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SUR UNE CLASSE DE PROPRIÉTÉS COMMUNES
A QUELQUES TYPES DIFFÉRENTS D'ALGÈBRES

par Albert Nijenhuis *

Traduit par R. Bantegnie

Introduction

Le développement de l'algèbre moderne dans les quarante dernières

années a conduit à de nombreuses notions nouvelles comme celles de

groupe, d'anneau et de corps. Algèbre linéaire est devenu un mot domestique.

L'algèbre multilinéaire qui trouve ses racines dans la théorie matricielle

et dans l'analyse tensorielle a pris dans les années récentes des formes
nouvelles plus simples et est devenue un outil commun de l'algèbre moderne.

Parmi les concepts les plus utilisés est celui d'algèbre; il combine une
structure d'espace vectoriel et une structure multiplicative. Bien connues
sont les algèbres associatives (qu'elles soient commutatives ou non); elles

sont des généralisations directes du système numérique et comprennent les

matrices. Les Algèbres de Lie sont plus récentes; leur origine est la théorie
des groupes continus mais elles ont trouvé de nombreuses applications
dans d'autres domaines. Les algèbres de Yinberg sont moins connues et

sont discutées ici pour montrer que le thème de cet article ne se restreint

pas de lui-même au cas d'algèbres qui sont déjà bien connues.
Les algèbres que nous considérons sont toutes caractérisées par le fait

que les constantes de structure sont restreintes par des conditions linéaires
(p. ex. la symétrie gauche) et par des conditions quadratiques (p. ex. l'asso-
ciativité ou l'identité de Jacobi). Cependant, les restrictions doivent être
d'une sorte particulière: elles doivent pouvoir s'exprimer sous une forme
particulière à l'aide d'un système de composition convenable. Cette notion
de système de composition est seulement développée lentement le long de

l'article et sa définition n'intervient pas avant la section finale.
Comme le but de cet article est purement d'exposition, l'auteur a essayé

de compter sur assez peu de matériel déjà connu. Le plus important est

*) Cet article a paru en anglais dans Nieuwe Archief voor Wiskunde, XVIL
17-46, 87-108, 1969.



— 226 —

l'algèbre linéaire; les notions de groupe, d'idéal, d'espace quotient et les

notions analogues sont utilisées (assez clairement).
L'article est partagé en trois parties et est organisé de telle façon que

chacune des parties a sa propre récompense. La première, la plus élémentaire,

discute de façon assez informelle certaines propriétés des algèbres
associatives, des algèbres de Lie et des algèbres de Vinberg. La discussion
des deux premières sert à motiver les concepts concernant les dernières.
Les modules sur ces algèbres sont aussi introduits.

La partie II utilise exclusivement les algèbres associatives. On montre
comment la considération des applications multilinéaires de l'espace
vectoriel sous-jacent dans lui-même et l'introduction d'une opération pour ces

applications, le produit de composition, fournit déjà la clé d'une foule de

notions, depuis les commutateurs jusqu'aux extensions à la cohomologie
et finalement aux déformations. Un exemple simple de déformation est
donné explicitement.

La partie III commence par introduire les produits de composition
associés aux algèbres de Lie et aux algèbres de Vinberg. Ensuite, l'histoire
de la partie II s'applique aussi bien presque mot par mot à ces deux types.
Comme illustration, on démonte une algèbre de Lie. Ensuite, d'autres opérations

sont construites, fondées uniquement sur le produit de composition
et donc valables pour les trois types d'algèbres. Les domaines d'application
englobent les déformations d'homomorphismes et de sous-algèbres. La
dernière section donne sous une forme quelque peu plus explicite et formelle
quelques propriétés du produit de composition qui jusqu'ici ont été utilisées
de façon assez informelle. S'ensuit la définition d'un système de composition.

Vu cette manière de faire, on peut lire l'article seulement pour voir
quelques propriétés générales des algèbres associatives ou des algèbres de

Lie, ou on peut vouloir voir comment une algèbre « drôle » peut encore être

tout à fait raisonnable. La lecture de la partie I suffira alors. (Le fait que les

algèbres de Jordan, du à la nature cubique des conditions portant sur les

constantes de structure, ne soient pas comprises est regrettable, mais des

développements futurs peuvent remédier à cette situation.) Pareillement,
si l'on est curieux au sujet des déformations des algèbres associatives, ou
si l'on veut voir une approche simple de la cohomologie, la partie II suffira.

Finalement, la partie III étend la cohomologie et les déformations d'algèbres
associatives aux algèbres de Lie et aux algèbres de Vinberg. Elle donne aussi

des renseignements sur d'autres problèmes de déformation concernant ces trois

types d'algèbres. Finalement, elle érige des critères pour que valent les mêmes

résultats pour d'autres types — peut-être encore inconnus — d'algèbres.
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La matière de cet article a été puisée à différentes sources. L'inclusion

dans le texte de notes bibliographiques n'a pas semblé pratique: à la place,

chaque partie se termine par quelques-unes de ces notes dans une section

séparée. En allant aux sources indiquées, le lecteur trouvera des discussions

plus complètes des sujets traités et aussi d'autres sujets qui bien que liés

n'ont pu être mentionnés par manque de place.
Je considère comme un honneur de dédier cet article à J.A. Schouten,

à l'occasion de son 85e anniversaire, et en reconnaissance de sa contribution
à la théorie des invariants tensoriels. Il y a quelque dix ans son approche a

contribué de façon substantielle à éclaircir le terrain de la théorie de la

déformation.

Partie I : Quelques types d'algèbres

1. Algèbres associatives et algèbres de Lie.

La propriété caractéristique d'une algèbre est que l'ensemble sous-

jacent de ses éléments F a la structure d'un espace vectoriel (nous nous
bornerons de façon constante au cas de la dimension finie et au cas réel).
La structure additive de V fournit l'addition de l'algèbre. La multiplication
s'exprime en donnant une application fi : V X F F. En accord avec la
structure d'espace vectoriel de V nous supposerons toujours que jx est biliné-
aire (c.-à-d. que jx (x, y) est linéaire séparément en x et en y). Les propriétés
de V et de /x assurent alors que l'addition est commutative et associative,
et que l'addition et la multiplication vérifient les lois distributives.

L'application produit jx est entièrement déterminée par un ensemble
de constantes de structure (c^j): soit (eu etl) une base de F, alors pour
chaque i et j entre 1 et n, n (eb e3) est un élément de F et ses composantes
c\j,..., c\j sont les constantes de structure:

v(ebej)Z ckijek.
k

Tout ce qui est dit à l'aide de jx peut être reformulé à l'aide des constantes
de structure.

Jusqu'ici rien n'a été dit sur l'associativité de la multiplication, ou sur
quelque autre propriété du produit.

En fait, la définition générale d'une algèbre n'englobe aucune condition
de ce type. Naturellement, cependant, les algèbres sont appelées commuta-
tives si xy yx, associatives si x (yz) (xy) z. D'autres possibilités sont
mentionnées plus tard. Alors que les algèbres commutatives et associatives
ont été les plus importantes et que de nombreux développements modernes
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très fameux dépendent lourdement d'elles, elles ne sont pas particulièrement
intéressantes de notre point de vue assez particulier. Quoique nous pourrions
les inclure, nous ne leur attacherons, par souci de brièveté, aucune attention
particulière.

Les algèbres associatives sont assez bien connues. L'exemple le plus
classique est peut-être celui des matrices réelles n X «, avec le produit usuel

lignes par colonnes. Parmi les sous-algèbres nous avons par exemple les

matrices avec seulement des zéros en-dessous de la diagonale principale;
nous les appellerons triangulaires supérieures. Un autre exemple fameux
est formé par les quaternions. Les nombres complexes forment un exemple
qui se trouve être commutatif. Les dimensions des exemples sont respectivement

n2, \ n (77+1), 4 et 2. Tandis que dans les algèbres les produits
sont habituellement désignés par un point : x y ou par « rien » : xy, nous
utiliserons explicitement fi (.x, y) quand cela sera commode pour quelque
dessein. Avec cette notation, la condition d'associativité devient

n (n (x, y), z)- n (x, n (y, 0

Les algèbres de Lie ont trouvé leur origine ou du moins leur utilité
initiale dans des domaines près par tradition des applications physiques.
Leur respectabilité mathématique s'est accrue grandement quand elles

eurent perdu leur nom d'origine de « groupe infinitésimal ». Tout groupe
de Lie (groupe continu) a son algèbre de Lie. Le dernier concept est beaucoup

moins compliqué que le premier; cependant de nombreuses propriétés
du groupe trouvent de fortes images dans l'algèbre. Parmi les exemples
les plus simples d'algèbre de Lie citons, par exemple, les matrices n x n

avec comme produit jà (x, y) xy — yx, les matrices antisymétriques avec
le même produit, et l'espace euclidien à 3 dimensions avec le produit « croisé».

En fait, ces algèbres de Lie peuvent être associées aux groupes suivants:
le groupe de toutes les matrices inversibles n X n, le groupe des matrices

orthogonales n X n et le groupe des rotations de l'espace à 3 dimensions.

Leurs dimensions respectives sont n2, 4- n {n — 1) et 3.

Iva définition d'une algèbre de Lie est simple: le produit est antisymétrique

et vérifie l'identité appelée identité de Jacobi. Au moyen de p cela

signifie que

n (x, y)- n y,x),ju(ju (x, y), z) (ß (y, z), x) +

+ n([x(z,x) y)0.

De façon traditionnelle, le produit d'une algèbre de Lie est noté par des

crochets [x, y]. Les puristes insistent pour que ce soit xy puisqu'on utilise
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aussi xy quand le produit ne vérifie aucune condition particulière. Pour

satisfaire au moins partiellement les puristes nous utiliserons les crochets

seulement pour les commutateurs (c.-à-d. [x, y}=xy—yx) et pour certaines

algèbres de Lie graduées qui apparaîtront dans les parties II et III. Dans les

autres cas, nous éviterons la controverse en utilisant ß.

2. Les algèbres de Vinberg.

L'application produit ß d'une algèbre de Vinberg vérifie la condition

suivante

(1) fj. {p (.x, y), z) - il (x, /I (y, z)) - fi (ß (y, x), z) + fi (y, ß (x, z)) 0

ou, avec des notations moins conventionnelles où xy p (x, y)

(xy) z - x (yz) (yx) z - y (xz)

Avec encore d'autres notations : si Lx désigne la multiplication à gauche par

x, Lxy xy ß (x, y) de telle sorte que Lx est une application linéaire de

V dans V, on peut écrire la condition sous la forme

LXLy LyLx Lxy_yX

Si nous introduisons des commutateurs notés par des crochets, nous obtenons

(L) [Lx,Ly] LiXtyl.

La dernière forme de la condition suggère déjà que les algèbres de Vinberg
sont liées de près aux algèbres de Lie. De façon plus précise, nous avons le

Théorème. Si V est un espace vectoriel et ß une application bilinéaire de V
dans V qui vérifie la condition (1) et si, de plus, ß (x, y) p (x, y) — ß (y, x),
alors ß définit une structure d'algèbre de Lie.

Le théorème généralise le fait bien connu que les commutateurs d'une
algèbre associative donnent une algèbre de Lie. La vérification pour p de

l'identité de Jacobi (c'est tout ce qui est à prouver) suit directement de

l'écriture et du regroupement des 12 termes que l'on trouve.
Dans la pratique, les algèbres de Vinberg apparaissent dans l'autre sens.

Tout d'abord on a trouvé une structure d'algèbre de Lie; ensuite on essaye
de trouver une structure plus fine pour laquelle les commutateurs donnent
la structure première d'algèbre de Lie. On peut préférer trouver des struc-
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tures d'algèbre associative mais c'est à vrai dire un problème plus difficile }

— l'existence étant connue dans moins de cas — que celui que nous consi- j

dérons ici. Le seul point qu'on peut ici noter est qu'une structure d'algèbre i

de Yinberg est plus fine qu'une structure d'algèbre de Lie et que les algèbres
associatives en sont un cas particulier. j!

Quoique les algèbres de Vinberg viennent de situations géométriques où
l'on considère certains ensembles ouverts convexes homogènes des espaces |

affines, nous ne nous intéresserons pas nous-mêmes à ces applications. J

A la place, nous donnons quelques exemples construits algébriquement
d'algèbres de Vinberg. j

Tout d'abord un exemple à 2 dimensions. Soit P, Q les vecteurs de base; j

le produit est donné alors par I

La vérification de (1) est une simple question d'énumération de cas. Le

produit de Lie pour les commutateurs est donné par jx(P, Q) Q; c'est
le seul cas d'une algèbre de Lie non abélienne à deux dimensions. (Pour
une structure d'algèbre de Lie sur un espace vectoriel à 2 dimensions ou
bien on a une isomorphic avec la précédente ou bien tous les produits valent

zéro.)
Pour le second exemple, considérons l'application t qui assigne à chaque

matrice n x n (n reste fixe) la matrice triangulaire supérieure obtenue en

remplaçant les éléments sous la diagonale principale par zéro, en divisant
les éléments de la diagonale principale par 2 et en laissant inchangés les

éléments situés au-dessus de la diagonale principale. On désigne la transposée

d'une matrice a par a*. L'exemple consiste en matrices triangulaires
supérieures notées x, y, etc. La dimension de l'espace est } n (n+1). Le

produit de l'espace est donné par

Comme première observation, nous voyons que l'on a Ji (x, y) xy —

— yx, car l'expression du terme en t est symétrique en x et en y. Par suite

la structure en question est un raffinement de la structure habituelle d'algèbre
de Lie sur les matrices triangulaires supérieures.

La vérification de (1) est juste un peu intrigante quoiqu'il n'y ait pas
de difficultés essentielles. Notons que pour prouver (1), nous devons montrer

que ju (fi (x, y), z) - /x (x, jx (y, z)) est symétrique en x et y.

fi(P,P) 2P

P(P,Q) - Q

ß(Q,P) o

M (ö,ö) p

fx (x, y) xy + t (xyf + yx*)
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Premièrement le premier terme.

n (n(x,y), z) n (x, y) z +r (p (x, z (/z (x, y))')

(xy) z+ t (x/ + yx() z + t ((xy) z' + r (xy' + j>x() zf +

+ z(xy)f + z (x (xy'+ yx*))')xyz + t (xyz( + zy'x') + sym.

où « sym » note une expression symétrique en x et y. Le second terme est

écrit ainsi qu'il suit.

ß (x, ß (y, z)) xß (y, z) + t (x (ju (y, z))* + ß (y, z) x')

x (yz) + XT {yz* + z/) + t (x (yz)f + x (t (yzl + zy*))* +

+ (yz) x* + t (yz* + zy*) x*)

Aux termes en t intérieurs aux termes en t nous appliquons les identités,
valables quelles que soient les matrices symétriques s,

T (s) S — T (5/ et T (S)* S — T (s)

Ces termes sont ainsi changés en

x (yz* + zy*) — XT (yz* + zy*) + (yz* + zy*) x* — (t (yz* + zy*))* x

C'est tout ce qui doit être placé à l'intérieur du premier opérateur t. Pour
le second et le quatrième termes cela donne, vu l'égalité, valable pour toute
matrice triangulaire supérieure w, w t (w + w*)

r — XT (yz* + zy*) — (r (yz* + zy*))*x*) — xt (yz* + zy*).

