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SUR UNE CLASSE DE PROPRIETES COMMUNES
A QUELQUES TYPES DIFFERENTS D’ALGEBRES

par Albert NUENHUIS *

Traduit par R. Bantegnie

INTRODUCTION

Le développement de I’algébre moderne dans les quarante derniéres
années a conduit & de nombreuses notions nouvelles comme celles de
groupe, d’anneau et de corps. Algébre linéaire est devenu un mot domes-
tique. L’algébre multilindaire qui trouve ses racines dans la théorie matri-
cielle et dans I’analyse tensorielle a pris dans les années récentes des formes
nouvelles plus simples et est devenue un outil commun de ’algebre moderne.

Parmi les concepts les plus utilisés est celui d’algebre; 1l combine une
structure d’espace vectoriel et une structure multiplicative. Bien connues
sont les algebres associatives (qu’elles soient commutatives ou non); elles
sont des généralisations directes du systéme numérique et comprennent les
matrices. Les Algébres de Lie sont plus récentes; leur origine est la théorie
des groupes continus mais elles ont trouvé de nombreuses applications
dans d’autres domaines. Les algebres de Vinberg sont moins connues et
sont discutées ici pour montrer que le théme de cet article ne se restreint
pas de lui-méme au cas d’algeébres qui sont déja bien connues.

Les algebres que nous considérons sont toutes caractérisées par le fait
que les constantes de structure sont restreintes par des conditions linéaires
(p. ex. la symétrie gauche) et par des conditions quadratiques (p. ex. ’asso-
ciativité ou l'identité de Jacobi). Cependant, les restrictions doivent étre
d’une sorte particuliere: elles doivent pouvoir s’exprimer sous une forme
particuliere a I'aide d’un systéme de composition convenable. Cette notion
de systeme de composition est seulement développée lentement le long de
larticle et sa définition n’intervient pas avant la section finale.

Comme le but de cet article est purement d’exposition, I’auteur a essayé
de compter sur assez peu de matériel déja connu. Le plus important est

*) Cet article a paru en anglais dans Nieuwe Archief voor Wiskunde, XVII,
17-46, 87-108, 1969.
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I’algebre linéaire; les notions de groupe, d’idéal, d’espace quotient et les
notions analogues sont utilisées (assez clairement).

L’article est partagé en trois parties et est organisé de telle fagon que
chacune des parties a sa propre récompense. La premiére, la plus élémen-
taire, discute de fagon assez informelle certaines propriétés des algébres
associatives, des algébres de Lie et des algébres de Vinberg. La discussion
des deux premiéres sert & motiver les concepts concernant les derniéres.
Les modules sur ces algébres sont aussi introduits.

La partie II utilise exclusivement les algébres associatives. On montre
comment la considération des applications multilinéaires de I’espace vec-

toriel sous-jacent dans lui-méme et I’introduction d’une opération pour ces

applications, le produit de composition, fournit déja la clé d’une foule de
notions, depuis les commutateurs jusqu’aux extensions a la cohomologie
et finalement aux déformations. Un exemple simple de déformation est
donné explicitement.

La partie III commence par introduire les produits de composition
associés aux algebres de Lie et aux algébres de Vinberg. Ensuite, I’histoire
de la partie II s’applique aussi bien presque mot par mot a ces deux types.
Comme illustration, on démonte une algébre de Lie. Ensuite, d’autres opéra-
tions sont construites, fondées uniquement sur le produit de composition
et donc valables pour les trois types d’algébres. Les domaines d’application
englobent les déformations d’homomorphismes et de sous-algébres. La
derniére section donne sous une forme quelque peu plus explicite et formelle
quelques propriétés du produit de composition qui jusqu’ici ont €té utilisées
de fagon assez informelle. S’ensuit la définition d’un systéme de composition.

