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La matiére de cet article a été puisée 2 différentes sources. L’inclusion
dans le texte de notes bibliographiques n’a pas semblé pratique: a la place,
chaque partie se termine par quelques-unes de ces notes dans une section
séparée. En allant aux sources indiquées, le lecteur trouvera des discussions
plus complétes des sujets traités et aussi d’autres sujets qui bien que liés
n’ont pu étre mentionnés par manque de place.

Je considére comme un honneur de dédier cet article a J.A. Schouten,
4 I'occasion de son 85€ anniversaire, et en reconnaissance de sa contribution
3 la théorie des invariants tensoriels. Il y a quelque dix ans son approche a
contribué de fagon substantielle a éclaircir le terrain de la théorie de la
déformation.

PARTIE I : Quelques types d’algébres

1. Algébres associatives et algébres de Lie.

La propriété caractéristique d’une algébre est que l’ensemble sous-
jacent de ses éléments V a la structure d’un espace vectoriel (nous nous
bornerons de fagon constante au cas de la dimension finie et au cas réel).
La structure additive de V fournit ’addition de I’algébre. La multiplication
s’exprime en donnant une application p : ¥V x ¥V — V. En accord avec la
structure d’espace vectoriel de V' nous supposerons toujours que u est biliné-
aire (c.-a-d. que u (x, y) est linéaire séparément en x et en y). Les propriétés
de V et de u assurent alors que ’addition est commutative et associative,
et que ’addition et la multiplication vérifient les lois distributives.

L’application produit p est entiérement déterminée par un ensemble
de constantes de structure (cﬁ-‘j): soit (e, ..., ¢,) une base de V, alors pour
chaque i et j entre 1 et n, p1 (e;, ;) est un élément de V et ses composantes

1
Cij» - Cp; sOnt les constantes de structure:

(e, ej) = 2 Ci'(j €y -
k

Tout ce qui est dit a I’aide de u peut étre reformulé a ’aide des constantes
de structure.

Jusqu’ici rien n’a été dit sur I’associativité de la multiplication, ou sur
quelque autre propriété du produit.

En fait, la définition générale d’une algébre n’englobe aucune condition
de ce type. Naturellement, cependant, les algébres sont appelées commuta-
tives si xy = yx, associatives si x (yz) = (xp) z. D’autres possibilités sont
mentionnées plus tard. Alors que les algébres commutatives et associatives
ont été€ les plus importantes et que de nombreux développements modernes
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trés fameux dépendent lourdement d’elles, elles ne sont pas particuliérement
intéressantes de notre point de vue assez particulier. Quoique nous pourrions
les inclure, nous ne leur attacherons, par souci de briéveté, aucune attention
particuliére.

Les algebres associatives sont assez bien connues. L’exemple le plus
classique est peut-€tre celui des matrices réelles n X n, avec le produit usuel
lignes par colonnes. Parmi les sous-algébres nous avons par exemple les
matrices avec seulement des zéros en-dessous de la diagonale principale;
nous les appellerons triangulaires supérieures. Un autre exemple fameux
est formé par les quaternions. Les nombres complexes forment un exemple
qui se trouve €tre commutatif. Les dimensions des exemples sont respecti-
vement n°, L n(n+1), 4 et 2. Tandis que dans les algébres les produits
sont habituellement désignés par un point: x .y ou par «rien »: xy, nous
utiliserons explicitement u (x, y) quand cela sera commode pour quelque
dessein. Avec cette notation, la condition d’associativité devient

i(p(x,y),2z) —ulx,u(y,z) =0.

Les algébres de Lie ont trouvé leur origine ou du moins leur utilité
initiale dans des domaines pres par tradition des applications physiques.
Leur respectabilité mathématique s’est accrue grandement quand elles
eurent perdu leur nom d’origine de « groupe infinitésimal ». Tout groupe
de Lie (groupe continu) a son algebre de Lie. Le dernier concept est beau-
coup moins compliqué que le premier; cependant de nombreuses propriétés
du groupe trouvent de fortes images dans l’algebre. Parmi les exemples
les plus simples d’algebre de Lie citons, par exemple, les matrices n X n
avec comme produit u (x, ) = xy — yx, les matrices antisymétriques avec
le méme produit, et 'espace euclidien a 3 dimensions avec le produit « croisé».
En fait, ces algébres de Lie peuvent €tre associées aux groupes suivants:
le groupe de toutes les matrices inversibles # X n, le groupe des matrices
orthogonales n X n et le groupe des rotations de I’espace a 3 dimensions.
Leurs dimensions respectives sont n*, L n (n—1) et 3.