Ce dernier terme supprime un des termes précédents. Ainsi, en les mettant

tous ensemble, on trouve

ß (x, ß (y, z)) xyz + t (xz*y* +yzx* +x (yz* + zy*) + (yz* + zy*) x*)

xyz + t (xyz* + zy*x*) + t (xz*y* + yz*x* + yzx* + xzy*)

fi(fi(x,y),z) + sym.,
ce qu'on devait montrer.

3. Modules.

Les abstractions mathématiques, comme celles de groupe, d'anneau ou
d'algèbre, sont venues historiquement comme opérations sur certains
ensembles. Les ensembles, disons de cailloux, de moutons ou de femmes,
étaient familiers longtemps avant les entiers qui les comptent. Les permutations

sur les ensembles étaient connues avant le concept de groupe.
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Les modules sont des ensembles convenablement structurés sur lesquels
agissent des algèbres. Soit V une algèbre ayant pour produit p. Alors un
module sur (V, p) est un espace vectoriel M sur lequel les éléments de V
agissent de façon à respecter la structure d'espace vectoriel de M. La structure

d'espace vectoriel de V doit aussi être respectée; et, de plus, la multiplication

p de V doit être convenablement retrouvée. La discussion des

exemples qui suivent rend tout cela plus précis.
Soit (F, p) une algèbre associative. Un espace vectoriel M est un module

à gauche sur (V, p) si on s'est donné une application bilinéaire X :

V X M -» M (2 (x, m) est aussi noté xm) vérifiant

x (ym) (xy) m ; c'est-à-dire X (x, X (y, m)) X (p (x, y), m).

Notons que la bilinéarité implique les lois distributives habituelles. — Un
module à droite est de façon analogue défini par une application bilinéaire

p : M X V -» M (on note mx en abrégé pour p (m, x)) telle que

(mx) y m (xy) ou p(p (m, x), y) p (m, p (x, y))

Une structure de bimodule est donnée par les applications À et p comme
ci-dessus, avec la condition additionnelle que les actions de gauche et de

droite commutent; c'est-à-dire que

(xm)y x (my), ou p(2(x, m), y) 2 (x, p (m, y))

En fait, les modules à gauche (et à droite) sont des cas particuliers des bimo-
dules si on le souhaite: il suffit de poser p 0 (resp. X 0). Nous nous
limiterons donc aux bimodules quand nous le voudrons.

Le module (à gauche) sur l'algèbre associative des matrices n X n

historiquement le plus naturel est peut-être l'espace vectoriel Rn des /2-uples
de nombres réels. X (x, m) est simplement le produit usuel ligne par colonne
de la matrice x et du vecteur colonne m. Une structure de module à droite
est donnée par p (m, x) mx, où à nouveau on emploie le produit ligne

par colonne et où m est un vecteur ligne. L'espace entier des matrices n x n

est lui-même un bimodule sur lui-même si on utilise les multiplications à

droite et à gauche habituelles.
Le dernier commentaire est général: une algèbre associative est toujours

un bimodule sur elle-même. De plus, les idéaux à gauche sont des modules
à gauche, les idéaux à droite des modules à droite et les idéaux bilatères sont
des bimodules.

Retournons à la définition d'un bimodule sur une algèbre associative

et essayons de la simplifier en considérant d'un seul coup toutes les opéra-
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tions: p, A et p et en les combinant en une seule application. A cette fin,

considérons le produit direct W V X M dont les éléments sont les paires

(x, m) d'éléments de F et de M. W est encore un espace vectoriel.

Considérons l'application fi : W X W -> W donnée par

(2) fi ((x, m) (y, n)) (p (x, y) ,A (x, n) + p (m, y)).

Elle est clairement bilinéaire. V X M muni du produit fi est appelé

produit semi-direct de F et de M. Pour examiner fi, écrivons x pour (x, 0)

et m pour (0, m) (cela peut être fait sans risque de confusion si F et M sont

des espaces distincts). Nous avons alors

fi (x, y) p(x,y) fi (m, y) p(m,y)

fi (x, m) A (x, m) fi (m, n) 0

Les conditions imposées à p (associativité), 2 (structure de module à

gauche) et à p (structure de module à droite) et la compatibilité de A et de p

peuvent maintenant être toutes exprimées au moyen de fi. La tâche est

classique et le résultat est un théorème.

Théorème. Soit V et M des espaces vectoriels, p : F X F F, À : V X

X M —> M et p : M X V M des applications bilinéaires. Soit W
V X M le produit semi-direct muni de fi défini par (2). Alors fi définit

une structure d'algèbre associative sur W si et seulement si sont vérifiées les

deux assertions suivantes : (1) p est une structure d'algèbre associative sur V;

(2) A et p définissent sur M une structure de bimodule.

Une situation semblable se trouve dans le cas des algèbres de Lie,
excepté que là il suffit de considérer uniquement les modules à gauche (ou à

droite); d'autres cas peuvent être réduits à celui-là. De façon à ce que M
soit un module sur l'algèbre de Lie (F, p) on doit se donner une application
bilinéaire A: V x M -> M (on peut écrire xm pour A (x, m)) qui vérifie

X (x, À(y,m))- A (y,X(x,m)) (x,
OU

x (y m) — y (xm) p (x, y) m

Un module sur une algèbre de Lie est fréquemment appelé une représentation.

De façon plus précise, si M est un module sur V (de produit p) à

l'aide de l'application A, alors A est appelé une représentation de (F, p)
sur M.

On trouve facilement des exemples de modules sur des algèbres de Lie :

chaque module sur une algèbre associative donne naissance à un tel module.
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Toute algèbre de Lie de matrices (par exemple celle des matrices symétriques
gauche) donne à Rn une structure de module si l'on prend le produit habituel

ligne par colonne. Toute algèbre de Lie est un module sur elle-même.
Les idéaux d'une algèbre de Lie sont aussi des modules sur l'algèbre de Lie.

Comme dans le cas associatif, nous construisons une application biliné-
aire fi du produit semi-direct W V X M en utilisant p et A ainsi qu'il suit.

fi(x,y) p(x,y) fi(m,x) — A(x,m)

fi (x, m) A (x, m) fi (m, n) 0

ou en une seule formule

(3) fl ((x, m),(y, n)) (p(x, y) - m))

On a, comme auparavant, un théorème.

Théorème. Soit V et M des espaces vectoriels, p : V X V -» V une
application bilinéaire alternée et A : V X M -+ M une application bilinéaire. Soit
W V X M le produit semi-direct où fi est défini par (3). Alors fi définit
une structure d'algèbre de Lie sur W si et seulement si est vérifiée la condition
suivante : jj, est une structure d'algèbre de Lie sur V et A définit sur M une

structure de module sur V.

La raison principale pour formuler les deux théorèmes précédents bien

connus est de fournir un motif pour la définition d'un module sur une
algèbre de Yinberg. Soit V une algèbre de Vinberg de produit p, et soit des

applications bilinéaires A : V x M -> M et p : M X V -> V. Posons

W V X M et définissons p comme l'application donnant à V x M la
structure d'un produit semi-direct:

(4) Jx ((x, m), (y, n)) (n (x, y) (x, + y)).

Alors nous appellerons M, muni de l'action de V sur lui défini à l'aide de A

et de p, un module sur V si et seulement si W est une algèbre de Yinberg
de produit fi. Ainsi, la définition revient à une écriture:

Définition. Soit V une algèbre de Yinberg de produit p et M un espace
vectoriel. Supposons bilinéaires les applications A : V X M M et p : M x
X V -> M. Alors A, p définissent une structure de bimodule sur M au-dessus

de V si valent les conditions suivantes:

X{x, A (y, m)) - À(fi(x,y), m) (y, (x, m)) - (ß x), m),

X(x, p (m, y)) - p (2 (x, m), y) y)) (m, x), y).
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Avec des notations plus conventionnelles ces conditions deviennent

(5) x(ym) — y(xm) [x,y] m où [x? 3^] xy — yx

(6) x (my) - (xm) y m (xy) - (mx) y

La condition (5) peut s'exprimer très simplement par des mots: l'action
gauche d'une algèbre de Yinberg sur un module est une action de l'algèbre
de Lie associée (de produit g (x, y) p (x, y) — g (y, x)). La condition (6)

peut s'exprimer comme il suit: le côté gauche mesure à quel point l'action
gauche et l'action droite ne réussissent pas à commuter; le côté droit à quel

point l'action droite ne réussit pas à être associative. Classiquement (i.e. dans

le cas associatif) les deux côtés valent zéro; ici ils sont seulement égaux.

Notons qu'un module gauche sur une algèbre de Vinberg est facile à

définir par la condition (5). C'est seulement dans le cas où l'action gauche

vaut zéro qu'il est raisonnable de définir une structure de module à droite ;

par (6) l'action droite est alors associative.
Des exemples de modules sur des algèbres de Yinberg sont tout d'abord

l'algèbre elle-même et tout idéal bilatère d'une algèbre de Yinberg. Un
exemple plus intéressant est peut-être le suivant:

V est une algèbre de Yinberg arbitraire. Pour M prenons l'espace linéaire
de toutes les applications linéaires: oc : V -» V. (Le choix d'une base pour V
associe à chaque oc une matrice, de telle sorte que M peut être considéré

comme l'espace des matrices n X n, si n dim V.) Parmi les éléments de M
figurent les opérateurs de multiplication à gauche Lx. Les produits X (x, a)
et p (oc, y) sont maintenant donnés par

X (x, oc) \_LX, oc] "h Lax

p (oc, y) Lay

Dans ce qui précède, ocx est l'image de x par l'application oc ; elle appartient
encore à F de sorte que Lax a un sens.

Premièrement nous vérifions (5), avec des notations appropriées.

A (x, A (y, oc)) A (x, [Ly, oc] + Lay)

[Ly, a] + LaJ + ^([Lr,a]+Laj)x

~~ [m^jx9 ï_Ly, a]] + [Lx, Lay] -f Ly(ixmy_a(yx)+^(xy^x

Les applications linéaires V -> V forment une algèbre de Lie relativement
à la formation des crochets; nous utiliserons cela pour le premier terme
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du dernier membre. Pour le nouveau premier terme qui en résulte et pour
le second terme nous employons (1'). Nous obtenons ainsi:

X (x, X (y, a)) — X (y, X (x, a))

Ly\ aj + L[x o,yj L[y^ax-[ + Ly(0CX) — iz(yx)+ (pcy)x

~ LX(ay)-a(xy) + (ax)y [^[x,y] 5 a] +

avec

* — x (ay) — (ay) x — y (ax) + (ax) y + y (ax) — a (yx) + (ay) x

— x(ay) + a(xy) — (ax) y a(xy) — a(yx) a[x,y]

Ainsi,

2(x, X (y, a) — X (y, 2(x, a)) A([x,y] a)

c'est justement (5). Maintenant nous vérifions (6).

2(x,p(a,y)) — p (2(x, a), y) X(x, Lay) - LX(Xt<z)y

— C^x5 Lay] + Ll^x — L[Lx a]y H- L^y

-^0,ay] d" ^(ccy)X—x(ay)+a(xy)~ (ax)y -^a(xy) -^(ax)y

p (a, xy) - p (Lax, y) p (a, p (x, y)) - p (p (a, x) y)

L'exemple précédent est seulement un cas particulier d'un théorème
dont la preuve est un exercice utile.

Théorème. Supposons que M est un module sur l'algèbre de Vinberg V.

Alors l'ensemble M' Horn (V, M) des applications linéaires de V dans M
a aussi une structure de module sur V. En fait, si p, X et p ont leur signification
habituelle et si X', p' se réfèrent à M\ alors, pour a e M'

2' (x, a) y X (x, ay) — ap (x, y) + p (ax, y)

P' (a, x) y p (ax, y)

Dans le théorème de la section 2 nous avons signalé que la formation
des commutateurs d'une algèbre de Vinberg conduit à une structure
d'algèbre de Lie. Ce théorème peut être appliqué au produit semi-direct V X M.
On obtient alors.
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Théorème. Soit (V, p) une algèbre de Vinberg et M un module sur cette

algèbre, avec 2, p comme actions gauche et droite. L'application 2, avec

X (x, m) X (x, m) — p (im, x) munit alors M d'une structure de module

sur l'algèbre de Lie (V, p).

L'application de ce théorème à l'exemple précédent donne X (x, a)

[Lx, a]; i.e. l'une des structures habituelles sur M. Ainsi l'exemple montre

que X, p est un raffinement de la structure de module bien connue X.

Il est alors clair que si M est un module sur une algèbre de Vinberg, il a

deux structures de module sur l'algèbre de Lie associée. La première est

donnée par le théorème ci-dessus; la seconde est obtenue à partir du théorème

en changeant p en zéro: cela donne la même structure que celle donnée

directement par la condition (5).

On veut espérer avoir une troisième structure de module sur l'algèbre
de Lie associée en prenant 2 0 — mais cela ne marche pas, car (6) suppose

déjà 2. Dans le cas associatif, cependant, cette troisième méthode marche

également.

Partie II: Algèbres associatives et applications multilinéaires

Introduction.

Une classe intéressante de propriétés des algèbres associatives devient
accessible si l'on considère les applications multilinéaires dans lui-même
de l'espace vectoriel sous-jacent. Le produit p de l'algèbre fournit un
opérateur ö qui associe à une application linéaire d'ordre n une application
linéaire d'ordre n + 1. On peut exprimer à l'aide de l'opérateur ô des

propriétés connues de l'algèbre. En général, les calculs avec 5 (comme de

prouver que ô2 0) sont assez encombrants. Cependant, en introduisant
un « produit de composition » qui associe à tout couple formé d'une
application linéaire d'ordre m et d'une application linéaire d'ordre n une application

linéaire d'ordre n + m — 1, et en prouvant la seule identité (9), on
fait presque tout le travail. (Il se trouve que (9) est une version inversée et

graduée de l'identité de Vinberg.) Les commutateurs du produit de composition

vérifient les axiomes d'une algèbre de Lie graduée. On montre que
l'opérateur ô est le commutateur avec l'application produit p. On définit
la cohomologie associée à ô et on expose ses relations vis-à-vis des dérivations
et des extensions. Du système des applications multilinéaires la cohomologie
hérite d'une structure graduée de Lie. Cette dernière et la cohomologie
sont appliquées dans la théorie des déformations des algèbres associatives.
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Un exemple simple de déformation illustre comment en pratique marche le

mécanisme.

Vu la nature d'exposition de l'article, on a limité les connaissances

préliminaires requises à celles de la partie I sans compter quelques facilités
à jongler avec les applications multilinéaires.
4. Le produit de composition.