Vu cette mani¢re de faire, on peut lire I'article seulement pour voir
quelques propriétés générales des algebres associatives ou des algebres de
Lie, ou on peut vouloir voir comment une algébre « drdle » peut encore €tre
tout a fait raisonnable. La lecture de la partie 1 suffira alors. (Le fait que les
algébres de Jordan, du a la nature cubique des conditions portant sur les
constantes de structure, ne soient pas comprises est regrettable, mais des
développements futurs peuvent remédier a cette situation.) Pareillement,
si I’on est curieux au sujet des déformations des algébres associatives, ou
si I’on veut voir une approche simple de la cohomologie, la partie II suffira.
Finalement, la partie III étend la cohomologie et les déformations d’algébres
associatives aux algébres de Lie et aux algebres de Vinberg. Elle donne aussi
desrenseignements sur d’autres problémes de déformation concernant ces trois
types d’algébres. Finalement, elle érige des critéres pour que valent les mémes
résultats pour d’autres types — peut-Etre encore inconnus — d’algebres.
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La matiére de cet article a été puisée 2 différentes sources. L’inclusion
dans le texte de notes bibliographiques n’a pas semblé pratique: a la place,
chaque partie se termine par quelques-unes de ces notes dans une section
séparée. En allant aux sources indiquées, le lecteur trouvera des discussions
plus complétes des sujets traités et aussi d’autres sujets qui bien que liés
n’ont pu étre mentionnés par manque de place.

Je considére comme un honneur de dédier cet article a J.A. Schouten,
4 I'occasion de son 85€ anniversaire, et en reconnaissance de sa contribution
3 la théorie des invariants tensoriels. Il y a quelque dix ans son approche a
contribué de fagon substantielle a éclaircir le terrain de la théorie de la
déformation.

PARTIE I : Quelques types d’algébres

1. Algébres associatives et algébres de Lie.

La propriété caractéristique d’une algébre est que l’ensemble sous-
jacent de ses éléments V a la structure d’un espace vectoriel (nous nous
bornerons de fagon constante au cas de la dimension finie et au cas réel).
La structure additive de V fournit ’addition de I’algébre. La multiplication
s’exprime en donnant une application p : ¥V x ¥V — V. En accord avec la
structure d’espace vectoriel de V' nous supposerons toujours que u est biliné-
aire (c.-a-d. que u (x, y) est linéaire séparément en x et en y). Les propriétés
de V et de u assurent alors que ’addition est commutative et associative,
et que ’addition et la multiplication vérifient les lois distributives.

L’application produit p est entiérement déterminée par un ensemble
de constantes de structure (cﬁ-‘j): soit (e, ..., ¢,) une base de V, alors pour
chaque i et j entre 1 et n, p1 (e;, ;) est un élément de V et ses composantes

1
Cij» - Cp; sOnt les constantes de structure:

(e, ej) = 2 Ci'(j €y -
k

Tout ce qui est dit a I’aide de u peut étre reformulé a ’aide des constantes
de structure.

Jusqu’ici rien n’a été dit sur I’associativité de la multiplication, ou sur
quelque autre propriété du produit.

En fait, la définition générale d’une algébre n’englobe aucune condition
de ce type. Naturellement, cependant, les algébres sont appelées commuta-
tives si xy = yx, associatives si x (yz) = (xp) z. D’autres possibilités sont
mentionnées plus tard. Alors que les algébres commutatives et associatives
ont été€ les plus importantes et que de nombreux développements modernes
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trés fameux dépendent lourdement d’elles, elles ne sont pas particuliérement
intéressantes de notre point de vue assez particulier. Quoique nous pourrions
les inclure, nous ne leur attacherons, par souci de briéveté, aucune attention
particuliére.

Les algebres associatives sont assez bien connues. L’exemple le plus
classique est peut-€tre celui des matrices réelles n X n, avec le produit usuel
lignes par colonnes. Parmi les sous-algébres nous avons par exemple les
matrices avec seulement des zéros en-dessous de la diagonale principale;
nous les appellerons triangulaires supérieures. Un autre exemple fameux
est formé par les quaternions. Les nombres complexes forment un exemple
qui se trouve €tre commutatif. Les dimensions des exemples sont respecti-
vement n°, L n(n+1), 4 et 2. Tandis que dans les algébres les produits
sont habituellement désignés par un point: x .y ou par «rien »: xy, nous
utiliserons explicitement u (x, y) quand cela sera commode pour quelque
dessein. Avec cette notation, la condition d’associativité devient

i(p(x,y),2z) —ulx,u(y,z) =0.