I.a définition d’une algébre de Lie est simple: le produit est antisymé-
trique et vérifie I'identité appelée identité de Jacobi. Au moyen de u cela
signifie que

px,y) = —px), pwul,y),z) +plpe®y,2),x) +
+pu(u(z,%),y) =0.

De fagon traditionnelle, le produit d’une algebre de Lie est noté par des
crochets [x, y]. Les puristes insistent pour que ce soit xy puisqu’on utilise
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aussi xy quand le produit ne vérifie aucune condition particuliere. Pour
satisfaire au moins partiellement les puristes nous utiliserons les crochets
seulement pour les commutateurs (c.-a-d. [x, yl=xy—yx) et pour certaines
algébres de Lie graduées qui apparaitront dans les parties II et III. Dans les
autres cas, nous éviterons la controverse en utilisant p.

2. Les algébres de Vinberg.

L’application produit u d’une algébre de Vinberg vérifie la condition
suivante

(D) u(u(x,9),2) = pCpu(y,2) —plp@.x),z) +uy,nkx,2) =0,

ou, avec des notations moins conventionnelles ot xy = p (x, y)

(xy)z — x(yz) = (yx) z — y(x2),

Avec encore d’autres notations: si L, désigne la multiplication a gauche par
x, L.y = xy = pu(x, ) de telle sorte que L, estune application linéaire de
V' dans V, on peut écrire la condition sous la forme

L.L,—LJL, = Ly_,..
Si nous introduisons des commutateurs notés par des crochets, nous obte-

nons

(1) [Le L] = Lgxys -

La derniére forme de la condition suggére déja que les algébres de Vinberg
sont liées de prés aux algebres de Lie. De fagon plus précise, nous avons le

THEOREME. Si V est un espace vectoriel et i une application bilinéaire de V
dans V qui vérifie la condition (1) et si, de plus, pu(x,y) = n(x,y) — u(y, x),
alors u définit une structure d’algébre de Lie.

Le théoréme généralise le fait bien connu que les commutateurs d’une
algébre associative donnent une algébre de Lie. La vérification pour u de
’identité de Jacobi (c’est tout ce qui est a prouver) suit directement de
Iécriture et du regroupement des 12 termes que 1’on trouve.

Dans la pratique, les algebres de Vinberg apparaissent dans I’autre sens.
Tout d’abord on a trouvé une structure d’algeébre de Lie; ensuite on essaye
de trouver une structure plus fine pour laquelle les commutateurs donnent
la structure premiére d’algeébre de Lie. On peut préférer trouver des struc-
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tures d’algébre associative mais c’est a vrai dire un probléme plus difficile
— lexistence étant connue dans moins de cas — que celui que nous consi-
dérons ici. Le seul point qu’on peut ici noter est qu'une structure d’algébre
de Vinberg est plus fine qu’une structure d’algébre de Lie et que les algébres
associatives en sont un cas particulier.

Quoique les algébres de Vinberg viennent de situations géométriques ol
I’'on considére certains ensembles ouverts convexes homogénes des espaces
affines, nous ne nous intéresserons pas nous-mémes a ces applications.
A la place, nous donnons quelques exemples construits algébriquement
d’algebres de Vinberg.

Tout d’abord un exemple a 2 dimensions. Soit P, Q les vecteurs de base;
le produit est donné alors par

p(P,P) = 2P p(@Q,P) =0

La vérification de (1) est une simple question d’énumération de cas. Le
produit de Lie pour les commutateurs est donné par u (P, Q) = Q; c’est
le seul cas d’une algébre de Lie non abélienne a deux dimensions. (Pour
une structure d’algébre de Lie sur un espace vectoriel a 2 dimensions ou
bien on a une isomorphie avec la précédente ou bien tous les produits valent
7€ro.) |

Pour le second exemple, considérons 'application t qui assigne a chaque
matrice n X n (n reste ﬁXe) la matrice triangulaire supérieure obtenue en
remplagant les éléments sous la diagonale principale par zéro, en divisant
les éléments de la diagonale principale par 2 et en laissant inchangés les
éléments situés au-dessus de la diagonale principale. On désigne la trans-
posée d’une matrice a par a’. L’exemple consiste en matrices triangulaires
supérieures notées x, y, etc. La dimension de ’espace est 1 n (n-+1). Le
produit de ’espace est donné par

p(x,y) =xy +t(xy" +yx).

