie graduée sur [’espace des applications multilinéaires. C’est-a-dire
() [f, g° est une application linéaire d’ordre n 4+ m — 1 (de degré réduit
n-+m—2) qui dépend linéairement de f et de g.

(ll) [f,g]o = (_1)(m—1)(n—1)+1[g,f]o'
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Si h est une application linéuire d’ordre p, alors
(i) (=1)O"DEOLf, 6] B + (=D DD ([, H)° ST +
£ (=)@ DD [[h,f]°,6]° = 0.

La preuve de (iii) (identité de Jacobi) est la méme que celle du théoreme
de la section 2, excepté qu’il faut veiller aux signes. — Notons "ordre inhabi-
tuel des facteurs dans la définition de [,]°; il refléte le fait que, d’un certain
point de vue, I'ordre des facteurs dans /0 g est Iordre « erroné ».

Des conséquences immédiates du théoréme sont par exemple les sui-
vaintes:

5f = —[wf1°, wmop=;[uul;

’identité de Jacobi donne, elle,

8 f = [, [, f1°]° = +[[wpl®f]° =0

lorsque u est associatif. L’identité de Jacobi donne aussi
(10) 5[f,91° = [0f,91° + (=" [f. 09]° .

5. Cohomologie.

Dans la section précédente nous avons vu un exemple de la situation
suivante: on a un systéme (C")% ___ d’espaces vectoriels (ou de modules si
on aime la généralité) et une application linéaire 6 qui envoie chaque C”"
dans C" ! telle que 6% = 0. Nous pouvons ainsi prendre pour C" ’espace
des applications linéaires d’ordre n de ¥ dans V' pour n = O et C" = {0}

pour n < 0. On peut représenter la situation par la suite
05C05C15 5Cn—lécn5cn+15

A chaque C" est associée une application entrante 6, dont on note B" I'image
(de telle sorte que B" = 6C"~ ') et une application sortante §, dont on note
le noyau (ensemble des zéros) par Z". Le fait que 6% = 0 dit que B" est un
sous-espace de Z". Les deux sections précédentes contiennent certaines
illustrations de ce que B" et Z" signifient pour les petites valeurs de » dans le
cas des algebres associatives.

La suite ci-dessus est appelée exacte en C" s1 B" = Z"; elle est dite exacte
si elle est exacte en C" pour tout n. Comme mesure du défaut d’exactitude
de la suite on introduit selon la coutume les quotients H" == Z"/B". On les
appelle les groupes de cohomologie; dans la situation présente les groupes
sont en réalité des espaces vectoriels. Z" et B” sont appelés les espaces de
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cocycles resp. de cobords. Dans le cas d’une algébre V, comme dans la section -
antérieure, on écrit H" (V, V): c’est « la cohomologie de V a coefficients dans

V'». Plus généralement, quand M est un module sur ¥, on a lzs groupes de

cohomologie H"(V, M) de V a coefficients dans M. Nous les décrirons

briévement.

Dans certaines situations, comme par exemple celle de la section précé-
dente on a des applications bilinéaires (les produits) C* x C™ — C? (dans
notre cas, le produit est donné par [,]° etp = n + m — 1), et § est une déri-
vation par rapport au produit (dans notre cas voir (10)). Alors quand on
applique 6 au produit de deux cocycles on obtient zéro; ainsi le produit de
deux cocycles est un cocycle. De fagon analogue, le produit d’un cocycle
et d’un cobord est un cobord. (Prendre dans (10) pour g un cocycle et pour
0 fun cobord. Alors le dernier terme disparait de sorte que [0 f, g]° est égal
au premier terme qui est un cobord.) Ainsi, les produits avec la propriété
de dérivation induisent pour les groupes de cohomologie des produits
H" x H™ — HP puisque le produit de deux cocycles est changé seulement
d’un cobord quand on change d’un cobord les facteurs. En particulier, dans
la situation de la section 4, on a des produits

H"(V,V) x H*(V,V) - H"*"™" Y (V, V),

produits qu’on note également [,]°. On a aussi une structure de Lie graduée
puisque toutes les propri€tés qu'on peut décrire par des équations se géné-
ralisent quand les opérations des équations se généralisent.