Dans cette section nous recherchons, d'un point de vue « plus élevé »,
la nature de la propriété d'associativité. Des sections de la partie III en

feront de même des propriétés caractérisant les algèbres de Lie et les algèbres
de Vinberg. La ressemblance frappante de tous ces cas nous permettra
d'être beaucoup plus bref dans les deux derniers cas. L'expérience ainsi

gagnée avec ces types d'algèbres nous permettra de formuler des critères

généraux qui s'appliqueront quand, pour d'autres types d'algèbres, on aura
des connaissances analogues.

Soit V un espace vectoriel, p un produit associatif sur V (nous utiliserons
de façon interchangeable p (x, y) et xy), et M un module sur (V, p) d'action
gauche X et d'action droite p. (Nous utiliserons xm à la place de X (x, m)

et my à la place de p (m, j).) Le cas particulier M F, X p p est très

significatif pour les applications.
Supposons que / est une fonction à n variables dont le domaine est V,

qui prend ses valeurs dans M, et qui est linéaire par rapport à chaque variable

— nous appellerons / une application linéaire d'ordre n de V dans M.
Nous pouvons alors associer à / une application linéaire d'ordre n + 1

de V dans M par une méthode très ingénieuse. On note <5/Tapplication
nouvelle; ainsi <5 est un opérateur qui augmente les degrés d'une unité. On a

(<5 f)(x0, x0f(xu ...,xn)+

+ f(x0,x1x2,x3,...,xn)+ + (-l)"_1/(x0, ...,X„_2X„_1,X„) +

+ (-l)"/(Xo,Xl> xn)(-l)"+1/(^o>

ou encore

(ôf)(x0,... ,xn)px...+
n

+ E (-1)7 (x0,...,jU 0>Ct-XB) +
i= 1

+ (-l)"+1p(/7o.
Considérons quelques cas particuliers de cette formule.

n 0. Alors / est précisément un élément m de M, et on a

(ôm) (x) X (x, m) — p (m, x) xm — mx
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Ainsi dm : V -» M est la « dérivation intérieure » de V dans M déterminée

par m. A vrai dire, nous avons

(ôm)(xy) (ôm)(x)y + x(ôm)(y).

n 1. Alors / est une application linéaire V -» M. Supposons .ôf 0;
c'est-à-dire

0 (5/)(x,y) xf(y)+f(x)y
OU

f(xy)xf(y) + /(x) y

f est, d'une façon apparente, une dérivation de V dans M.
Comme autre interprétation nous considérons maintenant le cas M

-- V.fest alors une application linéaire de V dans V et, quel que soit le réel t,
etf (donné par une série de puissances) est une application linéaire inversible
de V sur V: son inverse est e~tf. On obtient un produit \ité quivalent (c.-à-d.

isomorphe) à ji en posant

(7) n, (x,y) e'tfn(etfx, e,f

Nous recherchons l'effet dans jit d'un changement du premier ordre:

d
~z&\ t=o{x,y) -fn(x,y)+n(f=dt

-f(xy)+f(x)y + (j) (<5f)(x,y).

Cela donne de ôf une seconde interprétation comme l'effet du premier
ordre dans une famille à un paramètre de structures équivalentes.

n 2. Nous considérons maintenant une famille arbitraire (différen-
tiable) jit de structures d'algèbre associative ; de telle sorte que, pour tout t,
nous avons

Vt (*> i"t (y, z)) - Ht (x, y), 0

Nous différentions à nouveau et prenons t 0 (on pose notons
d/ pour —^nt

I t — o. Nous trouvons

/ (x, y (y, z)) + y(:x,f(y,z))- f(y (x, y) z) - (/(x, z) 0

OU

/(x, yz)+ xf(y,z)-f(xy, z) -/(x, y) z 0
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Après un réarrangement des termes, on voit que c'est exactement ôf — 0.

Ainsi, les applications bilinéaires/de V dans lui-même (cas M=V) vérifiant
ôf 0 sont les « déformations infinitésimales » de pi. Une autre façon
d'exprimer cela est que pi + tf vérifie la condition d'associativité jusqu'aux
termes du second ordre (i.e. modulo t2) si et seulement si ôf 0. La famille
(7) est un cas particulier (famille d'équivalences) des familles de structures
associatives. (Noter la différence de la signification de/dans les deux cas/)

Encore une interprétation: ce qu'on appelle le problème de l'extension.
Le produit semi-direct W V X M avec comme produit fi celui défini
dans (2) est une algèbre dans laquelle (i) M est un idéal vérifiant M2 0

(i.e. mn 0 quels que soient m, n e M) et dans laquelle (ii) le quotient
W/M est isomorphe à (V, pi), tandis que (iii) M est un module sur W/M par
l'intermédiaire de X et p. Le problème de l'extension consiste à trouver
toutes les multiplications fi! de W telles qu'on ait (i), (ii), (iii). Il n'est pas
nécessaire que V soit une sous-algèbre de W pour une de ses structures;
néanmoins nous continuerons à représenter W comme un espace vectoriel

produit de V et de M. Supposons que fi' est un tel produit, alors (i) implique
que fi et fi' coïncident sur M (ils valent tous deux zéro); (ii) implique que

fi et fi! diffèrent sur V par une application cp à valeurs dans M, tandis que

(iii) implique que fi et fi' coïncident quand on les évalue par un élément de

V *= W/M et un élément de M.
En une formule,

fi' ((x,m) (y,«)) (n(x,y) cp(x,+ (x, n) + p (m, y)).

On voit maintenant par un calcul direct que l'associativité de fi' est équivalente

à

À (x, <j o(y,z))- p(cp(x, y) z)+ i p(x, p (y, z)) - (x, 0

c'est-à-dire à ôcp 0. On considère comme équivalentes deux extensions

fi' et fi" quand elles sont liées par un automorphisme d'espace vectoriel
de W qui induit l'identité sur M et sur W/M. Une telle application i7 a la

forme

F (x, m) (x, m + f (x)), avec /: V -> M

L'application inverse est F~1 (x, m) (x, m— f (x)). Les structures équivalentes

à fi sont ainsi

fi'((x,m) (y, n)) F'1 fi(F(x,m) (y, n))

F'1 fi((x, m + f(x)), (y, +f(y))
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F1(p(x, y),X(x,n+ /0)) + p(m + f(x),y))

(p(x, y), -f(p(x,y))+ ?,{x,n)+ + p(m, y) (f(x), y)).

Ainsi, dans ce cas,

cp(x,y) -f(p(x,y)) + X(x,f(y)) + p(f(x), y) (ôf)(x,y).
De ces exemples émerge une certaine idée. Dans chacun des exemples

est un problème dont la solution a est n'importe quelle solution de ôx 0.

Parmi les solutions certaines moins intéressantes sont de la forme a öß.

Cela suggère ö2ß 0. A vrai dire, cela peut se vérifier — nous le ferons

plus tard. Cependant, une vérification directe serait maintenant extrêmement

laborieuse, et on peut s'attendre au même phénomène pour d'autres calculs.

Aussi introduisons nous certaines notations comme outil pour les mener à bien.

Pour le moment nous considérons un espace vectoriel V mais ne supposons

pas qu'il ait quelque structure d'algèbre. Nous prenons pour / une

application linéaire d'ordre n de V dans V et de façon analogue pour g
une application linéaire d'ordre m de F dans V. (En fait, g peut prendre ses

valeurs dans n'importe quel espace vectoriel.) Nous définissons le produit
de composition g of qui est une application linéaire d'ordre n + m — 1 par

(8) {göf){x1,=

X l)(l~1 )(n — 1} g(Xj,..„Xi-iJiXi, ...,Xi + J)_1),Xj+„, +
/= 1

Cette définition est motivée par la suite.

Application l.Soit p une application bilinéaire de Vdans V; on a alors

(p 5 p) (x, y,z)p( p (x,— p. (y,

Ainsi jiô p 0 est la condition nécessaire et suffisante pour que p définisse
sur V une structure d'algèbre associative.

Application 2. Soit / une application linéaire d'ordre n de V dans V,
et p une structure associative sur VAlors, à l'aide de la formule donnant
ôf (avec À=p=p) on trouve

ôf (-1 r+ip5f-
— fö p correspond à la somme des termes « du milieu »; (—1
aux termes « extrêmes ».

Nous avons ainsi montré que l'introduction de o conduit à une notation
plus courte. Pour calculer avec elle, nous avons besoin de quelques propriétés.

L'Enseignement mathém., t. XIV, fasc. 3-4. 17
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Théorème. Soit/, g, h des applications linéaires d'ordre n, m, p de V dans

lui-même. On a alors l'identité suivante

(9) (fôg) oh- fô(gô h) og -fô(hôg)}
En particulier, pour n 1 alors fö g f o g et les deux côtés de (9)
valent zéro. Pour n 0, alors fd g 0.

L'identité (9) ressemble beaucoup à l'identité de Vinberg (1), excepté

en ce qui concerne l'ordre inverse des facteurs et la puissance de (—1) qui
reflète la graduation. Nous espérerons donc aussi quelques propriétés
analogues.

Pour prouver (9), on a besoin de quelque patience, d'une grande feuille
de papier, d'un crayon pointu et d'une bonne lumière. Cependant l'effort
sera récompensé puisque c'est l'un des quelques théorèmes dont la preuve
est un peu pénible. Nous indiquons ici la méthode, laissant les détails comme
les puissances de (—1) nécessaires aux soins du lecteur.

Dans la définition (8) de / ö g, la fonction g « visite » tous les espaces

possibles sur /, avec des signes appropriés. Quand ö h est ensuite appliqué
sur la droite, alors h « visite » tous les espaces possibles def ö g. Dans
certains termes h occupera un espace possible de /; dans d'autres un espace

possible de g. Les derniers termes constituent exactement / ö (göh) ; dans

les termes restants (les premiers) g et h occupent tous deux des espaces
possibles de /. Un observateur plus fin trouvera dans ces termes une certaine

symétrie en g et h. — Les détails sont laissés au lecteur...

Les commutateurs, des produits de composition forment une algèbre de

Lie graduée. Pour fixer la terminologie, nous appellerons zz — 1 le degré

réduit d'une application linéaire d'ordre n; le degré « ordinaire » est n.

Théorème. Si/, g sont des applications linéaires d'ordre n et d'ordre m
de l'espace vectoriel V dans lui-même (les degrés réduits valent n — 1 resp.

m — 1), et si

[f,gT göf-i-iy-^
alors [,]° est, par rapport à la graduation réduite, une structure d'algèbre de

Lie graduée sur l'espace des applications multilinéaires. C'est-à-dire

(i) [j\ g]° est une application linéaire d'ordre n + m — 1 (de degré réduit

n+m — 2) qui dépend linéairement def et de g.

(n) [f,gT
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Si h est une application linéaire d'ordre p, alors

(i/o (-i)("-1)(p"1)[[/,0]°,fc]° +(-i)<m"1)(n_I)[[0^]o./]° +

+ (-lYp-inm~1)[[hJY,g]°0.

La preuve de (iii) (identité de Jacobi) est la même que celle du théorème

de la section 2, excepté qu'il faut veiller aux signes. — Notons l'ordre inhabituel

des facteurs dans la définition de [,]°; il reflète le fait que, d'un certain

point de vue, l'ordre des facteurs dans fog est l'ordre « erroné ».

Des conséquences immédiates du théorème sont par exemple les sui-

vantes :

<5/=-[>,/]",
l'identité de Jacobi donne, elle,

ô2f [p,[p,n°]° =i[L o

lorsque (i est associatif. L'identité de Jacobi donne aussi

(10) <5 [/; gY [<5/, gy+ -1)""1 [/, SgY.

5. Cohomologie.

Dans la section précédente nous avons vu un exemple de la situation

suivante: on a un système (C")^ _œ d'espaces vectoriels (ou de modules si

on aime la généralité) et une application linéaire ô qui envoie chaque Cn

dans C"+1 telle que ô2 0. Nous pouvons ainsi prendre pour Cn l'espace
des applications linéaires d'ordre n de V dans V pour n ^ 0 et Cn { 0 }

pour n < 0. On peut représenter la situation par la suite

Q
<5

£0 ô ô ô
çm — l à çn à çyi + 1 à

A chaque Cn est associée une application entrante ô, dont on note Bn l'image
(de telle sorte que Bn 3Cn~x) et une application sortante <5, dont on note
le noyau (ensemble des zéros) par Zn. Le fait que ô2 0 dit que Bn est un
sous-espace de Zn. Les deux sections précédentes contiennent certaines
illustrations de ce que Bn et Zn signifient pour les petites valeurs de n dans le
cas des algèbres associatives.

La suite ci-dessus est appelée exacte en Cn si Bn Zn ; elle est dite exacte
si elle est exacte en Cn pour tout n. Comme mesure du défaut d'exactitude
de la suite on introduit selon la coutume les quotients Hn Zn/Bn. On les

appelle les groupes de cohomologie ; dans la situation présente les groupes
sont en réalité des espaces vectoriels. Zn et Bn sont appelés les espaces de
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cocycles resp. de cobords. Dans le cas d'une algèbre F, comme dans la section
antérieure, on écrit Hn (F, F): c'est « la cohomologie de F à coefficients dans
F». Plus généralement, quand M est un module sur F, on a les groupes de

cohomologie Hn (F, M) de F à coefficients dans M. Nous les décrirons
brièvement.

Dans certaines situations, comme par exemple celle de la section précédente

on a des applications bilinéaires (les produits) Cn X Cm -> Cp (dans
notre cas, le produit est donné par [, ]° &tp n + m — 1), et <5 est une
dérivation par rapport au produit (dans notre cas voir (10)). Alors quand on
applique ô au produit de deux cocycles on obtient zéro ; ainsi le produit de

deux cocycles est un cocycle. De façon analogue, le produit d'un cocycle
et d'un cobord est un cobord. (Prendre dans (10) pour g un cocycle et pour
ôf un cobord. Alors le dernier terme disparaît de sorte que [ô/, g]° est égal

au premier terme qui est un cobord.) Ainsi, les produits avec la propriété
de dérivation induisent pour les groupes de cohomologie des produits
Hn X Hm Hp puisque le produit de deux cocycles est changé seulement
d'un cobord quand on change d'un cobord les facteurs. En particulier, dans

la situation de la section 4, on a des produits

Hn(V, V) x Hm(V, F) -» Hn+m~i (j/ )/)

produits qu'on note également [,]°. On a aussi une structure de Lie graduée

puisque toutes les propriétés qu'on peut décrire par des équations se

généralisent quand les opérations des équations se généralisent.
Dans le cas général de Hn (F, M\ nous avons déjà décrit les espaces Cn

et l'application <5 au début de la section 4. Tout ce qui nous reste à faire est

de prouver ô2 0 ce qui jusqu'ici n'a été fait que pour M F. A cette fin,
nous considérons à nouveau le produit semi-direct W F x M. Soit / un
élément de CM, i.e. une application linéaire d'ordre n de F dans M; on associe

à/ une application / linéaire d'ordre n de W dans W par le procédé évident

« d'extension »

/((*i, rnj),...,(xn,m„))(0,/(xl5

Notons que / 0 si et seulement si / 0. Le produit dans W est encore
noté fi (quoique fi n'est pas obtenu à partir de }i comme/l'est à partir de /;
fi contient aussi X et p). On invite le lecteur à vérifier que fi öfetföfi tous
les deux ont la propriété de valoir zéro chaque fois qu'une de leurs entrées

vient du facteur M et que les valeurs sont toujours dans le facteur M. Une
recherche soigneuse montrera, en fait, que ôf (qui est une application linéaire
d'ordre n + 1 de W dans W) est juste la même chose que la fonction obtenue
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en «étendant» 8/. C'est-à-dire ôf =*> ôf. Cela implique ô2 f ô2f_ 0,

donc ô2 f — 0

Les exemples discutés dans la section 3 ont les interprétations cohomolo-

giques suivantes:

F est une algèbre associative, M un F-module.