Comme premiére observation, nous voyons que 'on a u (x, y) = xy —
— yx, car ’expression du terme en 7 est symétrique en x et en y. Par suite
la structure en question est un raffinement de la structure habituelle d’algébre
de Lie sur les matrices triangulaires supérieures.

La vérification de (1) est juste un peu intrigante quoiqu’il n’y ait pas
de difficultés essentielles. Notons que pour prouver (1), nous devons mon-
trer que u (u (x, ), z) — p(x, 1 (y, 2)) est symétrique en x et y.
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Premiérement le premier terme.
p(u(x,y),2) = pop)z +r(px )z + 2@k, »)) =
= (xp)z + 1y +yx) z + 1 (Gep) 2 + Ty +yx) 2" +
2 (o) + 2 @Gy +px)) = xpz o+ T(xpz 2y + sym.

oll « sym » note une expression symétrique en x et y. Le second terme est
écrit ainsi qu’il suit.

p(x,n(y,2) =xu(, 2 +t(x(w@, 2) +py,2x) =

= x(y2) + xt1(v2' +2y) + T1(x (2 + x(c (v’ +2))) +

+ (yz)x' + 1 (yz' +2y) x')

Aux termes en 7 intérieurs aux termes en t nous appliquons les identités,
valables quelles que soient les matrices symétriques s,

(s) =s—1(s) et () =5 —1(s).
Ces termes sont ainsi changés en
x(yz' +zy") — xt (' +zy") + (' +zy) X — (t (2 +zy)) x
C’est tout ce qui doit étre placé a I'intérieur du premier opérateur 7. Pour
le second et le quatriéme termes cela donne, vu I’égalité, valable pour toute
matrice triangulaire supérieure w, w = 17 (w + w')
T(=x1(yz' +2)) —(t (2" + z)"))x") = — xt(yz' + z)").

Ce dernier terme supprime un des termes précédents. Ainsi, en les met-
tant tous ensemble, on trouve

n(x,n(y, 2)) = xyz + t(x2'y +yzx' +x (yz' + zy") + (yz' + zy) x')
= xyz + t(xyz' +zy'x") + T (x2'y + yz'x* + yzx' +x2)")
= p(p(x,¥),2) + sym.,

ce qu'on devait montrer.

3. Modules.

Les abstractions mathématiques, comme celles de groupe, d’anneau ou
d’algebre, sont venues historiquement comme opérations sur certains
ensembles. Les ensembles, disons de cailloux, de moutons ou de femmes,
ctaient familiers longtemps avant les entiers qui les comptent. Les permu-
tations sur les ensembles étaient connues avant le concept de groupe.
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Les modules sont des ensembles convenablement structurés sur lesquels
agissent des algébres. Soit V une algébre ayant pour produit u. Alors un
module sur (¥, u) est un espace vectoriel M sur lequel les éléments de V
agissent de fagon a respecter la structure d’espace vectoriel de M. La struc-
ture d’espace vectoriel de V' doit aussi €tre respectée; et, de plus, la multipli-
cation pu de V doit étre convenablement retrouvée. La discussion des
exemples qui suivent rend tout cela plus précis.

Soit (V, i) une algébre associative. Un espace vectoriel M est un module
a gauche sur (V, u) si on s’est donné une application bilinéaire 1 :

VX M — M (A (x, m) est aussi noté xm) vérifiant
x (ym) = (xy) m ; Cest-a-dire 1 (x, A (v, m)) = A (u (x, y), m) .

Notons que la bilinéarité implique les lois distributives habituelles. — Un
module a droite est de fagon analogue défini par une application bilinéaire
p:M XV — M (on note mx en abrégé pour p (m, x)) telle que

(mx)y = m@y), ou  plp(m,x),y) = p(m,ulx, ).