Les algébres de Lie ont trouvé leur origine ou du moins leur utilité
initiale dans des domaines pres par tradition des applications physiques.
Leur respectabilité mathématique s’est accrue grandement quand elles
eurent perdu leur nom d’origine de « groupe infinitésimal ». Tout groupe
de Lie (groupe continu) a son algebre de Lie. Le dernier concept est beau-
coup moins compliqué que le premier; cependant de nombreuses propriétés
du groupe trouvent de fortes images dans l’algebre. Parmi les exemples
les plus simples d’algebre de Lie citons, par exemple, les matrices n X n
avec comme produit u (x, ) = xy — yx, les matrices antisymétriques avec
le méme produit, et 'espace euclidien a 3 dimensions avec le produit « croisé».
En fait, ces algébres de Lie peuvent €tre associées aux groupes suivants:
le groupe de toutes les matrices inversibles # X n, le groupe des matrices
orthogonales n X n et le groupe des rotations de I’espace a 3 dimensions.
Leurs dimensions respectives sont n*, L n (n—1) et 3.

I.a définition d’une algébre de Lie est simple: le produit est antisymé-
trique et vérifie I'identité appelée identité de Jacobi. Au moyen de u cela
signifie que

px,y) = —px), pwul,y),z) +plpe®y,2),x) +
+pu(u(z,%),y) =0.

De fagon traditionnelle, le produit d’une algebre de Lie est noté par des
crochets [x, y]. Les puristes insistent pour que ce soit xy puisqu’on utilise
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aussi xy quand le produit ne vérifie aucune condition particuliere. Pour
satisfaire au moins partiellement les puristes nous utiliserons les crochets
seulement pour les commutateurs (c.-a-d. [x, yl=xy—yx) et pour certaines
algébres de Lie graduées qui apparaitront dans les parties II et III. Dans les
autres cas, nous éviterons la controverse en utilisant p.

2. Les algébres de Vinberg.

L’application produit u d’une algébre de Vinberg vérifie la condition
suivante

(D) u(u(x,9),2) = pCpu(y,2) —plp@.x),z) +uy,nkx,2) =0,

ou, avec des notations moins conventionnelles ot xy = p (x, y)

(xy)z — x(yz) = (yx) z — y(x2),

Avec encore d’autres notations: si L, désigne la multiplication a gauche par
x, L.y = xy = pu(x, ) de telle sorte que L, estune application linéaire de
V' dans V, on peut écrire la condition sous la forme

L.L,—LJL, = Ly_,..
Si nous introduisons des commutateurs notés par des crochets, nous obte-

nons

(1) [Le L] = Lgxys -

La derniére forme de la condition suggére déja que les algébres de Vinberg
sont liées de prés aux algebres de Lie. De fagon plus précise, nous avons le

THEOREME. Si V est un espace vectoriel et i une application bilinéaire de V
dans V qui vérifie la condition (1) et si, de plus, pu(x,y) = n(x,y) — u(y, x),
alors u définit une structure d’algébre de Lie.

Le théoréme généralise le fait bien connu que les commutateurs d’une
algébre associative donnent une algébre de Lie. La vérification pour u de
’identité de Jacobi (c’est tout ce qui est a prouver) suit directement de
Iécriture et du regroupement des 12 termes que 1’on trouve.

Dans la pratique, les algebres de Vinberg apparaissent dans I’autre sens.
Tout d’abord on a trouvé une structure d’algeébre de Lie; ensuite on essaye
de trouver une structure plus fine pour laquelle les commutateurs donnent
la structure premiére d’algeébre de Lie. On peut préférer trouver des struc-
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tures d’algébre associative mais c’est a vrai dire un probléme plus difficile
— lexistence étant connue dans moins de cas — que celui que nous consi-
dérons ici. Le seul point qu’on peut ici noter est qu'une structure d’algébre
de Vinberg est plus fine qu’une structure d’algébre de Lie et que les algébres
associatives en sont un cas particulier.