Exemple 1. B1 (F, M) est l'espace des dérivations intérieures de F dans

M. Z1 (F, M) est l'espace de toutes les dérivations de F dans M. L'espace

quotient H1 (F, M) mesure à quel point il y a d'autres dérivations que les

dérivations intérieures.
Exemple 2. B2 (F, F) est l'ensemble de toutes les déformations

infinitésimales du produit jj. obtenues par une famille de transformations inversibles

de F. Ces déformations en réalité ne déforment rien; elles effectuent

simplement un changement de base. Z2 (F, F) est l'espace de toutes les

déformations infinitésimales. Le quotient H2 (F, F) mesure à quel point il y a

de vraies déformations infinitésimales. Dans la section suivante nous verrons

que H3 (F, F) détermine à quel point une déformation infinitésimale appartient

réellement à une famille de déformations. Par exemple c'est toujours
le cas pour H3 (F, F) 0.

Exemple 3. Quand dans l'exemple 1 nous prenons M F alors B1 (F, F)
est une algèbre de Lie par rapport au produit [,]°. C'est l'algèbre de Lie du

groupe des opérations b |-> aba~1 (automorphismes intérieurs) de l'algèbre,
où a est un élément inversible quelconque. (S'il n'y a pas d'unité dans F,

on peut prendre b |-> (I+a) b (7+a)-1 où a est tel que la multiplication
gauche comme la multiplication droite par / + a est inversible.) Z1 (F, F)
est aussi une algèbre de Lie, à savoir celle du groupe de tous les automorphismes.

Comme le premier groupe est normal dans le dernier, le quotient
est un groupe. Son algèbre de Lie est juste H1 (F, F) avec le produit induit
par [,]°.

Exemple 4. H2 (F, M) mesure l'existence d'extensions de F par M à une
équivalente près. L'ensemble de toutes les extensions est paramétrée par
Z2 (F, M);les extensions inessentielles par B2 (F, M).

6. Déformations d'algèbres associatives.

Dans la section 4, nous avons déjà discuté brièvement le concept de
déformation infinitésimale d'une algèbre associative F (cf. le cas n 2);
dans le cas n 1 nous avons identifié les déformations infinitésimales dues
à une famille de transformations inversibles de F. Dans la section 5,
exemple 2, nous avons indiqué la relation avec la cohomologie. Nous allons
maintenant recommencer en utilisant les opérations ô et [,]° et leurs pro-



— 246 —

priétés y compris leurs relations avec la cohomologie. Au cours des calculs

nous essayerons de montrer l'efficacité de ö et de [,]° à accomplir les opérations

essentielles.

La condition que jà est une multiplication associative de l'espace vectoriel
V s'exprime par ji ö jâ 0. Supposons que pi + cp, où cp est une application
linéaire de V dans F, est aussi associatif; alors

0 (ß + <p) ö (fi + cp) =ßöii+iid(p+(pö]Ä+(pd(p

- ô(p+ ll(p,(pY
OU

(11) ôcp — 4- [ç>, cp~\° 0.

C'est l'équation de déformation. Nous serons intéressés à trouver toutes les

« petites » solutions cp de cette équation.
Il existe diverses méthodes pour résoudre (11). La méthode des séries

formelles de puissances est intuitivement la plus simple, quoique pas
toujours la plus pratique dans les situations réelles. Nous posons donc

<p t(px + t2cp2 + t3cp3 +

et substituons dans (11). (A strictement parler, t est une « variable » dans

un sens technique. Si l'on permet de considérer des séries de puissances en t
dont les coefficients sont des applications bilinéaires, on est obligé de façon
analogue de considérer des séries de puissances en t dont les coefficients sont
des applications multilinéaires quelconques ou des nombres réels

quelconques. Nous n'entrerons pas dans les détails et passerons tant bien que mal
à travers tout cela aussi bien que nous le pourrons.) La suite suivante d'équations

apparaît quand on annule les coefficients des puissances de t.

ôcp1 0

à(p2 ~ ilVi'ViY 0

<5Ç>3 - IVuVzY0

ô(pn+1 - i Z l<Pi,<Pn+ l-i]° 0
1=1

Ainsi, il est nécessaire que cp1 soit un cocycle. Les résultats de la section 5

impliquent que, alors, \ [cp1, (pj0 est aussi un cocycle, donc représente une
classe de cohomologie dans H3 (V, V). Si cette classe (appelée l'obstruction

première) vaut zéro, alors \ [<pu cp^0 est un cobord, et on peut trouver <p2.
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Naturellement, cp2 est unique à quelque chose dont le ô vaut zéro i.e. à un

cocycle près. Si l'on peut trouver <p2i on peut continuer avec cp3. Nous allons

montrer que à chaque étape nous trouvons un cocycle pour l'expression

à laquelle le ôcp suivant doit être égal. Si cette expression est un cobord ou si

on peut en faire un cobord en modifiant d'un cocycle le cp précédent, alors

nous pouvons considérer le pas suivant.

Ainsi supposons que l'on a trouvé cpl9 cp2, • i-e- qu'en posant

cp t (p1 + t2 (p2 + + tn cpn + tn+1 <p n+1 +

(les (pn+1 et les coefficients suivants sont arbitraires)

on a

[> + <?,/i + <p]° tn+1Fn+1 +
avec

n

Fn+1 2ô(pn+ i 4" ^2 \jPi> (Pn+ 1 — il
/ 1

A cause de l'identité de Jacobi pour les algèbres de Lie graduées nous
obtenons (3 termes sont égaux

0 [fi + cp, [p Fcp, fi + <pY~\° [/^ Ft q>1 4-..., f+1 Fn+1 + ...]°

f + 1[ß,Fn+1Y +

Comme le coefficient de tn+1 doit être zéro, on obtient

0 |>,F„+1]° - ÔFn+1 - ô f [<Pi,(p„+ i_i]°
i= 1

qui est ce que nous voulons montrer: l'expression à laquelle ôcpn+1 doit être

égale est toujours un cocycle. C'est seulement si sa classe de cohomologie
(«l'obstruction d'ordre n») s'évanouit qu'on peut trouver cpn+1. — Nous

voyons que H3 (F, V) 0 entraîne que chaque cocycle cp x peut « s'étendre »

à une famille à un paramètre de déformations.
Par souci de généralité, nous considérons brièvement une série pour cp

qui commence à un terme d'ordre plus grand:

(p tkcpk+ tk+i<pk+1 +...î).
Alors, en substituant dans (11), on montre comme auparavant que non seulement

cpk mais aussi cpk+1, cp2k-1 sont des cocycles.
L'« apparence » d'une famille de déformations peut changer quand on

la compose avec une famille Ft I + tf1 + t2f2 + de transformations
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inversibles de V;fl9f2, sont ici des applications linéaires V -» V et on peut
calculer Ft terme par terme, par exemple les premiers termes sont

F t1 J ~ tjt + t2 — f2 +/i) + t3 — /3 + fif2 + fifi~ fi) + •••

La déformation modifiée est donnée par

n't(x,y) F71 ^(Ftx,Fty)F7

Supposons que la série de puissances de <p commence comme ci-dessus

par tk (,k^ 1) et décidons de la composer avec un Ft qui commence à la même

puissance: Ft 7+ ••• On trouve alors

Ft(x,y) + tk(-fkH(x,y) + + ni*, fky)) +

+ tk <pk + •••

où les points indiquent les termes d'ordre plus grand que k. Ainsi, en posant
cp' — jit — fi, on a

cp' + (pk) 4- ;

autrement dit, étant donné une famille de déformations de n, on peut par
le choix de Ft changer d'un cobord arbitraire le terme principal de l'expansion

en série de puissances. En ce sens, seule la classe de cohomologie du
terme principal « compte ». En particulier, si le terme principal est un
cobord, on peut le changer en zéro par un choix convenable de Ft. Comme

corollaire, si H2 (K V) 0, chaque terme principal, étant un cocycle, est

en fait un cobord et peut être changé en zéro. Nous pouvons montrer que,
en fait, on peut alors trouver une famille Ft telle que le cp' final est zéro
c'est-à-dire qu'on a le

Théorème. Si H2 (F, V 0, alors toute famille jit de déformations
d'une structure associative \i est triviale si c'est une famille à un paramètre
comme sérieformelle de puissances, i.e. existe unefamille Ft de transformations
inversibles de l'espace vectoriel sous-jacent développables en séries formelles
de puissances à un paramètre telle que

F (x,y) F~x n

(Dans ce cas, on dit que pi est rigide)

La seconde méthode pour résoudre (11) est à vrai dire la méthode
classique utilisée dans la résolution des équations linéaires — on exprime
certaines des inconnues au moyen d'autres, les paramètres. Dans ce cas,
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cependant, les équations ne sont pas linéaires et il peut y avoir en pratique

des difficultés à trouver explicitement les solutions.

La méthode est fondée sur deux idées: (i) partager (11) en trois ensembles

d'équations et les résoudre consécutivement, (ii) choisir les paramètres les

plus favorables. Les deux buts sont atteints en observant qu'on peüt décomposer

l'espace des applications linéaires d'ordre n de F dans F en une somme

directe de trois sous-espaces. Le premier est Bn, l'espace des cobords, le

second nous l'appellerons (par abus de notation) Hn; c'est tout sous-espace

de Zn complémentaire de Bn, il est isomorphe à Hn (F,F). Le troisième Un

est complémentaire de Z", de telle sorte que l'espace en entier est la somme

directe de Zn et de Un. La décomposition est ainsi Bn + Hn + Un, ou Zn +
+ Un, comme le dictera la nécessité. Les applications de projection
correspondantes sont notées nB, nH et nv.
L'équation (11) se partage maintenant comme il suit:

(IL) a) Ô(p - i;7lB[(p,(p]° 0

b) %H [>,<p]° 0

c) 7iv |>,<p]° 0

En se rappelant l'origine de (11), nous voyons que (lF.c) est équivalent à

(11'.F) tcv [/x + <p, // + cp]° 0.

Nous l'utiliserons sous cette forme.
Dans (IL.a) posons q> z + u, où z e Z2 et u e U2, et considérons z

comme un paramètre. (IL.a) devient alors, puisque ôz 0

(IL.a') ôu — ^nB [z +u9 z +w]° 0

Le côté gauche note, pour chaque z, une application qui envoie ue U2 dans

un cobord de B3. Pour z 0, cette application est justement u ]-» ôu qui
est un isomorphisms entre U2 et B3. Le théorème des fonctions implicites
nous dit alors que pour un petit z on peut trouver un voisinage de u 0

qui est appliqué de manière biunivoque sur un ensemble ouvert de B3 et

que l'origine de B3 est dans l'image. Désignons par (z) l'image inverse
de 0; ainsi u 0 (z) est une solution de (IL.a'). Le théorème des fonctions
implicites nous dit que 0 paramétrise toutes les solutions petites cp z +
+ 0 (z) et que 0 est analytique.

Nous substituons maintenant cp z + 0 (z) dans (lL.bj. Malheureusement

on n'a aucune garantie que l'équation qui en résulte

(IV.b') Q(z) defnH[z + <l>(z),z + <I>(zy]°0



— 250 —

a de nombreuses solutions. Cette équation correspond aux obstructions

que nous avons trouvées dans la méthode des séries de puissances. C'est

pourquoi, on appelle Q l'application obstruction.
En ce qui concerne la troisième équation (ll'.c'), les choses vont mieux:

pour les petits cp c'est une conséquence des deux premières équations
(ll'a, b), qu'il n'y a pas de conditions supplémentaires. Cela correspond
au fait que dans la méthode des séries de puissances, Fn+1 est automatiquement

un cocycle. Pour prouver cela, nous avons seulement à montrer ce qui
suit: si cp est tel que w [p+cp, n-\-(p]° appartient à U3 et si cp est petit,
alors w — 0. Grâce à l'identité de Jacobi et avec les hypothèses faites nous
avons

o [ß + (p,[j"+<P,At+ </>]°]° [> + <?, w]°

Or, on peut prendre pour w n'importe quel élément de U3 pour lequel
[p+cp, w]° 0 et nous montrons que c'est zéro quand cp est petit. Or
w H» [p, w]° — ôw est une application de U3 dans l'espace des applications

linéaires d'ordre 4 qui est une injection. Un changement: remplacer
[ju, .]° par [p+cp, .]° ne change pas la propriété (biunivoque) de l'injection
quand cp est petit. (Le rang d'une application linéaire ne diminue pas par
un petit changement.) Par suite, il y a dans U3 un seul w pour lequel
[p+cp, w]° 0 quand cp est petit; la seule valeur est évidemment w 0.

Ainsi, toutes les petites solutions de (11) sont de la forme cp z + F (z),

où $ est analytique dans un voisinage du 0 de Z2 et où de plus z est limité

par la condition Q (z) 0; Q est aussi analytique à valeurs dans H3.

(Notons que H3 (F, V) 0 entraîne que les petites solutions cp de (11)

forment une variété locale sans singularités; son espace tangent est Z2.)
Pour considérer les équivalences parmi les déformations, nous observons

que dans le cas où a : V -» V est inversible il lui correspond une transformation

sur une multiplication p! donnée par \x (x, y) a~1 p (ax, ocy).

De façon analogue, à toute application, linéaire d'ordre n, f correspond

une nouvelle application appelée o (a)/ :

(<7(a)/)(x1; a_1/(ax1,coc„)

On a p a (a) p. Il est facile de voir à partir de la définition de ö que

a (ce)(fög) a (a)fda (ce) g

Ainsi, si on a g ö p 0, on a aussi a (a) p ö o (ce) p 0. (Cela exprime
le fait évident que des algèbres isomorphes à des algèbres associatives sont
elles-mêmes associatives.) Si a est près de l'application identité /, a est de la

forme eß, où ß est une application linéaire.
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Lemme.Si ß :V->Fest linéaire et si/est une application linéaire d'ordre

n de V dans V, alors

a[e')f é">f

oüößf=[ß,f]°.
Pour montrer cela, nous remplaçons ß par tß et nous différentions par

rapport à t. Vu la définition de a on a

I a(e'ß)f - ßöa(e^)f + a(e^)f 5 ß(c«V]°
dt

Or — et ôo commutent puisque ß est indépendant de t et nous trouvons
dt p

(jxfa{e'ß)f 5"a{e'ß)f-

tN
Si l'on pose t *=» 0 c'est le coefficient de — dans le développement en série de

NI

Taylor de g {etß)f Pour t ~ 0, le côté droit coïncide avec ößf. Ainsi nous

trouvons

-X'k{(s)'-X'N-<"'
II suffit de faire t 1 pour prouver le lemme.

