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La matière de cet article a été puisée à différentes sources. L'inclusion

dans le texte de notes bibliographiques n'a pas semblé pratique: à la place,

chaque partie se termine par quelques-unes de ces notes dans une section

séparée. En allant aux sources indiquées, le lecteur trouvera des discussions

plus complètes des sujets traités et aussi d'autres sujets qui bien que liés

n'ont pu être mentionnés par manque de place.
Je considère comme un honneur de dédier cet article à J.A. Schouten,

à l'occasion de son 85e anniversaire, et en reconnaissance de sa contribution
à la théorie des invariants tensoriels. Il y a quelque dix ans son approche a

contribué de façon substantielle à éclaircir le terrain de la théorie de la

déformation.

Partie I : Quelques types d'algèbres

1. Algèbres associatives et algèbres de Lie.

La propriété caractéristique d'une algèbre est que l'ensemble sous-

jacent de ses éléments F a la structure d'un espace vectoriel (nous nous
bornerons de façon constante au cas de la dimension finie et au cas réel).
La structure additive de V fournit l'addition de l'algèbre. La multiplication
s'exprime en donnant une application fi : V X F F. En accord avec la
structure d'espace vectoriel de V nous supposerons toujours que jx est biliné-
aire (c.-à-d. que jx (x, y) est linéaire séparément en x et en y). Les propriétés
de V et de /x assurent alors que l'addition est commutative et associative,
et que l'addition et la multiplication vérifient les lois distributives.

L'application produit jx est entièrement déterminée par un ensemble
de constantes de structure (c^j): soit (eu etl) une base de F, alors pour
chaque i et j entre 1 et n, n (eb e3) est un élément de F et ses composantes
c\j,..., c\j sont les constantes de structure:

v(ebej)Z ckijek.
k

Tout ce qui est dit à l'aide de jx peut être reformulé à l'aide des constantes
de structure.

Jusqu'ici rien n'a été dit sur l'associativité de la multiplication, ou sur
quelque autre propriété du produit.

En fait, la définition générale d'une algèbre n'englobe aucune condition
de ce type. Naturellement, cependant, les algèbres sont appelées commuta-
tives si xy yx, associatives si x (yz) (xy) z. D'autres possibilités sont
mentionnées plus tard. Alors que les algèbres commutatives et associatives
ont été les plus importantes et que de nombreux développements modernes
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très fameux dépendent lourdement d'elles, elles ne sont pas particulièrement
intéressantes de notre point de vue assez particulier. Quoique nous pourrions
les inclure, nous ne leur attacherons, par souci de brièveté, aucune attention
particulière.

Les algèbres associatives sont assez bien connues. L'exemple le plus
classique est peut-être celui des matrices réelles n X «, avec le produit usuel

lignes par colonnes. Parmi les sous-algèbres nous avons par exemple les

matrices avec seulement des zéros en-dessous de la diagonale principale;
nous les appellerons triangulaires supérieures. Un autre exemple fameux
est formé par les quaternions. Les nombres complexes forment un exemple
qui se trouve être commutatif. Les dimensions des exemples sont respectivement

n2, \ n (77+1), 4 et 2. Tandis que dans les algèbres les produits
sont habituellement désignés par un point : x y ou par « rien » : xy, nous
utiliserons explicitement fi (.x, y) quand cela sera commode pour quelque
dessein. Avec cette notation, la condition d'associativité devient

n (n (x, y), z)- n (x, n (y, 0

Les algèbres de Lie ont trouvé leur origine ou du moins leur utilité
initiale dans des domaines près par tradition des applications physiques.
Leur respectabilité mathématique s'est accrue grandement quand elles

eurent perdu leur nom d'origine de « groupe infinitésimal ». Tout groupe
de Lie (groupe continu) a son algèbre de Lie. Le dernier concept est beaucoup

moins compliqué que le premier; cependant de nombreuses propriétés
du groupe trouvent de fortes images dans l'algèbre. Parmi les exemples
les plus simples d'algèbre de Lie citons, par exemple, les matrices n x n

avec comme produit jà (x, y) xy — yx, les matrices antisymétriques avec
le même produit, et l'espace euclidien à 3 dimensions avec le produit « croisé».