Quoique les algébres de Vinberg viennent de situations géométriques ol
I’'on considére certains ensembles ouverts convexes homogénes des espaces
affines, nous ne nous intéresserons pas nous-mémes a ces applications.
A la place, nous donnons quelques exemples construits algébriquement
d’algebres de Vinberg.

Tout d’abord un exemple a 2 dimensions. Soit P, Q les vecteurs de base;
le produit est donné alors par

p(P,P) = 2P p(@Q,P) =0

La vérification de (1) est une simple question d’énumération de cas. Le
produit de Lie pour les commutateurs est donné par u (P, Q) = Q; c’est
le seul cas d’une algébre de Lie non abélienne a deux dimensions. (Pour
une structure d’algébre de Lie sur un espace vectoriel a 2 dimensions ou
bien on a une isomorphie avec la précédente ou bien tous les produits valent
7€ro.) |

Pour le second exemple, considérons 'application t qui assigne a chaque
matrice n X n (n reste ﬁXe) la matrice triangulaire supérieure obtenue en
remplagant les éléments sous la diagonale principale par zéro, en divisant
les éléments de la diagonale principale par 2 et en laissant inchangés les
éléments situés au-dessus de la diagonale principale. On désigne la trans-
posée d’une matrice a par a’. L’exemple consiste en matrices triangulaires
supérieures notées x, y, etc. La dimension de ’espace est 1 n (n-+1). Le
produit de ’espace est donné par

p(x,y) =xy +t(xy" +yx).

Comme premiére observation, nous voyons que 'on a u (x, y) = xy —
— yx, car ’expression du terme en 7 est symétrique en x et en y. Par suite
la structure en question est un raffinement de la structure habituelle d’algébre
de Lie sur les matrices triangulaires supérieures.

La vérification de (1) est juste un peu intrigante quoiqu’il n’y ait pas
de difficultés essentielles. Notons que pour prouver (1), nous devons mon-
trer que u (u (x, ), z) — p(x, 1 (y, 2)) est symétrique en x et y.
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Premiérement le premier terme.
p(u(x,y),2) = pop)z +r(px )z + 2@k, »)) =
= (xp)z + 1y +yx) z + 1 (Gep) 2 + Ty +yx) 2" +
2 (o) + 2 @Gy +px)) = xpz o+ T(xpz 2y + sym.

oll « sym » note une expression symétrique en x et y. Le second terme est
écrit ainsi qu’il suit.

p(x,n(y,2) =xu(, 2 +t(x(w@, 2) +py,2x) =

= x(y2) + xt1(v2' +2y) + T1(x (2 + x(c (v’ +2))) +

+ (yz)x' + 1 (yz' +2y) x')

Aux termes en 7 intérieurs aux termes en t nous appliquons les identités,
valables quelles que soient les matrices symétriques s,

(s) =s—1(s) et () =5 —1(s).
Ces termes sont ainsi changés en
x(yz' +zy") — xt (' +zy") + (' +zy) X — (t (2 +zy)) x
C’est tout ce qui doit étre placé a I'intérieur du premier opérateur 7. Pour
le second et le quatriéme termes cela donne, vu I’égalité, valable pour toute
matrice triangulaire supérieure w, w = 17 (w + w')
T(=x1(yz' +2)) —(t (2" + z)"))x") = — xt(yz' + z)").

Ce dernier terme supprime un des termes précédents. Ainsi, en les met-
tant tous ensemble, on trouve

n(x,n(y, 2)) = xyz + t(x2'y +yzx' +x (yz' + zy") + (yz' + zy) x')
= xyz + t(xyz' +zy'x") + T (x2'y + yz'x* + yzx' +x2)")
= p(p(x,¥),2) + sym.,

ce qu'on devait montrer.