Comme pour la notation <5, on peut poser ôgf [g,f]°. On a alors
S f [ji,f]° — ôf de sorte que <5 — dß. Notons aussi que

dßix öß •

L'action d'un opérateur g (eß) sur ji donne quelque chose qui dépend
du choix de ß. Pour ß e Z1 (V, V) on a öß 6ßfi 0 de telle sorte que
g (eß) eöß ii n\ i.e. ß ne change pas. Pour ß e Z1 (V, V), les eß

appartiennent au groupe d'automorphismes de ß. On peut ainsi voir que les eß

pour ß g U1 sont à vrai dire les seuls intéressants si l'on veut que ß « bouge ».

Comme alors ößß n'est jamais zéro (excepté pour ß 0), les éléments

g (eß) ß, ß e U1, sont tous distincts l'un de l'autre pour ß petit et forment
en ß une variété locale dont l'espace tangent est B2 » ÖU1. Quand ß
est distinct de ß mais proche de ß, l'ensemble des g (eß) ß pour ß e U1

proche de 0 forme aussi une variété locale dont l'espace tangent en ß
est proche de B2. Ainsi on voit intuitivement que pour ß près de ß et ß
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dans un voisinage de 0 contenu dans U1 toutes les orbites a (eß) p se couperont

en p suivant un sous-espace transversal à B2. (Les considérations
précédentes sont purement intuitives; le théorème des fonctions implicites
fournit la preuve actuelle.) Ainsi si nous prenons le plan P passant par p
dans la direction de H2 + U2, alors P contient en particulier au moins

un point de l'ensemble des a (eß) p pour tous les p proches de p. Les p!
associatifs dans P ont, cependant, justement la forme p + z + $ (z) où z
est réduit à H2 et vérifie Ü (z) 0. Les p considérés représentent toutes
les classes d'équivalence des multiplications associatives proches de p et,

comme nous le voyons, sont paramétrés par les zéros d'une application
analytique Q de H2 à valeurs dans H3.

De façon plus explicite: chaque structure associative p proche de p
est de la forme p! — o (eß) (jxJrzJr<P (z)) où z appartient à un voisinage de 0

contenu dans H2 et vérifie Q (z) 0 tandis que ß appartient à un voisinage
de 0 contenu dans U1.

Dans le cas particulier où H2 (V, V) 0 cela signifie qu'il y a seulement

une classe d'équivalence: celle de p. C'est-à-dire que toutes les multiplications

associatives proches de jx sont équivalentes à p. C'est une autre forme
du théorème de rigidité.

On doit remarquer que bien que a (eß) fi fx pour ß e Z1, en général
er (eß) ß \x pour \x! proche de jx et pour le même ß. Pour trouver les

équivalences entre les p! proches de p on n'a pas pris les transformations en
considération. Comme résultat, on peut en général trouver leurs équivalents

parmi les p de P.

7. Un exemple simple.

Nous calculerons les petites déformations de l'algèbre associative à deux
dimensions V dont les éléments sont de la forme a + ùe, où a et b sont réels

et s2 0. Une base de V sur les nombres réels est constituée par les

éléments 1 et e. Soit/ : V -> V une application linéaire, <5/ est donnée par

(5/)(1,1) l./(l) -/(1.1) +/(l).l =/(1),

(ôf)(M) (Ôf) (S, 1) l./(8) -/( 1.8) +/(1).8 8/(1),

(5/) (e, 8) e./(e) -f(e.e) +/(s).8 2e/(e)

Par suite, / est une dérivation si /(l) 0 et si f (s) est un multiple de s.

L'espace Z1 H1 des dérivations est à une dimension et une base en est

donnée par l'élément avec

£ (a +bs) bs
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Soit maintenant une application bilinéaire cp. On peut alors calculer Ôcp

de façon analogue. Cependant nous savons déjà que ô (<ôf) 0 quand/est
linéaire. Aussi pouvons nous restreindre cp à un sous-espace W
complémentaire à B2 et dont les éléments ont la propriété que <p(l,l) 0et
(p (a, a) e R. Pour ces cp là, on trouve

(ôcp) (1, 1, 1) (ôcp) (1, e, 1) (ôcp) (a, e, e) 0

(ôcp)( 1, 1,8) <p(l9a)9(ôç)(a9 1,1)= - <p(e9 1),

(ôcp)( 1,8,8) - ecp(l9 a) 9(ôcp)(s9 8, 1) (p (s, 1)

(5q9) (e, 1, e) e(<p( 1, s) - <p(s9 1))

Les cp pour lesquels ôcp 0 donnent H2. Ils sont caractérisés par cp (1, a)

cp (e, 1) 0 — et naturellement cp (1, 1) 0 et cp (a, e) e R. Donc H2

est à une dimension et est engendré par l'application z avec z (a, a) 1,

z étant nul pour toutes les autres paires d'éléments de la base. Pour ce z,

onazôz 0. Si cp z + u est une solution de (11), alors on a dans ce cas

ôu +(zöu+uöz+uöu) 0,

qui est vérifié pour u 0. Ainsi si t est un paramètre réel, les multiplications
déformées sont \x — }i + tz; i.e.

Ii' (a + be, c + da) ac + (ad + bc) a + t. bd

ou encore

\x' (1, 1) 1 \x' (1, a) (e, 1) 8 \i' (a, a) t.
On distingue t > 0 et t < 0 en posant t ± k2. Avec le nouvel élément
de base a! a/k on a

jU'(8',8') ± 1

et

ti' (a+ba',c+da') (ac±bd) + (ad + bc)af.

Ainsi toutes les structures correspondant à t > 0 sont isomorphes et il en
est ainsi pour celles qui correspondent à t < 0. Les dernières sont justement
les nombres complexes.

Comme exercice, on peut vouloir calculer le produit de z et de C- On
observe que C (e) et z (e, e) sont les seuls éléments non nuls et que les valeurs
de C sont des multiples de a ; celles de z des multiples de 1. D'où C ô z — 0.
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On trouve

[Ç, z]°(e, e) (zöO(s,ß) z(Ç(e), s) + z(e,£(e)) 2 2z(e, e),

tandis que les autres valeurs de [£, z]° et de z sont zéro. Autrement dit,

[f,z]° 2z.

L'espace ne nous permet pas d'expliquer comment cette formule est liée

au fait que jl est une structure de « saut » : il change une fois (dans chaque
direction de t) ; ensuite la structure reste constante. C'est un cas particulier
de la situation décrite dans la dernière remarque de la section 6.

Partie III: Algèbres de Lie et algèbres de Vinberg
— plus sur les déformations —

systèmes de composition

Introduction.

Le produit de composition pour des algèbres associatives a été introduit
dans la partie II, de même que quelques applications — principalement
celles concernant les déformations de telles algèbres. Cependant les

possibilités du produit de composition n'ont pas été là épuisées: il prête lui-même
à d'autres questions de déformation qui sont mentionnées dans la partie
présente: déformations d'homomorphismes d'algèbres et déformations de

sous-algèbres. Le crochet [,]° de la partie II était à vrai dire un commutateur
de produits de composition: on peut le comparer avec l'algèbre de Lie des

commutateurs d'une algèbre de Vinberg. On montre maintenant que le

produit de composition « plus fin » permet la construction d'autres structures

graduées de Lie notées [, ]u et [, ] qu'on ne pourrait obtenir à partir de

[, ]° seul. Les nouveaux crochets sont utilisés pour les déformations
d'homomorphismes et de sous-algèbres.

Les considérations de cette sorte ne sont nullement limitées aux algèbres
associatives : notre première tâche consiste à définir les produits de composition

pour les algèbres de Lie et les algèbres de Vinberg de telle façon qu'ensuite

toutes les discussions s'appliquent également aux trois types d'algèbres.

(Elles s'appliquent aussi aux algèbres associatives et commutatives ; cf. les

notes bibliographiques.) Quoiqu'on n'ait pas beaucoup à dire en ce qui
concerne les produits de composition dans les algèbres de Lie et les algèbres
de Vinberg (tous les commentaires antérieurs s'appliquent presque mot pour
mot) nous avons pensé appuyer sur leur utilité en donnant un exemple de

déformation d'algèbre de Lie.
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L'utilité « universelle » du produit de composition que nous avons ainsi

exhibé nous conduit à la question que peut-être d'autres types d'algèbres

pourraient admettre aussi des produits de composition. A vrai dire, s'il en

est ainsi, alors il y aurait pour chacun de ces types une théorie toute faite de la

cohomologie et des sortes variées de déformations attendant pour être

appliquées. Les algèbres de Vinberg peuvent par exemple être considérées

comme un exemple de type d'algèbre pour lequel on attendait une théorie

toute faite.
De façon à asseoir la théorie de façon suffisamment ferme pour

permettre de telles théories toutes faites, il est nécessaire de réduire non seulement

toutes les définitions mais aussi toutes les preuves de théorèmes à des

propriétés explicitement énoncées du produit de composition. L'espace

ne nous permet pas la pleine exécution d'un tel programme. Cependant,

nous donnons un exposé explicite des propriétés requises du produit de

composition (introduisant là les systèmes de composition), et montrons
comment certaines propriétés décisives suivent des axiomes.

8. Un deuxième produit de composition.

On a montré que le produit de composition introduit dans la section 4

est justement la pièce de mécanisme qu'il faut pour un certain nombre de

questions liées aux algèbres associatives. Nous introduisons maintenant
— dans un style beaucoup plus bref — un deuxième produit de composition
qui fait de même pour les algèbres de Lie de façon si semblable qu'il y a
réellement très peu à dire. La répétition de la même histoire ne servirait
aucun but; il est assez de suggérer que le lecteur se convainque lui-même
en parcourant une fois encore le matériel.

Nous prenons à nouveau un espace vectoriel V et prenons pour applications

linéaires d'ordre n de V dans V seulement celles d'entre elles qui sont
alternées. Pour deux telles applications, / et g (la dernière étant linéaire
d'ordre m) on définit / X g (prononcez / « hook » g) par

(12) (/TflO(**..»,*„+«-0
L sg tf(cj (xt(1), xT(m+1), xr(n + m_ ^

où la sommation est sur les permutations i de { 1, n + m — 1 } pour
lesquelles

t(1) < < t (m) et t (m + 1) < <T(n + m- 1)

On peut aussi sommer sur toutes les permutations et diviser par m (n— 1) î.

Notons que pour que cette formule ait un sens les valeurs de / n'ont pas
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besoin d'être dans V mais peuvent appartenir à n'importe quel espace
vectoriel.

La relation avec les algèbres de Lie est la suivante : si jx est une application

bilinéaire alternée de V dans F, alors jx définit une structure d'algèbre
de Lie si et seulement si fx X \x 0. Une copie donne la vérification immédiate

de l'identité de Jacobi

QiKn) (x, y, z) n(n(x,y), z) - n (x, z), y) + n(n (y, z), x)

« H(fi(x, y), z) + fi (n (yz),x) + n 0> y)

Une fois donnée la définition de X on répète avec presque une monotonie
assommante en prenant ô comme modèle : (9) est valable (la preuve suit la
même idée), [,]° est défini comme dans le dernier théorème de la section 4

et donne à nouveau une structure d'algèbre de Lie graduée. Le cobord ô

est défini comme auparavant par ôf — [jx,f]°. En considérant le produit
semi-direct d'une algèbre de Lie et d'un module on trouve pour ôf dans le

cas où/est une application d'ordre n alternée de V dans M la formule:
n

(ô/)(x0,...,x„) X (-îyXj/tXo, ...,X;_1,xj+l9 ...,x„) +
i — O

+ £ (-i)i+J+1f(ß(xi,xj),x0,...,Xi_1,Xi+1, ...,x„),
i<j

qui dans cette situation est exactement la formule classique.
Les applications et les exemples des sections 4 et 5 peuvent être répétés

presque mot pour mot. La théorie de la déformation de la section 6 marche

sans changement perceptible.
On doit faire une petite modification dans l'exemple 3 de la section 5.

Le groupe des automorphismes intérieurs d'une algèbre de Lie doit être

défini différemment. On utilise le fait qu'à chaque algèbre de Lie correspond
un groupe de Lie (pas du tout unique) et que les automorphismes intérieurs
de ce groupe (donnés par les applications de la forme b !-* aba~x) induisent

un groupe d'automorphismes de l'algèbre de Lie. (Le groupe est unique si

par exemple nous exigeons qu'il soit connexe.) L'algèbre de Lie est exactement

B1 (V, V). Toutes les remarques ultérieures de l'exemple 3 continuent
à s'appliquer.

9. Un autre exemple.

Nous étudions maintenant les déformations d'une algèbre de Lie V de

dimension trois ayant pour base p, q, 1 telle que

H(p,q) l, p(q, 1) 0 ;
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les physiciens la nomment d'après Heisenberg. En vue de la simplicité,
nous considérerons les équivalences sur les nombres complexes de sorte

que V sera un espace vectoriel complexe. (Autrement il faudrait distinguer
entre les racines réelles et les racines imaginaires des équations, etc.).

Soit / : V -» V une application linéaire, on a alors

C 5f)(p,q)n(p,f(q)) - n(q,f(p))-
- p(q,f(p))

(ôf)(q,l) p(q,f(l)) -p(l,f(q))=
(ôf)(l,p) h(I,/'(/')) ~ ß(p,f(1)) — /(M(1 1)).

Soit

/(*) +fp(x)p + (x)

de telle sorte que fx (x), etc., sont les composantes de/(x); on a alors

(ôf)(p,q) (fq (q) +fp(p)-(1)1-f„(l)p ~fq(l)q,

(ôf)(q,l)-.^(1)1,
(<3/)(l,p) -/,(1)1.

Par suite, / est une dérivation si et seulement si

fp(l)=/,(!) /4(q) +/p(p) -/x(l) 0.

De plus, B2est engendré par les applications bilinéaires alternées <p

pour lesquelles (en utilisant pour les composantes une notation analogue)

(Pi (q,1) <pp (p,q),(1, cpq <j),

<Pp(g,l) «Pp(l,p) <p9(l,p) 0.

Un espace complémentaire à B2 est formé des pour lesquels 0.
Soit cp e W; on calcule ôcp :

(öcp)(p,q, 1) p(p,(p(q,1)) + p+ +

- (p(p(p,q) ,1) -(p(p(q,l),p)-
cpp (q,1) 1 - cpp(1, p)1 +0-0-0 - 0

Ainsi on a ôcp0 pour cp e Wsi et seulement si cpp {q, 1) q>p (1, p). Les
composantes encore libres d'un cocycle cp de W sont donc

<Pp(q,1) > (pq(q,1) > cpq(l,p), (pp(p,q),

L'Enseignement mathém,. t. XIV, fasc. 3-4. 1S
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tandis que cpp (1,p) doit être égal à cpq (q, 1) et que cpt 0 Donc H2 est de

dimension 5. Un espace complémentaire U2 consiste en les cp pour lesquels

<Pp P) est libre tandis que les autres valeurs sont zéro.