Dans le cas général de H" (V, M), nous avons déja décrit les espaces C”
et ’application § au début de la section 4. Tout ce qui nous reste a faire est
de prouver 6% = 0 ce qui jusqu’ici n’a été fait que pour M = V. A cette fin,
nous considérons a nouveau le produit semi-direct W = V x M. Soit fun
¢élément de C", i.e. une application linéaire d’ordre n de V' dans M ; on associe
a f une application f linéaire d’ordre n de W dans W par le procédé évident

« d’extension »
f—(('xl’ ml) s °'-9(xn7 mn)) = (Oaf(xla ---axn)) £

Notons que f = O si et seulement si f = 0. Le produit dans W est encore
noté ji (quoique ji n’est pas obtenu a partir de u comme f I’est & partir de f;
ji contient aussi A et p). On invite le lecteur & vérifier que ji 0 fet f o i tous
les deux ont la propriété de valoir zéro chaque fois qu’'une de leurs entrées
vient du facteur M et que les valeurs sont toujours dans le facteur M. Une
recherche soigneuse montrera, en fait, que 6f (qui est une application linéaire
d’ordre n -+ 1 de W dans W) est juste la méme chose que la fonction obtenue
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en « étendant » 6 f. Clest-a-dire 6f = Jf. Cela implique 6% f = 6% =0,
donc 62 f=0.

Les exemples discutés dans la section 3 ont les interprétations cohomolo-
giques suivantes:

V est une algébre associative, M un V-module.

ExemMPLE 1. B! (V, M) est espace des dérivations intérieures de V' dans
M. Z' (V, M) est 'espace de toutes les dérivations de V' dans M. L’espace
quotient H*' (V, M) mesure & quel point il y a d’autres dérivations que les
dérivations intérieures.

EXEMPLE 2. B> (V, V) est I’ensemble de toutes les déformations infini-
tésimales du produit u obtenues par une famille de transformations inver-
sibles de V. Ces déformations en réalité ne déforment rien; elles effectuent
simplement un changement de base. Z2 (V, V) est 'espace de toutes les défor-
mations infinitésimales. Le quotient H? (V, V) mesure & quel point il y a
de vraies déformations infinitésimales. Dans la section suivante nous verrons
que H? (V, V) détermine 4 quel point une déformation infinitésimale appar-
tient réellement a une famille de déformations. Par exemple c’est toujours
le cas pour H> (V, V) = 0.

EXeEMPLE 3. Quand dans I’exemple 1 nous prenons M = V alors B! (V,V)
est une algebre de Lie par rapport au produit [,]°. C’est I'algébre de Lie du
groupe des opérations b |- aba” ' (automorphismes intérieurs) de ’algébre,
ou a est un élément inversible quelconque. (S’il n’y a pas d’unité dans V,
on peut prendre b |- (I+a) b (I+a)~! ou a est tel que la multiplication
gauche comme la multiplication droite par I + a est inversible.) Z* (V, V)
est aussi une algebre de Lie, & savoir celle du groupe de tous les automor-
phismes. Comme le premier groupe est normal dans le dernier, le quotient
est un groupe. Son algébre de Lie est juste H' (V, V) avec le produit induit
par [,]°.

EXEMPLE 4. H? (V, M) mesure l’existence d’extensions de ¥ par M a une
cquivalente pres. L’ensemble de toutes les extensions est paramétrée par
Z* (V, M);les extensions inessentielles par B2 (V, M).

6. Déformations d’algébres associatives.

Dans la section 4, nous avons déja discuté briévement le concept de
déformation infinitésimale d’une algébre associative V (cf. le cas n = 2);
dans le cas # = 1 nous avons identifié les déformations infinitésimales dues
a une famille de transformations inversibles de V. Dans la section 5,
exemple 2, nous avons indiqué la relation avec la cohomologie. Nous allons
maintenant recommencer en utilisant les opérations & et [,1° et leurs pro-
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priétés y compris leurs relations avec la cohomologie. Au cours des calculs
nous essayerons de montrer ’efficacité de o et de [,]° a accomplir les opéra-
tions essentielles.