En fait, ces algèbres de Lie peuvent être associées aux groupes suivants:
le groupe de toutes les matrices inversibles n X n, le groupe des matrices

orthogonales n X n et le groupe des rotations de l'espace à 3 dimensions.

Leurs dimensions respectives sont n2, 4- n {n — 1) et 3.

Iva définition d'une algèbre de Lie est simple: le produit est antisymétrique

et vérifie l'identité appelée identité de Jacobi. Au moyen de p cela

signifie que

n (x, y)- n y,x),ju(ju (x, y), z) (ß (y, z), x) +

+ n([x(z,x) y)0.

De façon traditionnelle, le produit d'une algèbre de Lie est noté par des

crochets [x, y]. Les puristes insistent pour que ce soit xy puisqu'on utilise



— 229 —

aussi xy quand le produit ne vérifie aucune condition particulière. Pour

satisfaire au moins partiellement les puristes nous utiliserons les crochets

seulement pour les commutateurs (c.-à-d. [x, y}=xy—yx) et pour certaines

algèbres de Lie graduées qui apparaîtront dans les parties II et III. Dans les

autres cas, nous éviterons la controverse en utilisant ß.

2. Les algèbres de Vinberg.

L'application produit ß d'une algèbre de Vinberg vérifie la condition

suivante

(1) fj. {p (.x, y), z) - il (x, /I (y, z)) - fi (ß (y, x), z) + fi (y, ß (x, z)) 0

ou, avec des notations moins conventionnelles où xy p (x, y)

(xy) z - x (yz) (yx) z - y (xz)

Avec encore d'autres notations : si Lx désigne la multiplication à gauche par

x, Lxy xy ß (x, y) de telle sorte que Lx est une application linéaire de

V dans V, on peut écrire la condition sous la forme

LXLy LyLx Lxy_yX

Si nous introduisons des commutateurs notés par des crochets, nous obtenons

(L) [Lx,Ly] LiXtyl.

La dernière forme de la condition suggère déjà que les algèbres de Vinberg
sont liées de près aux algèbres de Lie. De façon plus précise, nous avons le

Théorème. Si V est un espace vectoriel et ß une application bilinéaire de V
dans V qui vérifie la condition (1) et si, de plus, ß (x, y) p (x, y) — ß (y, x),
alors ß définit une structure d'algèbre de Lie.

Le théorème généralise le fait bien connu que les commutateurs d'une
algèbre associative donnent une algèbre de Lie. La vérification pour p de

l'identité de Jacobi (c'est tout ce qui est à prouver) suit directement de

l'écriture et du regroupement des 12 termes que l'on trouve.
Dans la pratique, les algèbres de Vinberg apparaissent dans l'autre sens.

Tout d'abord on a trouvé une structure d'algèbre de Lie; ensuite on essaye
de trouver une structure plus fine pour laquelle les commutateurs donnent
la structure première d'algèbre de Lie. On peut préférer trouver des struc-
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tures d'algèbre associative mais c'est à vrai dire un problème plus difficile }

— l'existence étant connue dans moins de cas — que celui que nous consi- j

dérons ici. Le seul point qu'on peut ici noter est qu'une structure d'algèbre i

de Yinberg est plus fine qu'une structure d'algèbre de Lie et que les algèbres
associatives en sont un cas particulier. j!

Quoique les algèbres de Vinberg viennent de situations géométriques où
l'on considère certains ensembles ouverts convexes homogènes des espaces |

affines, nous ne nous intéresserons pas nous-mêmes à ces applications. J

A la place, nous donnons quelques exemples construits algébriquement
d'algèbres de Vinberg. j

Tout d'abord un exemple à 2 dimensions. Soit P, Q les vecteurs de base; j

le produit est donné alors par I

La vérification de (1) est une simple question d'énumération de cas. Le

produit de Lie pour les commutateurs est donné par jx(P, Q) Q; c'est
le seul cas d'une algèbre de Lie non abélienne à deux dimensions. (Pour
une structure d'algèbre de Lie sur un espace vectoriel à 2 dimensions ou
bien on a une isomorphic avec la précédente ou bien tous les produits valent

zéro.)
Pour le second exemple, considérons l'application t qui assigne à chaque

matrice n x n (n reste fixe) la matrice triangulaire supérieure obtenue en

remplaçant les éléments sous la diagonale principale par zéro, en divisant
les éléments de la diagonale principale par 2 et en laissant inchangés les

éléments situés au-dessus de la diagonale principale. On désigne la transposée

d'une matrice a par a*. L'exemple consiste en matrices triangulaires
supérieures notées x, y, etc. La dimension de l'espace est } n (n+1). Le

produit de l'espace est donné par

Comme première observation, nous voyons que l'on a Ji (x, y) xy —

— yx, car l'expression du terme en t est symétrique en x et en y. Par suite

la structure en question est un raffinement de la structure habituelle d'algèbre
de Lie sur les matrices triangulaires supérieures.