3. Modules.

Les abstractions mathématiques, comme celles de groupe, d’anneau ou
d’algebre, sont venues historiquement comme opérations sur certains
ensembles. Les ensembles, disons de cailloux, de moutons ou de femmes,
ctaient familiers longtemps avant les entiers qui les comptent. Les permu-
tations sur les ensembles étaient connues avant le concept de groupe.
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Les modules sont des ensembles convenablement structurés sur lesquels
agissent des algébres. Soit V une algébre ayant pour produit u. Alors un
module sur (¥, u) est un espace vectoriel M sur lequel les éléments de V
agissent de fagon a respecter la structure d’espace vectoriel de M. La struc-
ture d’espace vectoriel de V' doit aussi €tre respectée; et, de plus, la multipli-
cation pu de V doit étre convenablement retrouvée. La discussion des
exemples qui suivent rend tout cela plus précis.

Soit (V, i) une algébre associative. Un espace vectoriel M est un module
a gauche sur (V, u) si on s’est donné une application bilinéaire 1 :

VX M — M (A (x, m) est aussi noté xm) vérifiant
x (ym) = (xy) m ; Cest-a-dire 1 (x, A (v, m)) = A (u (x, y), m) .

Notons que la bilinéarité implique les lois distributives habituelles. — Un
module a droite est de fagon analogue défini par une application bilinéaire
p:M XV — M (on note mx en abrégé pour p (m, x)) telle que

(mx)y = m@y), ou  plp(m,x),y) = p(m,ulx, ).

Une structure de bimodule est donnée par les applications 2 et p comme
ci-dessus, avec la condition additionnelle que les actions de gauche et de
droite commutent; c’est-a-dire que

(xm)y = x(my), ou p(i(xa m)ay) = /l(x,p(m,y))

En fait, les modules & gauche (et a droite) sont des cas particuliers des bimo-
dules si on le souhaite: il suffit de poser p = 0 (resp. 4 = 0). Nous nous
limiterons donc aux bimodules quand nous le voudrons.

Le module (a2 gauche) sur I’algébre associative des matrices n X n
historiquement le plus naturel est peut-étre I’espace vectoriel R" des n-uples
de nombres réels. 4 (x, m) est simplement le produit usuel ligne par colonne
de la matrice x et du vecteur colonne m. Une structure de module a droite
est donnée par p (m, x) = mx, ou a nouveau on emploie le produit ligne
par colonne et ou m est un vecteur ligne. L’espace entier des matrices n X n
est lui-méme un bimodule sur lui-méme si on utilise les multiplications a
droite et a gauche habituelles.

Le dernier commentaire est général: une algébre associative est toujours
un bimodule sur elle-méme. De plus, les idéaux a gauche sont des modules
a gauche, les idéaux a droite des modules a droite et les idéaux bilatéres sont
des bimodules.

Retournons a la définition d’un bimodule sur une algébre associative
et essayons de la simplifier en considérant d’un seul coup toutes les opéra-
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tions: p, A et p et en les combinant en une seule application. A cette fin,
considérons le produit direct W = ¥ x M dont les éléments sont les paires
(x, m) d’éléments de V et de M. W est encore un espace vectoriel. Consi-
dérons I'application i : W X W — W donnée par

(2) i, my,(y,m) = (ux, ) ,A(x,n) + p(m,y).

Elle est clairement bilinéaire. ¥ X M muni du produit ji est appelé
produit semi-direct de V et de M. Pour examiner fi, écrivons x pour (x, 0)
et m pour (0, m) (cela peut étre fait sans risque de confusion si Vet M sont
des espaces distincts). Nous avons alors

A(x,y) = p(x,) p(m,y) = p(m,y)
g(x,m) = A(x, m) piu(m,n) =0
Les conditions imposées & p (associativité), A (structure de module a
gauche) et & p (structure de module a droite) et la compatibilité de A et de p

peuvent maintenant étre toutes exprimées au moyen de ji. La tiche est
classique et le résultat est un théoréme.

THEOREME. Soit V et M des espaces vectoriels, it : V X V =V, A :V X
X M- M et p:M XV —> M des applications bilinéaires. Soit W =
= V X M le produit semi-direct muni de [i défini par (2). Alors i définit
une structure d’algébre associative sur W si et seulement si sont vérifiées les
deux assertions suivantes : (1) p est une structure d’algébre associative sur V;
(2) A et p définissent sur M une structure de bimodule.