La condition que p est une multiplication associative de I’espace vectoriel
V s’exprime par p 0 u = 0. Supposons que u + ¢, ou ¢ est une application
linéaire de V dans V, est aussi associatif; alors

0 =@+p)o(u+) =pop+poQ +Qou+@op =

= —5@ +;1g[§0’§0]o7
ou

(11) o —t[p,0]° = 0.

C’est I’équation de déformation. Nous serons intéressés a trouver toutes les
« petites » solutions ¢ de cette équation.

Il existe diverses méthodes pour résoudre (11). La méthode des séries
formelles de puissances est intuitivement la plus simple, quoique pas tou-
jours la plus pratique dans les situations réelles. Nous posons donc

@=t§01+tz(p2+t3§03+..

et substituons dans (11). (A strictement parler, ¢ est une « variable » dans
un sens technique. Si ’on permet de considérer des séries de puissances en ¢
dont les coefficients sont des applications bilinéaires, on est obligé de fagon
analogue de considérer des séries de puissances en ¢ dont les coefficients sont
des applications multilinéaires quelconques ou des nombres réels quel-
conques. Nous n’entrerons pas dans les détails et passerons tant bien que mal
a travers tout cela aussi bien que nous le pourrons.) La suite suivante d’équa-
tions apparait quand on annule les coefficients des puissances de 7.

op; =0
ép, — 3 [e, 041° =0
opy — [(P1»(P2]O =0

5(Pn+1 —% Z [(pia ¢n+1—i]o =0

i=1

Ainsi, il est nécessaire que ¢, soit un cocycle. Les résultats de la section 5
impliquent que, alors, 4 [¢4, ¢;]° est aussi un cocycle, donc représente une
classe de cohomologie dans H?> (V, V). Si cette classe (appelée I'obstruction
premiére) vaut zéro, alors % [¢4, ¢4]° est un cobord, et on peut trouver ¢,.
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Naturellement, ¢, est unique & quelque chose dont le 6 vaut zéro 1.e. & un
cocycle prés. Si’on peut trouver ¢,, on peut continuer avec @,. Nousallons
montrer que 4 chaque étape nous trouvons un cocycle pour I’expression
a laquelle le ¢ suivant doit étre égal. Si cette expression est un cobord ou si
on peut en faire un cobord en modifiant d’un cocycle le ¢ précédent, alors
nous pouvons considérer le pas suivant.

Ainsi supposons que l’on a trouvé ¢4, @, ..., ¢,; 1.6. qu’en posant

0 =1to; + @+ o F e F T+
(les ¢, et les coefficients suivants sont arbitraires)

on a

[‘u—f‘@,/l‘l‘@:]o = tn+1Fn+1 + ...
avee

Fn+1 = - 25@71+1 + Z [@ia qon-i—l—i]o‘

i=1

A cause de l'identité de Jacobi pour les algebres de Lie graduées nous
obtenons (3 termes sont égaux !)

0 =[p+o,[u+o,u+el°]° =[u+to+.. " F o +..]° =
= " [, Fugg]® + oo

Comme le coefficient de "*! doit étre zéro, on obtient

n
0 = [, Fpr1]® = — 6F, 0y = — 36 21 [%a §0n+1—i]o
3=

qui est ce que nous voulons montrer: 'expression a laquelle d¢, , ; doit étre
égale est toujours un cocycle. C’est seulement si sa classe de cohomologie
(« Pobstruction d’ordre n ») s’évanouit qu’on peut trouver ¢,. ;. — Nous
voyons que H? (V, V') = 0 entraine que chaque cocycle ¢, peut « s’étendre »
a une famille & un paramétre de déformations.

Par souci de généralité, nous considérons briévement une série pour ¢
qui commence a un terme d’ordre plus grand:

Q = thDk = tk+1(pk+1 + ... (k>1).

Alors, en substituant dans (11), on montre comme auparavant que non seule-
ment @, mais aussl @y, 1, ..., Px— sont des cocycles.

L’« apparence » d’une famille de déformations peut changer quand on
la compose avec une famille F, = I + #f; + t*f, - ... de transformations
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inversibles de V; f1, 15, ... sont ici des applications linéaires ¥ — V et on peut
calculer F, terme par terme, par exemple les premiers termes sont

Fil =1-—1tfi + tz('—fz'*‘f%) + (= fs+fifs +f2f1—f§) + s
La déformation modifiée est donnée par
w(x,y) = F ', (Fx,Fy) = F{' u(Fx,Fy) + F{ o (Fx, Fy).