La vérification de (1) est juste un peu intrigante quoiqu'il n'y ait pas
de difficultés essentielles. Notons que pour prouver (1), nous devons montrer

que ju (fi (x, y), z) - /x (x, jx (y, z)) est symétrique en x et y.

fi(P,P) 2P

P(P,Q) - Q

ß(Q,P) o

M (ö,ö) p

fx (x, y) xy + t (xyf + yx*)
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Premièrement le premier terme.

n (n(x,y), z) n (x, y) z +r (p (x, z (/z (x, y))')

(xy) z+ t (x/ + yx() z + t ((xy) z' + r (xy' + j>x() zf +

+ z(xy)f + z (x (xy'+ yx*))')xyz + t (xyz( + zy'x') + sym.

où « sym » note une expression symétrique en x et y. Le second terme est

écrit ainsi qu'il suit.

ß (x, ß (y, z)) xß (y, z) + t (x (ju (y, z))* + ß (y, z) x')

x (yz) + XT {yz* + z/) + t (x (yz)f + x (t (yzl + zy*))* +

+ (yz) x* + t (yz* + zy*) x*)

Aux termes en t intérieurs aux termes en t nous appliquons les identités,
valables quelles que soient les matrices symétriques s,

T (s) S — T (5/ et T (S)* S — T (s)

Ces termes sont ainsi changés en

x (yz* + zy*) — XT (yz* + zy*) + (yz* + zy*) x* — (t (yz* + zy*))* x

C'est tout ce qui doit être placé à l'intérieur du premier opérateur t. Pour
le second et le quatrième termes cela donne, vu l'égalité, valable pour toute
matrice triangulaire supérieure w, w t (w + w*)

r — XT (yz* + zy*) — (r (yz* + zy*))*x*) — xt (yz* + zy*).

Ce dernier terme supprime un des termes précédents. Ainsi, en les mettant

tous ensemble, on trouve

ß (x, ß (y, z)) xyz + t (xz*y* +yzx* +x (yz* + zy*) + (yz* + zy*) x*)

xyz + t (xyz* + zy*x*) + t (xz*y* + yz*x* + yzx* + xzy*)

fi(fi(x,y),z) + sym.,
ce qu'on devait montrer.

3. Modules.

Les abstractions mathématiques, comme celles de groupe, d'anneau ou
d'algèbre, sont venues historiquement comme opérations sur certains
ensembles. Les ensembles, disons de cailloux, de moutons ou de femmes,
étaient familiers longtemps avant les entiers qui les comptent. Les permutations

sur les ensembles étaient connues avant le concept de groupe.
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Les modules sont des ensembles convenablement structurés sur lesquels
agissent des algèbres. Soit V une algèbre ayant pour produit p. Alors un
module sur (V, p) est un espace vectoriel M sur lequel les éléments de V
agissent de façon à respecter la structure d'espace vectoriel de M. La structure

d'espace vectoriel de V doit aussi être respectée; et, de plus, la multiplication

p de V doit être convenablement retrouvée. La discussion des

exemples qui suivent rend tout cela plus précis.
Soit (F, p) une algèbre associative. Un espace vectoriel M est un module

à gauche sur (V, p) si on s'est donné une application bilinéaire X :

V X M -» M (2 (x, m) est aussi noté xm) vérifiant

x (ym) (xy) m ; c'est-à-dire X (x, X (y, m)) X (p (x, y), m).