Une structure de bimodule est donnée par les applications 2 et p comme
ci-dessus, avec la condition additionnelle que les actions de gauche et de
droite commutent; c’est-a-dire que

(xm)y = x(my), ou p(i(xa m)ay) = /l(x,p(m,y))

En fait, les modules & gauche (et a droite) sont des cas particuliers des bimo-
dules si on le souhaite: il suffit de poser p = 0 (resp. 4 = 0). Nous nous
limiterons donc aux bimodules quand nous le voudrons.

Le module (a2 gauche) sur I’algébre associative des matrices n X n
historiquement le plus naturel est peut-étre I’espace vectoriel R" des n-uples
de nombres réels. 4 (x, m) est simplement le produit usuel ligne par colonne
de la matrice x et du vecteur colonne m. Une structure de module a droite
est donnée par p (m, x) = mx, ou a nouveau on emploie le produit ligne
par colonne et ou m est un vecteur ligne. L’espace entier des matrices n X n
est lui-méme un bimodule sur lui-méme si on utilise les multiplications a
droite et a gauche habituelles.

Le dernier commentaire est général: une algébre associative est toujours
un bimodule sur elle-méme. De plus, les idéaux a gauche sont des modules
a gauche, les idéaux a droite des modules a droite et les idéaux bilatéres sont
des bimodules.

Retournons a la définition d’un bimodule sur une algébre associative
et essayons de la simplifier en considérant d’un seul coup toutes les opéra-
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tions: p, A et p et en les combinant en une seule application. A cette fin,
considérons le produit direct W = ¥ x M dont les éléments sont les paires
(x, m) d’éléments de V et de M. W est encore un espace vectoriel. Consi-
dérons I'application i : W X W — W donnée par

(2) i, my,(y,m) = (ux, ) ,A(x,n) + p(m,y).

Elle est clairement bilinéaire. ¥ X M muni du produit ji est appelé
produit semi-direct de V et de M. Pour examiner fi, écrivons x pour (x, 0)
et m pour (0, m) (cela peut étre fait sans risque de confusion si Vet M sont
des espaces distincts). Nous avons alors

A(x,y) = p(x,) p(m,y) = p(m,y)
g(x,m) = A(x, m) piu(m,n) =0
Les conditions imposées & p (associativité), A (structure de module a
gauche) et & p (structure de module a droite) et la compatibilité de A et de p

peuvent maintenant étre toutes exprimées au moyen de ji. La tiche est
classique et le résultat est un théoréme.

THEOREME. Soit V et M des espaces vectoriels, it : V X V =V, A :V X
X M- M et p:M XV —> M des applications bilinéaires. Soit W =
= V X M le produit semi-direct muni de [i défini par (2). Alors i définit
une structure d’algébre associative sur W si et seulement si sont vérifiées les
deux assertions suivantes : (1) p est une structure d’algébre associative sur V;
(2) A et p définissent sur M une structure de bimodule.

Une situation semblable se trouve dans le cas des algebres de Lie,
excepté que 1a il suffit de considérer uniquement les modules a gauche (ou &
droite); d’autres cas peuvent étre réduits a celui-la. De fagon a ce que M
soit un module sur I’algébre de Lie (¥, p) on doit se donner une application
bilinéaire A: V' X M — M (on peut écrire xm pour 1 (x, m)) qui vérifie

Ax, Ay, m)) — Ay, A(x,m)) = A(u(x,y), m),
ou
x(ym) —y(xm) = u(x,y)m.

Un module sur une algébre de Lie est fréquemment appelé une représen-
tation. De fagon plus précise, si M est un module sur ¥ (de produit w) a
aide de Iapplication 4, alors A est appelé une représentation de (V, p)
sur M.

On trouve facilement des exemples de modules sur des algébres de Lie:

chaque module sur une algébre associative donne naissance & un tel module.
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Toute algébre de Lie de matrices (par exemple celle des matrices symétriques
gauche) donne a R" une structure de module si ’on prend le produit habi-
tuel ligne par colonne. Toute algébre de Lie est un module sur elle-méme.
Les idéaux d’une algébre de Lie sont aussi des modules sur ’algébre de Lie.

Comme dans le cas associatif, nous construisons une application biliné-
aire fi du produit semi-direct W = ¥V X M en utilisant u et A ainsi qu’il suit.