Supposons que la série de puissances de ¢ commence comme ci-dessus
par t* (k= 1) et décidons de la composer avec un F, qui commence 3 la méme
puissance: F, = I + t*f,-- ... On trouve alors

pe(x,9) = p(x,y) + (= fin(x,¥) + u(fix, y) + p(x, £iy)) +
+ * o + ...

ol les points indiquent les termes d’ordre plus grand que k. Ainsi, en posant
¢ = — p ona
¢ = 1(=0fitor) + ..

autrement dit, étant donné une famille de déformations de y, on peut par
le choix de F, changer d’un cobord arbitraire le terme principal de 'expan-
sion en série de puissances. En ce sens, seule la classe de cohomologie du
terme principal « compte ». En particulier, si le terme principal est un
cobord, on peut le changer en zéro par un choix convenable de F,. Comme
corollaire, si H* (V, V) = 0, chaque terme principal, étant un cocycle, est
en fait un cobord et peut €tre changé en zéro. Nous pouvons montrer que,
en fait, on peut alors trouver une famille F, telle que le ¢’ final est zéro
c’est-a-dire qu’on a le

THEOREME. Si H* (V, V) = 0, alors toute famille u, de déformations
d’une structure associative u est triviale si c’est une famille a un paramétre
comme série formelle de puissances. i.e. existe une famille F, de transformations
inversibles de [’espace vectoriel sous-jacent développables en séries formelles
de puissances a un parameétre telle que

e (x,y) = Fi P p(Fx, Fry) .
(Dans ce cas, on dit que s est rigide)

La seconde méthode pour résoudre (11) est & vrai dire la méthode clas-
sique utilisée dans la résolution des équations linéaires — on exprime cer-
taines des inconnues au moyen d’autres, les paramétres. Dans ce cas,
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cependant, les équations ne sont pas linéaires et il peut y avoir en pratique
des difficultés a trouver explicitement les solutions.

ILa méthode est fondée sur deux idées: (i) partager (11) en trois ensembles
d’équations et les résoudre consécutivement, (i) choisir les paramétres les
plus favorables. Les deux buts sont atteints en observant qu’on peut décom-
poser ’espace des applications linéaires d’ordre n de V" dans V" en une somme
directe de trois sous-espaces. Le premier est B", I'espace des cobords, le
second nous I’appellerons (par abus de notation) H"; c’est tout sous-espace
de Z" complémentaire de B", il est isomorphe & H* (V,V). Le troisieme U”
est complémentaire de Z", de telle sorte que I’espace en entier est la somme
directe de Z" et de U". La décomposition est ainsi B" + H" -+ U", ou 2" +
+ U™, comme le dictera la nécessité. Les applications de projection corres-
pondantes sont notées ng, my et mwy.

L’équation (11) se partage maintenant comme il suit:

(117) a) 6¢ —ingle,0]° =0

b) mu @, ]° =0

c) ny[e,¢]° =0
En se rappelant I’origine de (11), nous voyons que (11'.c) est équivalent a
(11".¢") nyle+o,p+e]° = 0.

Nous I'utiliserons sous cette forme.
Dans (11'.2) posons ¢ = z + u, ou ze Z* et ue U?, et considérons z
comme un parameétre. (11°.a) devient alors, puisque 6z = 0

(11".a") ou —inglz+u,z+ul]®> =0.

Le codté gauche note, pour chaque z, une application qui envoie u € U? dans
un cobord de B>. Pour z = 0, cette application est justement u |— du qui
est un isomorphisme entre U? et B>. Le théoréme des fonctions implicites
nous dit alors que pour un petit z on peut trouver un voisinage de u = 0
qui est appliqué de maniére biunivoque sur un ensemble ouvert de B3 et
que lorigine de B* est dans I'image. Désignons par & (z) I'image inverse
de 0; ainsi u = @ (z) est une solution de (11’.a"). Le théoréme des fonctions
implicites nous dit que @ paramétrise toutes les solutions petites ¢ = z +
+ @ (z) et que @ est analytique.