Une situation semblable se trouve dans le cas des algebres de Lie,
excepté que 1a il suffit de considérer uniquement les modules a gauche (ou &
droite); d’autres cas peuvent étre réduits a celui-la. De fagon a ce que M
soit un module sur I’algébre de Lie (¥, p) on doit se donner une application
bilinéaire A: V' X M — M (on peut écrire xm pour 1 (x, m)) qui vérifie

Ax, Ay, m)) — Ay, A(x,m)) = A(u(x,y), m),
ou
x(ym) —y(xm) = u(x,y)m.

Un module sur une algébre de Lie est fréquemment appelé une représen-
tation. De fagon plus précise, si M est un module sur ¥ (de produit w) a
aide de Iapplication 4, alors A est appelé une représentation de (V, p)
sur M.

On trouve facilement des exemples de modules sur des algébres de Lie:

chaque module sur une algébre associative donne naissance & un tel module.
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Toute algébre de Lie de matrices (par exemple celle des matrices symétriques
gauche) donne a R" une structure de module si ’on prend le produit habi-
tuel ligne par colonne. Toute algébre de Lie est un module sur elle-méme.
Les idéaux d’une algébre de Lie sont aussi des modules sur ’algébre de Lie.

Comme dans le cas associatif, nous construisons une application biliné-
aire fi du produit semi-direct W = ¥V X M en utilisant u et A ainsi qu’il suit.

ﬁ(xay) = u(x,y) ﬁ(m,x) = _/l(x’ m)
plx,m) = A(x, m) jg(m,n) =0

ou en une seule formule

(3) ﬁ((x: m),(y,n)) = (lu(xa y) ’ },(X, n) - ,l(y, m)) :

On a, comme auparavant, un théoréme.

THEOREME. Soit V et M des espaces vectoriels, u : V X V — V une appli-
cation bilinéaire alternée et A : V X M — M une application bilinéaire. Soit
W =V X M le produit semi-direct oti i est déefini par (3). Alors ji définit
une structure d’algébre de Lie sur W si et seulement si est vérifiée la condition
suivante : u est une structure d’algébre de Lie sur V et A définit sur M une
structure de module sur V.

La raison principale pour formuler les deux théorémes précédents bien
connus est de fournir un motif pour la définition d’un module sur une
algébre de Vinberg. Soit V" une algébre de Vinberg de produit u, et soit des
applications bilinéaires A:V X M > M et p:M X V— V. Posons
W =V x M et définissons g comme I’application donnant a V"' X M la
structure d’un produit semi-direct:

(4) B, m), (y,m) = (u(x,9),A0x,n) + p(m, y)).

Alors nous appellerons M, muni de I’action de V' sur lui défini a ’aide de A
et de p, un module sur V si et seulement si W est une algébre de Vinberg
de produit fi. Ainsi, la définition revient & une écriture:

DEFINITION. Soit V" une algébre de Vinberg de produit u et M un espace
vectoriel. Supposons bilinéaires les applications A : V' X M — Metp : M X
X V — M. Alors A, p définissent une structure de bimodule sur M au-dessus
de V si valent les conditions suivantes:

ﬂ(x,/l(y, m)) — A(u{x,y), m) = A(y, A(x,m)) — A{u(y,x),m),
Ax,p(m,y) —p(A(x,m),y) = p(m,pu(x,y)) —p(p(m,x),y).
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Avec des notations plus conventionnelles ces conditions devienuent
(5) x(ym) —y(xm) = [x,y]m ou  [x,y] =xy —yx,
(6) x (my) — (xm)y = m(xy) —(mx)y.

La condition (5) peut s’exprimer trés simplement par des mots: I'action
gauche d’une algébre de Vinberg sur un module est une action de ’algebre
de Lie associée (de produit g (x,y) = u (x, ) — u(y, x)). La condition (6)
peut s’exprimer comme il suit: le c6té gauche mesure a quel point ’action
gauche et I’action droite ne réussissent pas & commuter; le coté droit a quel
point ’action droite ne réussit pas a étre associative. Classiquement (i.e. dans
le cas associatif) les deux cdtés valent zéro; ici ils sont seulement €gaux.