L'équation de déformation est

où on doit prendre z dans H2 et u dans U2. D'après le calcul précédent on a

Comme les valeurs de z et de u sont dans le sous-espace engendré par p
et q, il en est de même de (z+w) Ä" (z+w). Puisque les valeurs de bu sont des

multiples de 1, il s'en suit que u peut satisfaire à l'équation de déformation
seulement pour bu 0, i.e. u 0. Par suite, nous trouvons que toutes les

déformations dans P sont données par p — p + z avec z g H2 et z~K z 0.

(La dernière équation est exactement Q (z) 0.)
Nous avons donc

(zAz)(p,q, 1) z(z(p,q),l)+ z(zp(q,l)p + zq(q,l)q,p) +

Les deux derniers termes s'éliminent puisque zq (q, 1) zp (1, p) ; ainsi

z a z 0 est équivalent à

Cela termine réellement la partie théorique du problème de déformation.
Nous utilisons maintenant des méthodes classiques pour trouver les

solutions.

Pour résoudre l'équation, nous considérons l'application a : x !->

- z (x, 1) de x dans l'espace X engendré par p et q. Les composantes
relativement à la base p, q de X sont données par la matrice

Comme cette matrice a pour trace zéro, la forme canonique de Jordun est

Su — (z +u) a (z +u) 0

Càu)(p,q, 1) - (1, 1.

+ z (zp (1. p) P+ (1> p) •

z(z(p,q) ,1) 0

zP(p, î) z4o, iy
ZpO, 1) 2,(3,1)

on

Notons encore p, q la base par rapport à laquelle est assurée une de ces

formes. On peut supposer que la transformation qui mène de l'ancienne base

à la nouvelle a pour déterminant 1 ; alors p (p, q) ne change pas.
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Nous distinguons plusieurs cas.

Cas 1. z (p, q)0. La forme (a) n'a lieu alors que pour A 0, car

sinon on a z 0 (donc aucune déformation). On trouve (cas la)

p'(p,q) 1, p'{q,\)=Xq>'

En prenant la base (p/A1/2, qß1'2,lß) on obtient une réduction de plus

p'(p, q)1,
cas la p' (q, 1) q

p'(l,p) P •

Dans le cas (b) on trouve

p' (p, q) 1

cas 1b p! (q, 1) p

p'(l,p) =0.
Cas 2. z (p, q) #= 0. Dans ce cas, z (p, q) est un vecteur nul pour a,

donc A 0 et z (p, #) est un multiple de p; disons z (p, q) ap par rapport
à une base convenable. Dans le cas (a) on trouve

p! (p, q) 1 + ap p 1) 0 p! (1, p) 0

Par rapport à la base (ap+1, 1) cela devient

p' (p, q) P>

cas 2a p' {q> 1) 0

p'(l,p) 0

Considérons maintenant à nouveau le cas (b) ; alors

p' (p, q) 1 + ap p' te, 1) p p' (1, p) 0

où a ^ 0. Tout élément p qui n'est pas dans le plan Y de 1 et de p induit une

application jp |-> p (y, q) ; elles diffèrent toutes uniquement par un facteur.
j a i

Pour q q, nous avons ß : y l-> p (y, q). La matrice de ß est
-1 0

; son

polynôme caractéristique est X2 — aA + 1. Le discriminant a1 — 4 est
=£ 0 pour a 7^ + 2, de telle façon que les valeurs propres 2 et 1 /X sont soit
distinctes de + i (puisque a^0) ou toutes deux égales à ± 1. Dans le
premier cas une base pour Y existe (encore notée (p, 1) telle que

p'(p,q) Xp,p'(q,l)- 0.
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On divise p par 2, on pose — 1/A2 % et on trouve

v' (P, q) P> (t#0, ±1).
cas 2b' p (p, 1) rl,

p (1, p) 0

Les cas t et 1/t sont équivalents: changer p et 1 et remettre q à l'échelle.

±2 rDans le dernier cas, la matrice de ß est

qui est équivalente à

resp.

1 0

1 0
1 1

-1 0
1 -1

Les p! correspondants sont équivalents; pour le premier on trouve

p! (p, q) p
cas 2b" p' (q,l) — — 1 — p

p'(l,p) 0

Toutes les structures suivantes peuvent à vrai dire être atteintes par
de petites déformations arbitraires:

Cas la. z (p, q) 0

Cas 1b. z (p, p) 0

Cas 2a. z (p, q) tp

Cas 2b. z(p, q) tap

z(p, 1) - tp z(<2, 1) - tp

z(p, 1) 0, z (p? 1) tp,

z(p, 1) 0 z(p, 1) 0

z(p, 1) 0 z (p, 1) - tp

10. Un troisième produit de composition

Pour étudier les algèbres de Vinberg on a encore besoin d'un autre produit

de composition. Le trait qui le distingue principalement est qu'il est

beaucoup moins connu que les deux autres. Nous le noterons Ç. Les fonctions

linéaires d'ordre n que nous considérons sont celles qui sont alternées

par rapport aux n — 1 premières variables. Il est parfois utile de les considérer

aussi comme des applications alternées, d'ordre n — 1, /' de Là
valeurs dans l'espace End (F), des applications linéaires V V.

Supposons maintenant que / est comme ci-dessus, et g de même mais

linéaire d'ordre m. Alors f Ç g est de la même sorte, linéaire d'ordre n +
+ m — 1 et donné par

(fÇg)(x1,xn+m„1)=
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ZiSg of (g (^ff(l)j •••> xtr(m-l)> X<r(m))> Xa(m + 1)> ' *' X<r(m + n-2)> Xn + m- l) +

+ _ ^(m-lHn-1) l2$g Gf(xo^ Xff(„_1)?

9 0^cr(n)' **•' *^(T(n + m — 2) » Yj+m-l))>

où porte sur toutes les permutations <rde{l,...,/2 + m- 2} telles que

er (1) < < ex (m-1) et or (m+1) < < c (n+m-2) tandis que la somme

5]2 porte sur les permutations cr vérifiant a (1) < < a {n- 1) et ö" (/z) <
< < a (n+m-2). Notons que g est complètement antisymétrique par

rapport à la première somme, mais ne l'est pas par rapport à la deuxième.

Notons aussi que xn+m_1 n'est dans aucune des permutations.
Une forme plus courte pour la définition dzfÇ g est obtenue à l'aide

de/' et g\ les applications alternées linéaires d'ordre (n — 1) resp. (m—1)

de V dans End V. Nous avons besoin aussi de g 1eg complètement alterné,

ainsi g est une application linéaire d'ordre m de V dans V.

Avec ces conventions on a

LfÇgï =f"K9 + A g' %

Notons que /' a gf est le produit extérieur de deux formes alternées à

valeurs dans l'algèbre (associative) End V; comme cette algèbre n'est pas

commutative, il n'y a pas de relation simple entre /' a g' et g A f. La
deuxième forme est plus commode pour prouver (9) en ce qui concerne Ç.

Lorsque /z est une application bilinéaire de V dans V, fi Ç fi 0 est

juste la condition (1); en fait

OxÇ/i) (x,y,z)n (jU (x, y),z)- p(y, x) z) - ß (x, ß (y, z)) +

+ ß (y, ß (x, z)).

Le produit de composition associé aux algèbres de Yinberg, comme on
l'a donné, diffère de celui qui a été donné pour les algèbres associatives et les

algèbres de Lie par un aspect important: les applications multilinéaires

pour lesquelles il est défini ont un degré positif : les produits fÇ x (avec

xeV) n'ont pas été définis. Nous les poserons arbitrairement égaux à zéro.
La signification la plus profonde de la difficulté à trouver une définition
naturelle de /Ç x vient du fait que les commutateurs (voir le cas n=0
de la section 4: « dérivations intérieures ») ne donnent pas des dérivations
dans les algèbres de Yinberg. Les exemples 1 et 3 de la section 5 deviennent
vides: B1 (V, M) 0 et le groupe des automorphismes intérieurs se réduit
à l'identité.

Toutes les autres remarques faites dans la section 8 pour les algèbres
de Lie valent maintenant pour les algèbres de Yinberg avec seulement les
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modifications évidentes. Nous copions la formule des cobords. Rappelons
qued/- -/Ç/i + (-irVÇ/:

n— 1

(ôf)(xo,...,x„)£ (-iyxif(x0, .„,xi_+
i= 0

n- 1

+ Z (-1)7(^05 -
/ 0

X] / (D^i? Y/J> • * ' ' ^i~ 1 ' + • * •> Xj — i XJ + 1, X,,« I, Xn)
i < ji < n

w-1
X! 1) fi^o, Xj_ i, Xj + i. X„_i, Xi%n) '

i 0

Les deux premières sommes viennent de la partie fi Çf, les autres defÇpi.
Notons à nouveau que xn est toujours la dernière variable; il n'est sujet à

aucune des sommations.
Nous récrivons, en utilisant/', le cobord et trouverons ainsi une relation

avec la cohomologie de l'algèbre de Lie.

(<5/)(x0, ...,x„)
n- 1

£ (-7{*;{/'(*o> .,„xi^uxi+1,..,x,.i)ï,}-
t 0

-/'(x0, ...,Xi_1,X(+1, +
+ {/'(*o> ...,xt-i,X;+i, ...,x„_t)x,-}x„} -

- Z (-l)i+ -' + 1/'([xi,XJ-], + L ..^X^.^Xy+i, ...,x„_1)x„
i<j<n

L'expression intérieure aux grandes accolades de la première somme peut
être écrite

{LXif'(x0, ...,xi^1,xi+l,...,xn_y)-/'(x0,...,xj_1,xj+1,..,îx„_1)L;c. +

+ Lf! (x0,..., X{_i,Xi + 1..., -"-n

En comparant cela avec l'exemple du module de Yinberg End (F) de

la section 3, on voit (en utilisant la même notation) que

(Sf)(x0,
n- 1

Z (-l)7(x;,/'(xo, ...,Xi-.i,X,+i, ...,x„_1))x„ -
1 0

- Z (-iy+ -/+1/'([>/,X,.] » ...,*/-!,*! + ...,Xy_1,XJ-+1, ...,X,-i)xB.
i<j<n

C'est la formule des cobords de la section 8 puisque, comme nous le

rappelons, x |-> X (x, a) est une représentation (à gauche) de l'algèbre de Lie
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VLie associée à l'algèbre de Vinberg F. Avec des notations évidentes par
elles-mêmes nous avons donc:

(^Vinbergf) ~ & Lief •

Une conséquence directe de cela est

Hn(V,V) iL1-1 (VLie9 End (F)).

De nombreuses propriétés de la cohomologie des algèbres de Vinberg

peuvent donc être déduites de la cohomologie des algèbres de Lie. Notons,
cependant, que la structure de Vinberg n'a pas été perdue dans cet isomor-

phisme. Elle a été utilisée essentiellement par la définition sur End (F)
d'une structure inaccoutumée (à savoir, X) de module sur VLîe.

Comme dans le cas associatif et le cas de Lie, la cohomologie de F à

coefficients dans F induit une structure graduée de Lie [, ]°. On peut se

demander si, vu l'isomorphisme précédent, cela peut être « expliqué » par
quelque structure graduée de Lie connue portant sur la cohomologie de

VLie à coefficients dans End (F). La réponse n'est pas connue pour l'instant.

11. Le cup-crochet.

Jusqu'à maintenant tous les problèmes que nous avons considérés

tournent autour du crochet [, ]° que nous pouvons appeler le crochet de

composition. Nous avons montré, par exemple, que l'opérateur cobord et
les problèmes de déformation peuvent s'exprimer au moyen de ce produit
seul. Si nous utilisons ö (ou X ou Ç) avant tout, c'est parce que cp ö cp

est plus facile à écrire (ou à copier) que \ [cp, cp]°.

Cependant en principe, [, ]° et ses propriétés suffiraient pour les parties
théoriques et la structure « plus fine » ö n'était pas nécessaire.

Dans cette section nous introduisons le cup-crochet [, ]u qui peut être
défini au moyen de o seul, mais ne peut pas l'être au moyen de [,]°. Ainsi
sa définition dépend de la structure disponible la plus fine.

En partant pour l'instant sur une ligne plus intuitive, nous considérons
un homomorphisme arbitraire h : F -» V' d'algèbres dont on désigne les

produits par fi et ji'. Ainsi h vérifie

hji(x,y) p'(hx9hy).

Si cp : F — F ' est linéaire, alors h + <p est un autre homomorphisme (à vrai
dire déformé) si

0h+<p)n(x,y) n'((h+(
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En utilisant la formule ci-dessus on peut récrire cela

g' (hx, cpy) — çg (x, y) + g' (<px9 hy) + g' (<cpx, <py) 0

Or V est un F-module via h ; dans le cas associatif et dans le cas de Yinberg
donné par

X(x,y') g' (hx, y') p{x',y) g'(x',yh),
et dans le cas de Lie par seulement la première de ces formules. Dans les

trois cas, les premiers trois termes sont exactement (ôcp) (x, y). Le dernier

terme est par une définition que nous allons donner tout à l'heure égal à

\ [<p, ç]u (x, y). L'équation de déformation devient ainsi

ôcp+yI>,<p]u 0 ;

c'est la forme habituelle (cf. (11)), quoique le degré de <p, l'image de (p et le

crochet soient différents.
Pour les algèbres associatives le cup-produit est bien connu. Soit /, g

des applications linéaires d'ordre n resp. m de V dans V ; alors / u g est

donné par

(fcjg)(x1, ...,xn+m)/<'(/01?

Le cup-produit est évidemment associatif, et on peut montrer aisément que
ö est une dérivation:

ô(fug) Öfug +(-1ffuôg.
Il s'en suit (voir la section 5) qu'un cup-produit est induit dans la cohomo-

logie de V à coefficients dans V. En prenant les commutateurs

lf,9T =fvg-(-rr'.r/u/
on obtient une structure graduée d'algèbre de Lie: le cup-crochet.
Naturellement ô est encore une dérivation.

Dans le cas des algèbres de Lie F, V on définit [, ]u directement :

lf,dT(xU ;xn+m)

X sg an' {f{xaW, xa(n)),g(xff(n+1),
avec

cr(l) < < a(n) et o (n + 1) < < a (n + m)

Le cup-crochet définit une structure graduée d'algèbre de Lie, et ô est une
dérivation par rapport à [, ]u.
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Dans le cas des algèbres de Vinberg on pose

(/uöO(*l> +

Z sg (J[lf (/..., ^o-(n-l)? X(7(n))> 9 iXa(n + l}9 **•> *<r(/i + m - 1 > -^n + m))

avec

ö (1) < < cr(n-l) et a(n + 1) < < a(n + m- 1)

Notons que l'on ne permute pas xn+m et qu'on a symétrisé à gauche/. Ce

produit vérifie

(/u/) u k -f u (öfufc) (-l)m?I{(#u/) u k - 0 u (/ufe)}

de telle sorte que les commutateurs définissent une algèbre de Lie graduée

(le cup-crochet) [, ]u ; cf. la fin de la section 4 pour une situation semblable.