Notons que la bilinéarité implique les lois distributives habituelles. — Un
module à droite est de façon analogue défini par une application bilinéaire

p : M X V -» M (on note mx en abrégé pour p (m, x)) telle que

(mx) y m (xy) ou p(p (m, x), y) p (m, p (x, y))

Une structure de bimodule est donnée par les applications À et p comme
ci-dessus, avec la condition additionnelle que les actions de gauche et de

droite commutent; c'est-à-dire que

(xm)y x (my), ou p(2(x, m), y) 2 (x, p (m, y))

En fait, les modules à gauche (et à droite) sont des cas particuliers des bimo-
dules si on le souhaite: il suffit de poser p 0 (resp. X 0). Nous nous
limiterons donc aux bimodules quand nous le voudrons.

Le module (à gauche) sur l'algèbre associative des matrices n X n

historiquement le plus naturel est peut-être l'espace vectoriel Rn des /2-uples
de nombres réels. X (x, m) est simplement le produit usuel ligne par colonne
de la matrice x et du vecteur colonne m. Une structure de module à droite
est donnée par p (m, x) mx, où à nouveau on emploie le produit ligne

par colonne et où m est un vecteur ligne. L'espace entier des matrices n x n

est lui-même un bimodule sur lui-même si on utilise les multiplications à

droite et à gauche habituelles.
Le dernier commentaire est général: une algèbre associative est toujours

un bimodule sur elle-même. De plus, les idéaux à gauche sont des modules
à gauche, les idéaux à droite des modules à droite et les idéaux bilatères sont
des bimodules.

Retournons à la définition d'un bimodule sur une algèbre associative

et essayons de la simplifier en considérant d'un seul coup toutes les opéra-
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tions: p, A et p et en les combinant en une seule application. A cette fin,

considérons le produit direct W V X M dont les éléments sont les paires

(x, m) d'éléments de F et de M. W est encore un espace vectoriel.

Considérons l'application fi : W X W -> W donnée par

(2) fi ((x, m) (y, n)) (p (x, y) ,A (x, n) + p (m, y)).

Elle est clairement bilinéaire. V X M muni du produit fi est appelé

produit semi-direct de F et de M. Pour examiner fi, écrivons x pour (x, 0)

et m pour (0, m) (cela peut être fait sans risque de confusion si F et M sont

des espaces distincts). Nous avons alors

fi (x, y) p(x,y) fi (m, y) p(m,y)

fi (x, m) A (x, m) fi (m, n) 0

Les conditions imposées à p (associativité), 2 (structure de module à

gauche) et à p (structure de module à droite) et la compatibilité de A et de p

peuvent maintenant être toutes exprimées au moyen de fi. La tâche est

classique et le résultat est un théorème.

Théorème. Soit V et M des espaces vectoriels, p : F X F F, À : V X

X M —> M et p : M X V M des applications bilinéaires. Soit W
V X M le produit semi-direct muni de fi défini par (2). Alors fi définit

une structure d'algèbre associative sur W si et seulement si sont vérifiées les

deux assertions suivantes : (1) p est une structure d'algèbre associative sur V;

(2) A et p définissent sur M une structure de bimodule.

Une situation semblable se trouve dans le cas des algèbres de Lie,
excepté que là il suffit de considérer uniquement les modules à gauche (ou à

droite); d'autres cas peuvent être réduits à celui-là. De façon à ce que M
soit un module sur l'algèbre de Lie (F, p) on doit se donner une application
bilinéaire A: V x M -> M (on peut écrire xm pour A (x, m)) qui vérifie

X (x, À(y,m))- A (y,X(x,m)) (x,
OU

x (y m) — y (xm) p (x, y) m

Un module sur une algèbre de Lie est fréquemment appelé une représentation.

De façon plus précise, si M est un module sur V (de produit p) à

l'aide de l'application A, alors A est appelé une représentation de (F, p)
sur M.

On trouve facilement des exemples de modules sur des algèbres de Lie :

chaque module sur une algèbre associative donne naissance à un tel module.
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Toute algèbre de Lie de matrices (par exemple celle des matrices symétriques
gauche) donne à Rn une structure de module si l'on prend le produit habituel

ligne par colonne. Toute algèbre de Lie est un module sur elle-même.
Les idéaux d'une algèbre de Lie sont aussi des modules sur l'algèbre de Lie.

Comme dans le cas associatif, nous construisons une application biliné-
aire fi du produit semi-direct W V X M en utilisant p et A ainsi qu'il suit.

fi(x,y) p(x,y) fi(m,x) — A(x,m)

fi (x, m) A (x, m) fi (m, n) 0

ou en une seule formule

(3) fl ((x, m),(y, n)) (p(x, y) - m))

On a, comme auparavant, un théorème.