ﬁ(xay) = u(x,y) ﬁ(m,x) = _/l(x’ m)
plx,m) = A(x, m) jg(m,n) =0

ou en une seule formule

(3) ﬁ((x: m),(y,n)) = (lu(xa y) ’ },(X, n) - ,l(y, m)) :

On a, comme auparavant, un théoréme.

THEOREME. Soit V et M des espaces vectoriels, u : V X V — V une appli-
cation bilinéaire alternée et A : V X M — M une application bilinéaire. Soit
W =V X M le produit semi-direct oti i est déefini par (3). Alors ji définit
une structure d’algébre de Lie sur W si et seulement si est vérifiée la condition
suivante : u est une structure d’algébre de Lie sur V et A définit sur M une
structure de module sur V.

La raison principale pour formuler les deux théorémes précédents bien
connus est de fournir un motif pour la définition d’un module sur une
algébre de Vinberg. Soit V" une algébre de Vinberg de produit u, et soit des
applications bilinéaires A:V X M > M et p:M X V— V. Posons
W =V x M et définissons g comme I’application donnant a V"' X M la
structure d’un produit semi-direct:

(4) B, m), (y,m) = (u(x,9),A0x,n) + p(m, y)).

Alors nous appellerons M, muni de I’action de V' sur lui défini a ’aide de A
et de p, un module sur V si et seulement si W est une algébre de Vinberg
de produit fi. Ainsi, la définition revient & une écriture:

DEFINITION. Soit V" une algébre de Vinberg de produit u et M un espace
vectoriel. Supposons bilinéaires les applications A : V' X M — Metp : M X
X V — M. Alors A, p définissent une structure de bimodule sur M au-dessus
de V si valent les conditions suivantes:

ﬂ(x,/l(y, m)) — A(u{x,y), m) = A(y, A(x,m)) — A{u(y,x),m),
Ax,p(m,y) —p(A(x,m),y) = p(m,pu(x,y)) —p(p(m,x),y).
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Avec des notations plus conventionnelles ces conditions devienuent
(5) x(ym) —y(xm) = [x,y]m ou  [x,y] =xy —yx,
(6) x (my) — (xm)y = m(xy) —(mx)y.

La condition (5) peut s’exprimer trés simplement par des mots: I'action
gauche d’une algébre de Vinberg sur un module est une action de ’algebre
de Lie associée (de produit g (x,y) = u (x, ) — u(y, x)). La condition (6)
peut s’exprimer comme il suit: le c6té gauche mesure a quel point ’action
gauche et I’action droite ne réussissent pas & commuter; le coté droit a quel
point ’action droite ne réussit pas a étre associative. Classiquement (i.e. dans
le cas associatif) les deux cdtés valent zéro; ici ils sont seulement €gaux.

Notons qu’un module gauche sur une algébre de Vinberg est facile a
définir par la condition (5). C’est seulement dans le cas ou I’action gauche
vaut zéro qu’il est raisonnable de définir une structure de module a droite;
par (6) ’action droite est alors associative.

Des exemples de modules sur des algébres de Vinberg sont tout d’abord
I’algébre elle-méme et tout idéal bilatére d’une algébre de Vinberg. Un
exemple plus intéressant est peut-€tre le suivant:

V est une algebre de Vinberg arbitraire. Pour M prenons I’espace linéaire
de toutes les applications linéaires: « : V' — V. (Le choix d’une base pour V/
associe a chaque o une matrice, de telle sorte que M peut étre considéré
comme ’espace des matrices n X n, sin = dim V.) Parmi les éléments de M
figurent les opérateurs de multiplication a gauche L,. Les produits A (x, «)
et p (o, y) sont maintenant donnés par

A(x,o) =[Ly, o] + L,,,
p(o,y) = L, .

Dans ce qui précéde, ax est 'image de x par I’application o; elle appartient
encore a V de sorte que L,, a un sens.