L'application / |f Ç fi est une dérivation par rapport à u ; donc aussi par
rapport à [, ].u De façon analogue, / |-> (—1)" }iÇf= — 1)"/ u h —

— h u/ — [h,f]u est une dérivation par rapport à [,]u grâce à l'identité
de Jacobi. Par suite ô est une dérivation par rapport à [,]u ; cependant ce

n'est pas une dérivation par rapport à u.
Ainsi, nous avons, dans les trois cas, un cup-crochet [, ]u qui donne une

structure graduée de Lie et pour laquelle <5 est une dérivation. De plus, si

cp : V -» V est linéaire, alors dans les trois cas

21>> <p]u (*> y) i«' (vx,

Cela justifie la notation de l'équation de déformation.
Comme affirmé au début de cette section, [/, g]u peut être exprimé au

moyen du produit de composition resp. ö, Ä" et Ç. Nous le montrons d'abord

pour V' V. La preuve est assez simple dans les trois cas pourvu qu'on
aille réellement dans les détails de la déduction de (9) qui utilisent les suggestions

qui suivent (9). La comparaison de la preuve et de la définition de

[, ]u nous montrera alors que

lf,gY (-l)m_1 {(nôg)df-fiô(g

et de même pour ^ et Ç. Dans les trois cas il est utile de considérer d'abord
le terme en ji ö g resp. ju Ç g pour lequel g occupe par rapport à ju la seconde

place; pour juj g nous bougerons simplement g pour qu'il soit à la seconde

place — ensuite nous appliquons sur la droite ~ôf{Çf resp. X/). Le lecteur
peut à nouveau suppléer aux détails complémentaires. Notons que (9)
implique

u,gr(-ir+li>,/r.
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La formule donnant [/, g]u peut être résumée si on se rappelle que g o g
est un terme de ôg; de façon analogue g o (gôf) est un terme de <5 (gôf).
En insérant les termes omis et en appliquant (9) on trouve

U,9T ôgôf ~(~lf go ôf+ (-!)
(Naturellement on a la même chose pour et Ç.) Cette formule a quelques
conséquences intéressantes. Elle nous indique tout d'abord que ô n'est pas
en général une dérivation par rapport à o ; deuxièmement il s'en suit que le

produit [,]u induit dans la cohomologie de F à coefficients dans F vaut zéro

(il n'en est pas ainsi quand les coefficients sont dans F'.)
Une troisième remarque est que la propriété de dérivation de ô par

rapport à [,]u suit assez facilement de la dernière formule. Assez curieusement

cependant, l'identité de Jacobi pour [, ]u ne semble pas suivre de

formules générales telles que (9) et ses conséquences, mais dépend de quelques

propriétés délicates de o que nous n'avons pas encore formulées abstraitement.

Nous reviendrons sur cela dans la section 13.

De façon à enlever la restriction V' — F des remarques précédentes,

nous passons, comme dans la section 5, au produit semi-direct W
F X V' dans lequel nous introduisons un produit fi donné par

fi ((x, x'),(y,y')) (/x (x, y), fi' (y)+ (x', hy) + jx' (x, y'))

Il est du même type (associatif, de Lie, de Yinberg) que fi et jx La signification

de / et g est celle de la section 5. Avec ces notations nous avons alors

([/>0]ur (—l)m_1 {(fiôg)of - fiô(gôf)}(-1
le dernier terme du membre du milieu vaut zéro car g öf= 0. (La même

formule vaut à nouveau pour 7" et Ç). Ainsi, dans tous les cas, [, ]u a été

réduit à des produits de composition.
Dans l'algèbre de Lie graduée avec comme produit [,]u les éléments de

V (applications linéaires d'ordre 0 de F dans F') forment une algèbre de

Lie ordinaire.
On a

[V,j/]u — g' {y', xr) (cas associatif)

[x', y'~\ u g' (x', y') (cas de Lie),

tandis que pour les algèbres de Vinberg le produit considéré dégénère en

zéro. Leur produit avec une application / linéaire d'ordre n est donné par

ly',fY(x1, •••>*«) y'f(xu x„) —/(*!, (cas associatif)

[/,/]u(*i> •••>*«) H'(y',f(xî,•••,*„))(cas de Lie)
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Alors que les opérateurs cobords pour les fonctions linéaires d ordre n

de F dans JLresp. M sont liés naturellement comme nous l'avons justement

vu, il n'y a pas de telle relation naturelle en ce qui concerne le cup-crochet

[/; g]u. Non seulement le cup-crochet n'est pas défini pour des fonctions

à valeurs dans M mais si / et g prennent leurs valeurs dans M l'opérateur

(j9 g) [_> n* o [71% 7r*g]u dépend de façon essentielle du choix de l'espace U.

Cependant, une modification de [,]u marche au moins partiellement pour
induire un produit: on définit ainsi une structure graduée d'algèbre de Lie

pour la cohomologie de h à coefficients dans M.
La formule principale concernant le nouveau crochet est

[/;<?] - lf,gy +(-i)Hgoöf + (~iyn"+m+1fôôg.

Cela a clairement un sens quand / et g sont des fonctions multilinéaires de

W à valeurs dans W. On peut montrer (avec beaucoup d'efforts) que ce

crochet définit une structure d'algèbre de Lie. Si /et g sont des applications
multilinéaires de F à valeurs dans W la formule prend un sens seulement si

les valeurs de ôf et de ôg sont à nouveau dans F; i.e. exactement si n 0 f
et n 0 g sont des cocycles.

Des calculs assez simples (utilisant n et la formule donnant [/, g]u)
montrent que si ôf et ôg ont leurs valeurs dans F, alors <5 [/, g] [ôf <5g]°

a aussi ses valeurs dans F; i.e. n 0 [/, g] est un cocycle. De façon analogue,

on montre que la classe de cohomologie de no [/, g] dépend seulement de

n of et de nog. L'espace ne nous permet pas d'entrer dans les détails.

Il est facile de voir que la situation décrite dans cette section est une
généralisation de celle de la section 5 où IL était le produit semi-direct d'une

algèbre Fet d'un module: à la fois là et ici le quotient WjVest un F-module;
dans le premier cas c'était le module dont on était parti. Par la construction
actuelle, la cohomologie à coefficients dans un module (situation de la
section 5) a un produit nul. De façon analogue, la situation ici est une
généralisation de celle de la section 11 ; les produits gradués de Lie pour la cohomologie

sont les mêmes dans les deux constructions (prendre V—V').
Nous indiquons brièvement la relation entre la cohomologie qu'on vient

de discuter dans cette section et les déformations de sous-algèbres.
Supposons que Vt est un sous-espace de W qui est proche de V; alors

W est (comme espace vectoriel) la somme directe de V1 et de U. Soit w e W,
alors w v + u (décomposition par rapport à F et U) et aussi w vx + ux
(décomposition par rapport à Vî et U). L'application A : w \-> u± ~ u
est linéaire et envoie W dans U. Pour w e U9 on a v vx 0, et u u1

w de telle sorte que A vaut zéro sur U. Ainsi A est entièrement déterminé
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tandis qu'à nouveau on trouve zéro dans le cas de Vinberg. Dans tous les

cas, c'est l'action de y1 sur les valeurs de/ par des dérivations intérieures de

V' \ i.e. par l'action infinitésimale du groupe des automorphismes intérieurs
de V' sur les valeurs de /. Il est donc naturel que l'étude des déformations
d'homomorphismes h : V - V prend sa forme la plus simple quand les

équivalences de déformation de h sont données par le groupe d'automor-
phismes intérieurs de V. Les résultats précis, que le manque de place ne

nous permet pas de citer totalement, sont très semblables à ceux formulés
dans la section 6. Les déformations infinitésimales modulo celles qui sont
triviales sont données par H1 (V, V); l'espace d'obstruction est H2 (V', V').
En particulier, h est rigide quand H1 (V, V) 0.

12. Sous-algèbres et encore un autre crochet.

Dans cette section nous discutons brièvement un autre crochet défini
au moyen des seuls produits de composition et indiquons (sans aucune
tentative vers la perfection) comment on peut l'appliquer aux déformations
de sous-algèbres.

Nous considérons un espace vectoriel W muni d'un produit p d'un des

trois types (associatif, de Lie, de Vinberg) considérés. Pour la simplicité,
nous utiliserons seulement la notation ö pour représenter ô, ~Â ou Ç. Soit V

un sous-espace de W qui en même temps est une sous-algèbre; i.e. ji (F, V)a
œ V. La restriction h V X V de p est notée p Il est évident que W est un
module sur V\ il suffit de poser X (v, w) p (v, w) et p (w, v) p (w, v).

Quand W est ainsi considéré comme un F-module, V lui-même est un sous-
module. Grâce à des principes généraux, l'espace quotient M W/V
est alors aussi un L-module. Si n : W M est la projection naturelle et U
un espace de W complémentaire à V, alors la restriction de n à U est un
isomorphisms d'espaces vectoriels. L'application inverse M -> U est notée

7i*. La structure de F-module (V, p) de M est ainsi donnée par

X'(y, m) np (y, n*m) — nX (v, n*m),

p' (m,v) 7ip(n*m,v) np (7i*m, v)

Soit / une application linéaire d'ordre n de V dans W (alternée dans le cas

de Lie ; alternée sauf en ce qui concerne la dernière variable dans le cas de

Vinberg); alors ôf est donné par les formules habituelles. On peut aussi

calculer ô (tz o f); on utilise la structure de L-module de M puisque n of
prend ses valeurs dans M. On voit que les termes (nof o p! et n o (fopf
sont égaux tandis que X' (v, nof) nX (v,n*onof) nX(v9f); et de
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façon analogue pour p. Il s'en suit que n o ôf — S (nof). En particulier
S (nof) 0 si et seulement si ôf prend ses valeurs dans V.

par son action sur F. Au sous-espace F1 nous avons ainsi associé une

application linéaire A : F —> U. On peut vérifier que les applications A paramétrent

tous les espaces V1 complémentaires à U. Soit P la projection de W

sur £7, Q la projection sur V; de telle sorte que u Pw, v Qw; u1

(Pf-A) wet Vi (Q — A) w.

Le sous-espace V1 est une sous-algèbre si le produit de deux éléments

quelconques (Q — A)x et (Q — A)y tombe à nouveau dans V1; i.e. donne

zéro quand on applique P + A:

(P + A) ju((Q - A) x, (Q - A) y) 0.
On en tire:

Pp (Qx, Qy) + { Afj. (Qx, Qy) - Pp (Ax, Qy) - Pp (Qx, Ay)} +

+ { — Ap (Ax, Qy) — Ap (Qx, Ay) + Pp (Ax, Ay) } + Ap (Ax, Ay) — 0

Le premier terme vaut zéro puisque V est une sous-algèbre. Aux autres

termes nous appliquons n: comme tous les termes ont leurs valeurs dans U,

cela donne une condition équivalente. Nous posons cp n o A. De plus,

nous remplaçons Qx, Qy par x, y en comprenant bien que x, y e V. Cela

ne donne aucun affaiblissement de la condition puisque A et Q valent tous

deux zéro sur U. Finalement, nous utilisons les applications X et p' quand
elles sont applicables. On obtient alors

0 { cpp' (x, y) - p' (cpx, y) - X (x, <py) } +

+ no { A ö SA + j [A, Ä] + *
(p o Q o [A, Ä] u

- ôcp + i n o [A, A] + ^cp oQo [A, A~\ u

— ôcp + 2 n o [n*(p, 7r*ç?] + cp o Q o ['n*(p, 7r*<p] u

Cette équation de déformation peut comme les précédentes être résolue.

En posant cp tcp1 + t2cp2 + on trouve immédiatement que cp1 e

e Z1 (V, M) et que l'on peut trouver cp2 seulement si no [n*cp1, n^cp^ est

un cobord; ce qu'on a dit ci-dessus implique que c'est toujours un cocycle.

Ainsi, l'obstruction première est dans H2 (F, M).
Deux déformations V1 et V2 de V sont dites équivalentes quand un auto-

morphisme intérieur de W envoie l'une dans l'autre. On peut montrer que les

déformations infinitésimales triviales de V sont en correspondance biuni-

voque avec les éléments de B1 (F, M). Ainsi, H1 (F, M) l'espace quotient de
Z1 (F, M)et de B1 (F, M) donne les «vraies» déformations infinité-simales
de F. En particulier, lorsque H1 (F, M) 0, F est une sous-algèbre rigide.
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Beaucoup de détails nécessaires à une discussion complète de la situation
ont été sautés par manque de place. Cependant le modèle est clair: c'est la
même chose que ce qui a été montré dans la section 6 avec beaucoup plus
de détails. En outre, nous avons montré que la définition de l'opération de

base [fi g] requiert seulement celle des produits de composition.

13. Systèmes de composition.

L'un des buts de cet article était d'exhiber un type de propriétés
communes aux algèbres associatives, aux algèbres de Lie et aux algèbres de

Yinberg. Le type le plus important, celui des algèbres commutatives et
associatives peut aussi être inclus dans la théorie, mais comme nous l'avons
déjà mentionné, de notre point de vue présent assez formel, les propriétés
ne sont pas dans ce cas là vraiment très différentes de celles des algèbres
associatives pour qu'il vaille la peine de les mentionner ici. La méthode

pour exposer la similitude des propriétés consiste en ceci:

(i) établir pour chacun des trois types un système gradué d'applications
multilinéaires munies d'un produit de composition vérifiant (9).

(ii) montrer comment un assez grand nombre de problèmes significatifs
peut se réduire à l'étude d'un nombre d'opérations (applications cobords,

produits de Lie gradués) qui peuvent être définies au moyen du seul produit
de composition, sans égard au type d'algèbre d'où il provient.

Cependant, nous avons indiqué que certaines des propriétés des opérations

définies à l'aide des produits de composition ne pouvaient pas être

prouvées à partir de (9) seul. L'exemple mentionné dans la section 11 était
l'identité de Jacobi pour le cup-crochet [, ]u. Un autre exemple, d'importance

pour une étude ultérieure, est la propriété de dérivation des compositions
à droite (i.e. des applications du type/ l-> / o h) par rapport au cup-crochet.