Nous substituons maintenant ¢ = z ++ @ (z) dans (11°.b). Malheureu-
sement on n’a aucune garantie que I’équation qui en résulte

(11°.6") Q(z) = gornglz+P(2),z+P(2)]° =0
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a de nombreuses solutions. Cette équation correspond aux obstructions
que nous avons trouvées dans la méthode des séries de puissances. C’est
pourquoi, on appelle Q [’application obstruction.

En ce qui concerne la troisieme équation (11°.c”), les choses vont mieux:
pour les petits ¢ c’est une conséquence des deux premiéres équations
(I11'a, b), qu’il n’y a pas de conditions supplémentaires. Cela correspond
au fait que dans la méthode des séries de puissances, F,, ; est automatique-
ment un cocycle. Pour prouver cela, nous avons seulement a montrer ce qui
suit: si ¢ est tel que w = [u+¢, u--¢@]° appartient & U> et si ¢ est petit,
alors w = 0. Grace a I'identité de Jacobi et avec les hypothéses faites nous
avons

0 = [u+q0,[,u-l—g0,u+(p]°]° = [u+oe,w]°.

Or, on peut prendre pour w n’importe quel élément de U> pour lequel
[t+¢@, w]° = 0 et nous montrons que c’est zéro quand ¢ est petit. Or
w |— [u, w]° = — Sw est une application de U? dans I’espace des applica-
tions linéaires d’ordre 4 qui est une injection. Un changement: remplacer
[, .]° par [u+e, .]° ne change pas la propriété (biunivoque) de I'injection
quand ¢ est petit. (Le rang d’une application linéaire ne diminue pas par
un petit changement.) Par suite, il y a dans U> un seul w pour lequel
[u+@, w]° = 0 quand ¢ est petit; la seule valeur est évidemment w = O.

Ainsi, toutes les petites solutions de (11) sont de la forme ¢ = z 4+ @ (2),
ou @ est analytique dans un voisinage du 0 de Z?* et ol de plus z est limité
par la condition Q(z) = 0; Q est aussi analytique & valeurs dans H°,
(Notons que H> (V, V) = 0 entraine que les petites solutions ¢ de (11)
forment une variété locale sans singularités; son espace tangent est Z2.)

Pour considérer les équivalences parmi les déformations, nous observons
que dans le cas ou o : ¥ — V est inversible il lui correspond une transforma-
tion sur une multiplication u’ donnée par ' (x, y) = o~ ' u (0x, ap).

De fagon analogue, a toute application, linéaire d’ordre n, f correspond
une nouvelle application appelée o (o) f :

(0 () f) ey or ) = a7 f(0xy, .oy 00X,) .

On a u' = o () . I est facile de voir a partir de la définition de 0 que

g (o) (fog) = o (0)foo(n)g.

Ainsi, siona pou =0, on a aussi ¢ (x) 0 o (2) p = 0. (Cela exprime
le fait évident que des algebres isomorphes & des algebres associatives sont
elles-mémes associatives.) Si o est prés de ’application identité 7, « est de la
forme e, ou B est une application linéaire.




— 251 —

Lemme. Si B : V — Vest linéaire et si fest une application linéaire d’ordre
n de V dans V, alors

g f =",
ot 65/ = [B, /T

Pour montrer cela, nous remplagons 8 par 7§ et nous différentions par
rapport & ¢. Vu la définition de o on a

% o (@ f = —Boo(eNf +a(eNfop =[B.a(eN)f]° = d,0(")f.

Or = et 6, commutent puisque f est indépendant de ¢ et nous trouvons
¢

(%)N (e f =358,0(")f.

IN
Si I’on pose ¢ = 0 c’est le coefficient de o dans le développement en série de

Taylor de o (e'f) f. Pour ¢ == 0, le coté droit coincide avec 52’ f. Ainsi nous
trouvons

t < tN d N t < tN N g
o @f =Y {(m) 6@ hio = 3 1 03 = ¢S

N=0 NI

Il suffit de faire ¢ = 1 pour prouver le lemme.
Comme pour la notation J, on peut poser 6,f = [g,f]°. On a alors
6,/ = [, f1° = — 6f de sorte que 6 = — §,. Notons aussi que

5[3/" = [ﬁ,’u]o = - I:‘u)ﬁ]o = 5ﬁ .