Théorème. Soit V et M des espaces vectoriels, p : V X V -» V une
application bilinéaire alternée et A : V X M -+ M une application bilinéaire. Soit
W V X M le produit semi-direct où fi est défini par (3). Alors fi définit
une structure d'algèbre de Lie sur W si et seulement si est vérifiée la condition
suivante : jj, est une structure d'algèbre de Lie sur V et A définit sur M une

structure de module sur V.

La raison principale pour formuler les deux théorèmes précédents bien

connus est de fournir un motif pour la définition d'un module sur une
algèbre de Yinberg. Soit V une algèbre de Vinberg de produit p, et soit des

applications bilinéaires A : V x M -> M et p : M X V -> V. Posons

W V X M et définissons p comme l'application donnant à V x M la
structure d'un produit semi-direct:

(4) Jx ((x, m), (y, n)) (n (x, y) (x, + y)).

Alors nous appellerons M, muni de l'action de V sur lui défini à l'aide de A

et de p, un module sur V si et seulement si W est une algèbre de Yinberg
de produit fi. Ainsi, la définition revient à une écriture:

Définition. Soit V une algèbre de Yinberg de produit p et M un espace
vectoriel. Supposons bilinéaires les applications A : V X M M et p : M x
X V -> M. Alors A, p définissent une structure de bimodule sur M au-dessus

de V si valent les conditions suivantes:

X{x, A (y, m)) - À(fi(x,y), m) (y, (x, m)) - (ß x), m),

X(x, p (m, y)) - p (2 (x, m), y) y)) (m, x), y).
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Avec des notations plus conventionnelles ces conditions deviennent

(5) x(ym) — y(xm) [x,y] m où [x? 3^] xy — yx

(6) x (my) - (xm) y m (xy) - (mx) y

La condition (5) peut s'exprimer très simplement par des mots: l'action
gauche d'une algèbre de Yinberg sur un module est une action de l'algèbre
de Lie associée (de produit g (x, y) p (x, y) — g (y, x)). La condition (6)

peut s'exprimer comme il suit: le côté gauche mesure à quel point l'action
gauche et l'action droite ne réussissent pas à commuter; le côté droit à quel

point l'action droite ne réussit pas à être associative. Classiquement (i.e. dans

le cas associatif) les deux côtés valent zéro; ici ils sont seulement égaux.

Notons qu'un module gauche sur une algèbre de Vinberg est facile à

définir par la condition (5). C'est seulement dans le cas où l'action gauche

vaut zéro qu'il est raisonnable de définir une structure de module à droite ;

par (6) l'action droite est alors associative.
Des exemples de modules sur des algèbres de Yinberg sont tout d'abord

l'algèbre elle-même et tout idéal bilatère d'une algèbre de Yinberg. Un
exemple plus intéressant est peut-être le suivant:

V est une algèbre de Yinberg arbitraire. Pour M prenons l'espace linéaire
de toutes les applications linéaires: oc : V -» V. (Le choix d'une base pour V
associe à chaque oc une matrice, de telle sorte que M peut être considéré

comme l'espace des matrices n X n, si n dim V.) Parmi les éléments de M
figurent les opérateurs de multiplication à gauche Lx. Les produits X (x, a)
et p (oc, y) sont maintenant donnés par

X (x, oc) \_LX, oc] "h Lax

p (oc, y) Lay

Dans ce qui précède, ocx est l'image de x par l'application oc ; elle appartient
encore à F de sorte que Lax a un sens.

Premièrement nous vérifions (5), avec des notations appropriées.