Dans cette section, nous introduisons des opérateurs yp déduits du produit

de composition. Nous montrons qu'une certaine supposition de « nil-

potence » des y — qui est satisfaite dans tous les cas connus — donne les

propriétés mentionnées dans le paragraphe précédent sans difficulté. Les

systèmes de composition sont des systèmes gradués avec un produit de

composition pour lequel les opérateurs y associés ont ces propriétés de

nilpotence. Nous les mentionnerons tout à l'heure mais donnons d'abord

quelques commentaires les motivant dans le cas de Lie.
Les applications multilinéaires que nous considérons sont toutes alternées,

de V dans V. L'expression de ffi g était (cf. (12))

S sg Gf {g (x<r(l)? •••? X<r(m+1)5 Xa(m + n- 1))
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avec

<r(l) < < o-(m) et cr(m +1) < < a (m+n — l).
Notons cela (y1 (g)/ (x1?..., xÏI+fl<_1); considérons aussi g agissant sur/:

(13) yi(9)f=fôg.
De façon analogue, on peut prendre gl5 g2 linéaires respectivement d'ordre

et m2 et former y2 (gi, g2)/:

(72 ($1 ^2)/) (^1 * -^M + mi +m2~2)

£ SQ of iß 1 C*ff(l)î * ' ^<r(mi)) 5 02 C*ö-(mi+1)» ^(mi + «2))' •X'<T(mi + m2 + 1 ' * * ' '

X(r(mi + m2 + it — 2))

avec

er(1) < <cr(m1) a(ml + 1) < < a(m1 + m2)

et

(j(ml + m2 — 1) < < o(m1 + m2 +n — 2).

L'opération y3 (gi, g2, g2)/ est analogue et définie par une somme dont les

termes sont de la forme ± /(gx g2 g3 (.../ •••) dans lesquels les

variables sont dûment permutées.
En continuant ainsi, on obtient une suite d'opérations yu y2,

On peut exprimer les opérations yp au moyen des produits de composition;

pour yx c'est vrai par définition. Pour voir qu'il en est de même pour
y 2, on observe que le côté gauche de (9) donne une expression du type de

droite. Plus précisément, on a

72(01,02)/ — i)m2_1 {71(01)71(02)-71(71(01)02)}/•
La formule (9) dit, en effet, que au sens gradué y2 est antisymétrique:

72 (01 ' 02) (-l)mlm2+1 72 (02>0l) •

De façon analogue, y3 (g1? g2, g3) est défini quand on connaît y2. Tout
d'abord, observons que si y 2 (g2, g3)/est écrit de telle façon que g2 apparaît
dans la seconde place de /, et g3 dans la troisième, on doit pour compenser
multiplier par (— l)m3-1 + w2-1. Appliquer yt (gx) place g1 dans la première
place, faisant naître y3 (g1? g2, g3)/puis place gx dans la première place de

g2 et après cela dans la première place de g3, chaque fois avec des signes

appropriés. On trouve

7s (01, 02, 03) (-l)m2 + m3{ 7l (0l)72(02,03) - 72(7l (0l) 02,0s) -
- (-l)(mi"1)m2 72(02,7l(0l)03)} •
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Plus généralement, on a, par récurrence

(14) Tp+i (do,—,9p) (-l)mi+~+mp-p(g0)yp(g1, ...,gp) -
- £(-1 Ymo-^1+- + -i^yp(g1,...,y1(g0)gi,.

i= 1

On peut montrer comme conséquence de (9) (la déduction est assez compliquée)

que yp (gl5 gp) est antisymétrique en gl9 gp; i.e. que si on
interchange gi et gi+t on doit avoir comme facteur (— + Une preuve
beaucoup plus simple peut s'obtenir en utilisant les propriétés alternées de/
et de g (puisque, somme toute, nous sommes en train de discuter le cas de

Lie), mais l'observation faite ici est qu'en vérité (9) seul suffit.

L'opérateur y peut être défini dans le cas associatif et le cas de Vinberg
par la même formule de récurrence commençant par le produit de composition.

Dans le cas associatif, yp(gl9 gp)f est une somme de termes dans

chacun desquels les gt occupent p places de /, de toutes les façons possibles,
les signes étant appropriés. Les variables xl7 xnii + + mp + n-P restent
dans leur ordre naturel. Dans le cas de Vinberg deux sortes de mélanges
interviennent mais les gt occupent toujours dans chaque terme des places
différentes de /.

Il est clair, dans chacun des cas ci-dessus, que si / est une fonction d'un
nombre de variables plus petit que p, yp ne peut plus se mettre sous la forme
indiquée. D'ailleurs si on se réfère à la formule de récurrence, si yp+1
s'applique à une /linéaire d'ordre p, alors les termes à droite de l'expression
s'annulent et yp+ ± (...)/= 0. Par récurrence yq (...)/ 0 pour q > p.
C'est la propriété de « nilpotence » de y qui pour les calculs variés est nécessaire

en plus de (9).

Définition. Un système de composition est une algèbre graduée munie
d'un produit ö compatible avec la graduation réduite, vérifiant (9) et pour
laquelle les opérateurs yp définis par (13, 14) vérifient yq (g 1, ...,£/)/ =0
si le degré de / est < p.

La propriété de nilpotence est déjà intéressante pour les petites valeurs
de p. Pour p 1, elle dit que les produits de composition xdf valent zéro

quand x appartient à V; pour p 2, elle dit que pour/linéaire on a (fd g2)ô

g1=fö feög/ ces deux propriétés furent déjà énoncées comme une

partie du théorème de la section (4) dont (9) fait partie.

Le cas p — 3 donne de nouvelles propriétés. Nous observons d'abord

que y2(/, g)n [/> • De Plus> on a
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o _,)»+» y3 (hj-t g)n =7l (h) y2 (/, 2 (?i (A)/, 0) 0

+ (-1yp-1)"y2(f,y1(h)g)n,
c'est-à-dire

[/,ff]uöÄ Uöh,gY +(-i)(p-1
C'est justement la propriété de dérivation de la composition à droite.

De façon à déduire l'identité de Jacobi pour le cup-crochet, nous avons

besoin d'une formule pour y3 (gl9 g2, g3) 7i (/). Nous avons déjà une
formule pour y1 (g3) yx (/), en permutant quelques termes dans la définition
de y 2

7i(03)7iCO (-1)"_172(03J) + 7i(vMf)-
Ensuite nous essayons de remplacer y± (g3) par y2 (g2^3)- D'abord nous

appliquons y1 (g2) à la formule ci-dessus

7l (g2) 7! (g3)7l(/) - ir:1 { - l)m3 + " 73 3,/) + 72 (7i (02) 03,/) +

+ — 1)<m2_1)m3 72 (03> 7l (02)/) } +

+ - 1)"'3+" 72 (02, 7i (03)/) + 7i (71 (02) 7i (0s)/) •

Ensuite, nous remplaçons g3 par y! (g2)g3 dans la même formule:

7i (71 (02) 03) 7i (/) (-1)"-1 72 (7i (02) 03./) + 7i(7I(7I(02) 03)/)

et soustrayons les deux résultats. Après avoir supprimé un facteur (— l)'"3"1
nous obtenons

72(02,03)71 (/) 73 (02, 03,/) + 7l(72(02>03)/) +

+ - l)m2m3 + " 72 (03, 7l (02)/) + - 1)" 72 (02, 7l (03)/) •

Ensuite, on répète le procédé. La formule qu'on vient de dériver est utilisée
trois fois; tout d'abord elle est multipliée sur la gauche par yt (gi); ensuite

g2 est remplacé par — y1 (g1)g2; enfing3 est remplacé par — (—

?i (gi)g3l alors on ajoute les trois résultats. On trouve ainsi

— l)m2+m3 y3(0j,02, 03) 7i (/) (-l)m2 + m3 + "+174(01,02,03) +

+ - + >?3 (02, 03, 7l (0l)/) +

+ - 73 (âr2)/) +

+ (-l)m2+m373 (0i,02,7l(03)/) +

+ (-l)m2 + m3 + "+1
72 (01,72 (02,03)/) +

L'Enseignement mathém,. t. XIV, fasc. 3-4. iq
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+ - l)mim2 + m2 + m3+1y2 (92, 72 (9u93)f) +

+ - iym1 + m2)m3 + m2 + m3 + n+l y2 ^35 ?2 (gug2)f) +

+ (_1r* + m*yi(y3(gl9g29g2)f).

On observe un terme unique en premier, y4, et en dernier, y1 (y3). Les termes
du milieu forment deux groupes, y3 (yj et y2 (y2), et comprennent gu g2, g3

dûment permutés. On applique la formule à jli, en prenant / ju. Alors le

côté gauche vaut zéro, puisque y1 (fi) ju ju ö jli — 0. Le terme y4 donne
zéro grâce à la propriété qu'on vient de trouver; la même chose vaut pour
le terme y3 (yx). Le dernier terme donne zéro puisque y3 / y3

jli 0. Il reste les trois derniers termes du milieu; on les multiplie par
(_1) m2 + m3 + n + m1m3+l et on obtient

(-irim3[g1,[92,93]u]u +(-i)mim2+mim3+1[g2,[g1,g3]u]u +

+ (-Dm2m3[03,[0i,02]u]u o,

c'est justement l'identité de Jacobi.
Ce qui précède est juste un échantillon des applications de la propriété

de nilpotence. L'utilité de y est également claire si on observe que, avec la
notation de la section 6, pour /linéaire d'ordre /?, on a

c (a)/ 4f X~1 ôa)/}n

Par cette formule, on peut définir et manipuler l'action de groupe des

éléments inversibles de degré 1.

Tout type d'algèbre pour lequel on peut trouver un système de composition,

partage les propriétés que nous avons déduites au moyen des systèmes
d-e composition. Il est maintenant clair que ces propriétés couvrent un large
domaine.
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Notes bibliographiques concernant la partie I
Les notions de groupe, d'algèbre associative, d'idéal, d'espace quotient peuvent

se trouver dans presque n'importe quel texte d'algèbre moderne. En ce qui concerne
les algèbres de Lie on peut citer les références suivantes: Bourbaki [1] et Jacob-
son [2]. En ce qui concerne les algèbres de Vinberg, voir Vinberg [3]. Les modules
sur les algèbres associatives et les algèbres de Lie sont bien connus; ceux sur les

algèbres de Vinberg semblent être inconnus quoique non nouveaux. Le théorème
de la section 3, le second à partir de la fin, est la variation d'un théorème bien
connu concernant les modules sur les algèbres associatives. Avec les mêmes notations

la structure de module sur M' est donnée par

X' (x, oc) y X (x, ay), p' (oc, x) y — p (ax, y) -f ocjjl (x, y)

Notes bibliographiques de la partie II
Les références principales en ce qui concerne les produits de composition des

algèbres associatives sont Gerstenhaber [4, 5]. Dans ces papiers là, les systèmes
vérifiant (9) sont appelés anneaux de pré-Lie. La cohomologie des algèbres
associatives est due à Hochschild [6] qui n'utilise ni les produits de composition ni leurs
commutateurs. La relation entre la cohomologie et les extensions est due à Hoch-
schild. La théorie de la déformation des algèbres associatives est due à Gersten-
haber. On peut trouver en détail la méthode utilisant le théorème des fonctions
implicites pour résoudre les équations de déformation dans Nijenhuis — Richard
son [7] ; Kuranishi l'a utilisée dans son travail sur les déformations des structures
analytiques complexes. De même que la théorie de la déformation sous la forme
présente a trouvé son commencement dans le contexte des structures analytiques
complexes, c'est pour ces structures qu'a été prouvé le premier théorème de rigidité
(dû à Frölich et Nijenhuis). Des résultats plus formels sur les déformations et les

obstructions étaient déjà présents dans le texte miméographié d'une conférence de

l'auteur donnée en 1956 à Seattle USA lors de l'Institut d'été sur la Géométrie
différentielle.

Notes bibliographiques de la partie III
Le produit de composition (« hook ») des algèbres de Lie fut tout d'abord

introduit par Frölicher et Nijenhuis [8] dans le contexte de la géométrie différentielle;

dans le même papier on introduit une structure de Lie graduée (construite
sur l'algèbre de Lie des corps vectoriels), structure qu'on a trouvée à nouveau dans

la section 12 dans un contexte semble-t-il totalement différent. Les sources en ce

qui concerne les déformations des algèbres de Lie comprennent un article de

Levy-Nahas [11] qui étend les idées de Gerstenhaber aux algèbres de Lie et donne

une discussion très détaillée des déformations des algèbres de Lie à trois dimensions.

Il discute aussi les contractions — un type inverse de déformation. Un autre
article sur les déformations d'algèbres de Lie par Nijenhuis et Richardson [12]

procède suivant les lignes données ici mais donne plus de détails. Le produit de

composition pour les algèbres de Vinberg est dû à Matsushima (non publié); le
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même vaut sur le reste de la section 10. Les algèbres commutatives et associatives

sont étudiées au moyen d'un système de composition qui est un sous-système de

celui qui vaut pour les algèbres associatives. Les applications bilinéaires par
exemple sont symétriques; les applications de degré plus grand doivent vérifier
d'autres conditions. La source première est Harrison [9]; des détails sur le
système de composition peuvent aussi être trouvés dans Nijenhuis-Richardson [17]
et dans Nijenhuis [15].

Le cup-produit et le cup-crochet sont pour les algèbres associatives dus à

Gerstenhaber (voir la partie II); le seul dans le cas de Lie est une extension directe
et peut se trouver dans un article de Nijenhuis et Richardson [13] qui discute les

déformations d'homomorphismes. Une série d'articles d'Hermann [10] accentue
les applications physiques plus que les considérations théoriques. Le cup-produit
et le cup-crochet des algèbres de Yinberg sont dans le contexte juste des dépassements

naturels. Les aspects formels de la section 12 en ce qui concerne le crochet
pour les algèbres ont été élaborés dans Nijenhuis [14] qui donne des relations
simples entre LT* (V,V), H (F, W) et H* (V, M), les différents crochets, les

déformations et les obstructions. La rigidité des sous-algèbres est discutée dans
Richardson [20]; la stabilité des sous-algèbres (non discutée ici) dans Page-Ri-
chardson [18], les déformations de sous-algèbres dans Nijenhuis [16] et dans
Richardson [21]. Les systèmes généraux de composition sont discutés dans Nijenhuis
[16] mais la condition de nilpotence a été négligée; l'addition de cette condition
rend redondant certains des autres axiomes de cet article.

Tous les théorèmes de rigidité donnent comme condition suffisante l'évanouissement

de certains groupes de cohomologie. Un exemple montrant que pour la
rigidité des algèbres de Lie la condition n'est pas nécessaire est dû à Richard-
son [19]. Le travail d'Harrison [9] fournit des conditions de rigidité plus fines;
cf. Nijenhuis et Richardson [17].

L'énumération qui figure ici est nécessairement incomplète. Non seulement il
y a les nombreux articles sur les déformations dus aux auteurs déjà mentionnés;
il y a aussi les résultats sur la structure plus fines des algèbre déformées (par ex. par
Flanigan) et les résultats sur la déformation des structures analytiques complexes
(par ex. par Griffiths) qu'on peut étendre aux algèbres. La relation entre les pseudogroupes

et les algèbres a été explorée par ex. par Rim et Sternberg.

(Manuscrit reçu le 15 novembre 1968)
Albert Nijenhuis

Dept. of Mathematics
University of Pennsylvania
Philadelphia 19104
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