L’action d’un opérateur o () sur u donne quelque chose qui dépend
du choix de B. Pour fe Z' (V, V) on a 6 = d,u = 0 de telle sorte que
o (ef) = €°f u = p; i.e. une change pas. Pour fe Z' (V, V), les e# appar-
tiennent au groupe d’automorphismes de p. On peut ainsi voir que les e’
pour f € U' sont & vrai dire les seuls intéressants si ’on veut que u « bouge ».
Comme alors dyu n’est jamais zéro (excepté pour S = 0), les éléments
o (e’) u, pe U', sont tous distincts 'un de I’autre pour B petit et forment
en p une variété locale dont I’espace tangent est B* == §U'. Quand u'
est distinct de p mais proche de u, I’ensemble des o (e) u' pour fe U?
proche de O forme aussi une variété locale dont I’espace tangent en u'
est proche de B2 Ainsi on voit intuitivement que pour u’ prés de u et f3
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dans un voisinage de 0 contenu dans U? toutes les orbites o (e”) u’ se coupe-
ront en u suivant un sous-espace transversal & B?. (Les considérations pré-
cédentes sont purement intuitives; le théoréme des fonctions implicites
fournit la preuve actuelle.) Ainsi si nous prenons le plan P passant par u
dans la direction de H? 4 U?, alors P contient en particulier au moins
un point de ’ensemble des o (e’) u' pour tous les u’ proches de pu. Les p/
associatifs dans P ont, cependant, justement la forme pu + z + @ (z) ou z
est réduit & H? et vérifie Q (z) = 0. Les pu' considérés représentent toutes
les classes d’équivalence des multiplications associatives proches de u et,
comme nous le voyons, sont paramétrés par les zéros d’une application
analytique Q de H? 2 valeurs dans H°>.

De fagon plus explicite: chaque structure associative y’ proche de pu
est de la forme u’' = o (¢) (p+2z+@ (z)) ol z appartient a un voisinage de 0
contenu dans H? et vérifie Q (z) = 0 tandis que 8 appartient & un voisinage
de 0 contenu dans U™,

Dans le cas particulier ou H* (V, V') = 0 cela signifie qu’il y a seulement
une classe d’équivalence: celle de u. Cest-a-dire que toutes les multiplica-
tions associatives proches de u sont équivalentes a p. C’est une autre forme
du théoréme de rigidité.

On doit remarquer que bien que o (e®) 4 = u pour fe Z!, en général
o (¢) ' # ' pour y proche de u et pour le méme f. Pour trouver les équi-
valences entre les u’ proches de u on n’a pas pris les transformations en consi-
dération. Comme résultat, on peut en général trouver leurs équivalents
parmi les p’ de P.

7. Un exemple simple.

Nous calculerons les petites déformations de I’algébre associative a deux
dimensions V dont les éléments sont de la forme a -+ be, ou a et b sont réels
et €2 = 0. Une base de V sur les nombres réels est constituée par les élé-
ments 1 et &. Soit f: V' — V une application linéaire, §f est donnée par

(0f)(1,1) =1.f(1) _—f(1~1) +f(D).1 =f(Q1),
(6f)(1,e) = (6f)(e, 1) = 1_-f(8) —f(le) +f(1).e = ef (1),
(0f)(e,8) = e.f(e) —f(e.e) +f(e).e = 2¢ef(¢)

Par suite, f est une dérivation si f(1) = 0 et si (&) est un multiple de e.
L’espace Z' = H' des dérivations est & une dimension et une base en est
donnée par I’élément { avec

{(a+be) = be.




— 253 —

Soit maintenant une application bilinéaire ¢. On peut alors calculer ¢
de fagon analogue. Cependant nous savons déja que 6 (6f) = 0 quand f est
linéaire. Aussi pouvons nous restreindre ¢ & un sous-espace W complé-
mentaire & B? et dont les éléments ont la propriété que ¢ (1,1) = 0 et
¢ (g, ¢) € R. Pour ces ¢ la, on trouve -

Gp)(1,1,1) = (59) (L&, 1) = (69) (&, &, 8) = 0,
Gp)(1,1,8) = ¢(1,9), (00) (&, 1,1) = — g (e, 1),
Gp) (L, e,8) = — e9(1,6),(30) (e:6, 1) = — (2, 1),
(G0) (e 1,e) = e(p(1,8) — (e, 1).