A (x, A (y, oc)) A (x, [Ly, oc] + Lay)

[Ly, a] + LaJ + ^([Lr,a]+Laj)x

~~ [m^jx9 ï_Ly, a]] + [Lx, Lay] -f Ly(ixmy_a(yx)+^(xy^x

Les applications linéaires V -> V forment une algèbre de Lie relativement
à la formation des crochets; nous utiliserons cela pour le premier terme
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du dernier membre. Pour le nouveau premier terme qui en résulte et pour
le second terme nous employons (1'). Nous obtenons ainsi:

X (x, X (y, a)) — X (y, X (x, a))

Ly\ aj + L[x o,yj L[y^ax-[ + Ly(0CX) — iz(yx)+ (pcy)x

~ LX(ay)-a(xy) + (ax)y [^[x,y] 5 a] +

avec

* — x (ay) — (ay) x — y (ax) + (ax) y + y (ax) — a (yx) + (ay) x

— x(ay) + a(xy) — (ax) y a(xy) — a(yx) a[x,y]

Ainsi,

2(x, X (y, a) — X (y, 2(x, a)) A([x,y] a)

c'est justement (5). Maintenant nous vérifions (6).

2(x,p(a,y)) — p (2(x, a), y) X(x, Lay) - LX(Xt<z)y

— C^x5 Lay] + Ll^x — L[Lx a]y H- L^y

-^0,ay] d" ^(ccy)X—x(ay)+a(xy)~ (ax)y -^a(xy) -^(ax)y

p (a, xy) - p (Lax, y) p (a, p (x, y)) - p (p (a, x) y)

L'exemple précédent est seulement un cas particulier d'un théorème
dont la preuve est un exercice utile.

Théorème. Supposons que M est un module sur l'algèbre de Vinberg V.

Alors l'ensemble M' Horn (V, M) des applications linéaires de V dans M
a aussi une structure de module sur V. En fait, si p, X et p ont leur signification
habituelle et si X', p' se réfèrent à M\ alors, pour a e M'

2' (x, a) y X (x, ay) — ap (x, y) + p (ax, y)

P' (a, x) y p (ax, y)

Dans le théorème de la section 2 nous avons signalé que la formation
des commutateurs d'une algèbre de Vinberg conduit à une structure
d'algèbre de Lie. Ce théorème peut être appliqué au produit semi-direct V X M.
On obtient alors.
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Théorème. Soit (V, p) une algèbre de Vinberg et M un module sur cette

algèbre, avec 2, p comme actions gauche et droite. L'application 2, avec

X (x, m) X (x, m) — p (im, x) munit alors M d'une structure de module

sur l'algèbre de Lie (V, p).

L'application de ce théorème à l'exemple précédent donne X (x, a)

[Lx, a]; i.e. l'une des structures habituelles sur M. Ainsi l'exemple montre

que X, p est un raffinement de la structure de module bien connue X.

Il est alors clair que si M est un module sur une algèbre de Vinberg, il a

deux structures de module sur l'algèbre de Lie associée. La première est

donnée par le théorème ci-dessus; la seconde est obtenue à partir du théorème

en changeant p en zéro: cela donne la même structure que celle donnée

directement par la condition (5).

On veut espérer avoir une troisième structure de module sur l'algèbre
de Lie associée en prenant 2 0 — mais cela ne marche pas, car (6) suppose

déjà 2. Dans le cas associatif, cependant, cette troisième méthode marche

également.

Partie II: Algèbres associatives et applications multilinéaires

Introduction.

Une classe intéressante de propriétés des algèbres associatives devient
accessible si l'on considère les applications multilinéaires dans lui-même
de l'espace vectoriel sous-jacent. Le produit p de l'algèbre fournit un
opérateur ö qui associe à une application linéaire d'ordre n une application
linéaire d'ordre n + 1. On peut exprimer à l'aide de l'opérateur ô des

propriétés connues de l'algèbre. En général, les calculs avec 5 (comme de

prouver que ô2 0) sont assez encombrants. Cependant, en introduisant
un « produit de composition » qui associe à tout couple formé d'une
application linéaire d'ordre m et d'une application linéaire d'ordre n une application

linéaire d'ordre n + m — 1, et en prouvant la seule identité (9), on
fait presque tout le travail. (Il se trouve que (9) est une version inversée et

graduée de l'identité de Vinberg.) Les commutateurs du produit de composition

vérifient les axiomes d'une algèbre de Lie graduée. On montre que
l'opérateur ô est le commutateur avec l'application produit p. On définit
la cohomologie associée à ô et on expose ses relations vis-à-vis des dérivations
et des extensions. Du système des applications multilinéaires la cohomologie
hérite d'une structure graduée de Lie. Cette dernière et la cohomologie
sont appliquées dans la théorie des déformations des algèbres associatives.
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