Notons qu’un module gauche sur une algébre de Vinberg est facile a
définir par la condition (5). C’est seulement dans le cas ou I’action gauche
vaut zéro qu’il est raisonnable de définir une structure de module a droite;
par (6) ’action droite est alors associative.

Des exemples de modules sur des algébres de Vinberg sont tout d’abord
I’algébre elle-méme et tout idéal bilatére d’une algébre de Vinberg. Un
exemple plus intéressant est peut-€tre le suivant:

V est une algebre de Vinberg arbitraire. Pour M prenons I’espace linéaire
de toutes les applications linéaires: « : V' — V. (Le choix d’une base pour V/
associe a chaque o une matrice, de telle sorte que M peut étre considéré
comme ’espace des matrices n X n, sin = dim V.) Parmi les éléments de M
figurent les opérateurs de multiplication a gauche L,. Les produits A (x, «)
et p (o, y) sont maintenant donnés par

A(x,o) =[Ly, o] + L,,,
p(o,y) = L, .

Dans ce qui précéde, ax est 'image de x par I’application o; elle appartient
encore a V de sorte que L,, a un sens.

Premi¢rement nous vérifions (5), avec des notations appropriées.
Ax, A(y, 0)) = A(x,[L,, o] + L,,) =

= [Lx:' [Lya a] + Lay] + L([Ly,d]'*‘Locy)x =
= [L,,[L,,o]] + [Ly, L,] + L

y(@x)—a(yx)+ (ay)x *

Les applications linéaires ¥ — V forment une algébre de Lie relativement
a la formation des crochets; nous utiliserons cela pour le premier terme




— 236 —

du dernier membre. Pour le nouveau premier terme qui en résulte et pour
le second terme nous employons (1’). Nous obtenons ainsi:

Ax, 2y, @) — A(y, A(x, @) =
= [[L,, L], o] + Lixsyy = Lypaxt T Ly@x)—amx)+ @yx
— Ly —aen + @oyy = LLrxy» @] + Ly
avec
x = x(ay) = (ap)x — y(ax) + (@x)y + y(ax) — a(yx) + (ap) x
— x(ay) + a(xy) —(ax)y = a(xy) — a(yx) = a[x,y].
Ainsi, ‘
Ax, A(y,a) = A(y, A(x, ) = A([x, ], ),
c’est justement (5). Maintenant nous vérifions (6).
A(x, p (2, 1) — p (Ax,2), ) = A(x, L) = Liy(azy =
= [Lo L] + Lpye — Lipyagy + Ly =
= Lpien T Dgnin=zporratmy=waoy = Luwyy = Ly =
= p(axy) = p(Lowy) = p (o1 (x,) = p(p (2, %), 7).

L’exemple précédent est seulement un cas particulier d’un théoréme
dont la preuve est un exercice utile.

THEOREME. Supposons que M est un module sur [’algébre de Vinberg V.
Alors I’ensemble M' = Hom (V, M) des applications linéaires de.V dans M
a aussi une structure de module sur V. En fait, si i, A et p ont leur signification
habituelle et si ', p’ se réferent a M’, alors, pour o€ M’

A(x,a)y = A(x,ap) — apu(x,y) + p(ax,y),

p' (o, x)y = p(ax,y).

Dans le théoréme de la section 2 nous avons signalé que la formation
des commutateurs d’une algebre de Vinberg conduit a une structure d’al-
gebre de Lie. Ce théoréme peut étre appliqué au produit semi-direct V' x M.
On obtient alors.
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TuEOREME. Soit (V, ) une algébre de Vinberg et M un module sur cette
algébre, avec 2, p comme actions gauche et droite. L’application A, avec
A (x,m) = A(x,m) — p (m, x) munit alors M d’une structure de module

sur ’algébre de Lie (V, 1).

L’application de ce théoréme & I'exemple précédent donne A (x,0) =
= [L,, «]; i.e. 'une des structures habituelles sur M. Ainsi I'exemple montre
que 2, p est un raffinement de la structure de module bien connue A

Il est alors clair que si M est un module sur une algébre de Vinberg, il a
deux structures de module sur I'algébre de Lie associée. La premiére est
donnée par le théoréme ci-dessus; la seconde est obtenue & partir du théo-
réme en changeant p en zéro: cela donne la méme structure que celle donnée
directement par la condition (5).