Premi¢rement nous vérifions (5), avec des notations appropriées.
Ax, A(y, 0)) = A(x,[L,, o] + L,,) =

= [Lx:' [Lya a] + Lay] + L([Ly,d]'*‘Locy)x =
= [L,,[L,,o]] + [Ly, L,] + L

y(@x)—a(yx)+ (ay)x *

Les applications linéaires ¥ — V forment une algébre de Lie relativement
a la formation des crochets; nous utiliserons cela pour le premier terme
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du dernier membre. Pour le nouveau premier terme qui en résulte et pour
le second terme nous employons (1’). Nous obtenons ainsi:

Ax, 2y, @) — A(y, A(x, @) =
= [[L,, L], o] + Lixsyy = Lypaxt T Ly@x)—amx)+ @yx
— Ly —aen + @oyy = LLrxy» @] + Ly
avec
x = x(ay) = (ap)x — y(ax) + (@x)y + y(ax) — a(yx) + (ap) x
— x(ay) + a(xy) —(ax)y = a(xy) — a(yx) = a[x,y].
Ainsi, ‘
Ax, A(y,a) = A(y, A(x, ) = A([x, ], ),
c’est justement (5). Maintenant nous vérifions (6).
A(x, p (2, 1) — p (Ax,2), ) = A(x, L) = Liy(azy =
= [Lo L] + Lpye — Lipyagy + Ly =
= Lpien T Dgnin=zporratmy=waoy = Luwyy = Ly =
= p(axy) = p(Lowy) = p (o1 (x,) = p(p (2, %), 7).

L’exemple précédent est seulement un cas particulier d’un théoréme
dont la preuve est un exercice utile.

THEOREME. Supposons que M est un module sur [’algébre de Vinberg V.
Alors I’ensemble M' = Hom (V, M) des applications linéaires de.V dans M
a aussi une structure de module sur V. En fait, si i, A et p ont leur signification
habituelle et si ', p’ se réferent a M’, alors, pour o€ M’

A(x,a)y = A(x,ap) — apu(x,y) + p(ax,y),

p' (o, x)y = p(ax,y).

Dans le théoréme de la section 2 nous avons signalé que la formation
des commutateurs d’une algebre de Vinberg conduit a une structure d’al-
gebre de Lie. Ce théoréme peut étre appliqué au produit semi-direct V' x M.
On obtient alors.
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TuEOREME. Soit (V, ) une algébre de Vinberg et M un module sur cette
algébre, avec 2, p comme actions gauche et droite. L’application A, avec
A (x,m) = A(x,m) — p (m, x) munit alors M d’une structure de module

sur ’algébre de Lie (V, 1).

L’application de ce théoréme & I'exemple précédent donne A (x,0) =
= [L,, «]; i.e. 'une des structures habituelles sur M. Ainsi I'exemple montre
que 2, p est un raffinement de la structure de module bien connue A

Il est alors clair que si M est un module sur une algébre de Vinberg, il a
deux structures de module sur I'algébre de Lie associée. La premiére est
donnée par le théoréme ci-dessus; la seconde est obtenue & partir du théo-
réme en changeant p en zéro: cela donne la méme structure que celle donnée
directement par la condition (5).

On veut espérer avoir une troisiéme structure de module sur I'algebre
de Lie associée en prenant 4 = 0 — mais cela ne marche pas, car (6) suppose
déja A. Dans le cas associatif, cependant, cette troisiéme méthode marche
également.

PARTIE I1: Algébres associatives et applications multilinéaires

Introduction.

Une classe intéressante de propriétés des algeébres associatives devient
accessible si I’on considére les applications multilinéaires dans lui-méme
de I’espace vectoriel sous-jacent. Le produit u de I'algebre fournit un opé-
rateur 0 qui associe a une application linéaire d’ordre n une application
linéaire d’ordre n + 1. On peut exprimer a l'aide de 'opérateur ¢ des
propriétés connues de I'algebre. En général, les calculs avec 6 (comme de
prouver que 6> = 0) sont assez encombrants. Cependant, en introduisant
un « produit de composition » qui assccie a tout couple formé d’une appli-
cation linéaire d’ordre m et d’une application linéaire d’ordre n une applica-
tion linéaire d’ordre n + m — 1, et en prouvant la seule identité (9), on
fait presque tout le travail. (Il se trouve que (9) est une version inversée et
graduée de I'identité de Vinberg.) Les commutateurs du produit de compo-
sition vérifient les axiomes d’une algeébre de Lie graduée. On montre que
Popérateur 0 est le commutateur avec I'application produit p. On définit
la cohomologie associée a 0 et on expose ses relations vis-a-vis des dérivations
et des extensions. Du systéme des applications multilinéaires la cohomologie
hérite d’une structure graduée de Lie. Cette derniére et la cohomologie
sont appliquées dans la théorie des déformations des algébres associatives.
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