Les ¢ pour lesquels ¢ = 0 donnent H?. Ils sont caractérisés par ¢ (1, &) =
— ¢ (s, 1) = 0 — et naturellement ¢ (1, 1) = 0 et ¢ (¢, &) € R. Donc H?
est 3 une dimension et est engendré par I’application z avec z (g, &) = 1,
z étant nul pour toutes les autres paires d’éléments de la base. Pour ce z,

onazoz = 0.Si ¢ = z -+ uest une solution de (11), alors on a dans ce cas

ou +(zou+uoz4+uou) =0,

qui est vérifié pour u = 0. Ainsi si ¢ est un paramétre réel, les multiplications
déformées sont u' = p + 1z; i.e.

p (a+be,c+de) = ac + (ad+bc)e +t.bd,

ou encore

w1 =1, pe)=pu(l) =¢, pee =t.

On distingue ¢ > 0 et ¢ < 0 en posant £ = + k2. Avec le nouvel élément
de base ¢’ = ¢/k on a

‘ul(gl’ 8,) — i 1
et
' (a+be',c+de"y = (ac+bd) + (ad +be) g .

Ainsi toutes les structures correspondant & # > 0 sont isomorphes et il en
est ainsi pour celles qui correspondent & ¢ < 0. Les derniéres sont justement
les nombres complexes.

Comme exercice, on peut vouloir calculer le produit de z et de . On
observe que { (¢) et z (g, &) sont les seuls éléments non nuls et que les valeurs
.de { sont des multiples de ¢; celles de z des multiples de 1. Dot { 6z = 0.

|
4
S
l
|
?




254 —

On trouve -

18, 2]° (e, &) = (200) (5, 8) = z({(2),¢) + z(e,((e)) = 2 = 2z (e, 9),
tandis que les autres valeurs de [(, z]° et de z sont zéro. Autrement dit,
[¢,z]° = 2z.

L’espace ne nous permet pas d’expliquer comment cette formule est liée
au fait que u est une structure de « saut »: il change une fois (dans chaque
direction de ¢); ensuite la structure reste constante. C’est un cas particulier
de la situation décrite dans la derniére remarque de la section 6.

PARTIE II1: Algébres de Lie et algébres de Vinberg
— plus sur les déformations —
systéemes de composition

Introduction.

Le produit de composition pour des algébres associatives a été introduit
dans la partie II, de méme que quelques applications — principalement
celles concernant les déformations de telles algébres. Cependant les possi-
bilités du produit de composition n’ont pas été 1a épuisées: il préte lui-méme
a d’autres questions de déformation qui sont mentionnées dans la partie
présente: déformations d’homomorphismes d’algébres et déformations de
sous-algébres. Le crochet [, ]° de la partie II était a vrai dire un commutateur
de produits de composition: on peut le comparer avec I’algebre de Lie des
commutateurs d’une algebre de Vinberg. On montre maintenant que le
produit de composition « plus fin » permet la construction d’autres struc-
tures graduées de Lie notées [,]" et [,] qu’on ne pourrait obtenir a partir de
[,]° seul. Les nouveaux crochets sont utilisés pour les déformations d’homo-
morphismes et de sous-algébres.

Les considérations de cette sorte ne sont nullement limitées aux algébres
associatives: notre premiere tache consiste & définir les produits de compo-
sition pour les algébres de Lie et les algébres de Vinberg de telle fagon qu’en-
suite toutes les discussions s’appliquent également aux trois types d’algébres.
(Elles s’appliquent aussi aux algébres associatives et commutatives; cf. les
notes bibliographiques.) Quoiqu’on n’ait pas beaucoup a dire en ce qui
concerne les produits de composition dans les algébres de Lie et les algébres
de Vinberg (tous les commentaires antérieurs s’appliquent presque mot pour
mot) nous avons pensé¢ appuyer sur leur utilit¢ en donnant un exemple de
déformation d’algebre de Lie.
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