On veut espérer avoir une troisiéme structure de module sur I'algebre
de Lie associée en prenant 4 = 0 — mais cela ne marche pas, car (6) suppose
déja A. Dans le cas associatif, cependant, cette troisiéme méthode marche
également.

PARTIE I1: Algébres associatives et applications multilinéaires

Introduction.

Une classe intéressante de propriétés des algeébres associatives devient
accessible si I’on considére les applications multilinéaires dans lui-méme
de I’espace vectoriel sous-jacent. Le produit u de I'algebre fournit un opé-
rateur 0 qui associe a une application linéaire d’ordre n une application
linéaire d’ordre n + 1. On peut exprimer a l'aide de 'opérateur ¢ des
propriétés connues de I'algebre. En général, les calculs avec 6 (comme de
prouver que 6> = 0) sont assez encombrants. Cependant, en introduisant
un « produit de composition » qui assccie a tout couple formé d’une appli-
cation linéaire d’ordre m et d’une application linéaire d’ordre n une applica-
tion linéaire d’ordre n + m — 1, et en prouvant la seule identité (9), on
fait presque tout le travail. (Il se trouve que (9) est une version inversée et
graduée de I'identité de Vinberg.) Les commutateurs du produit de compo-
sition vérifient les axiomes d’une algeébre de Lie graduée. On montre que
Popérateur 0 est le commutateur avec I'application produit p. On définit
la cohomologie associée a 0 et on expose ses relations vis-a-vis des dérivations
et des extensions. Du systéme des applications multilinéaires la cohomologie
hérite d’une structure graduée de Lie. Cette derniére et la cohomologie
sont appliquées dans la théorie des déformations des algébres associatives.
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Un exemple simple de déformation illustre comment en pratique marche le
mécanisme.

Vu la nature d’exposition de l’article, on a limité les connaissances
préliminaires requises a celles de la partie I sans compter quelques facilités
a jongler avec les applications multilinéaires.

4. Le produit de composition.

Dans cette section nous recherchons, d’un point de vue « plus élevé »,
la nature de la propriété d’associativité. Des sections de la partie III en
feront de méme des propriétés caractérisant les algébres de Lie et les algebres
de Vinberg. La ressemblance frappante de tous ces cas nous permettra
d’étre beaucoup plus bref dans les deux derniers cas. L’expérience ainsi
gagnée avec ces types d’algébres nous permettra de formuler des critéres
généraux qui s’appliqueront quand, pour d’autres types d’algébres, on aura
des connaissances analogues.

Soit V un espace vectoriel, u un produit associatif sur ¥ (nous utiliserons
de fagon interchangeable u (x, y) et xy), et M un module sur (V, u) d’action
gauche A et d’action droite p. (Nous utiliserons xm a la place de A (x, m)
et my a la place de p (m, ).) Le cas particulier M = V, A = p = p est tres
significatif pour les applications.

Supposons que f est une fonction a n variables dont le domaine est V,
qui prend ses valeurs dans M, et qui est linéaire par rapport a chaque variable
— nous appellerons f une application linéaire d’ordre n de V dans M.
Nous pouvons alors associer & f une application linéaire d’ordre n + 1
de V dans M par une méthode trés ingénieuse. On note df ’application nou-
velle; ainsi 0 est un opérateur qui augmente les degrés d’une unité. On a

(OF ) (Xgs «ees X)) = Xof (X15 eees Xp) — F(X0X15 X0, oes X)) +
F F (%05 X1X25 X35 eees X)) F oo F (=17 f (Xgy eeey Xy p X 15 X)) +
F (=1 f (X0 X1 evvs X2 Xam1 %) + (= D" f (X0 o0y Xpmt) X
ou encore
() (Xos +ves X)) = A(X0o f (X1, -o0s X)) +
o+ i—zn1 (= 1) f(x0s ooes L (X1 %) 5 oees X,) +

+ (= D" p (f (s ves Xum1) 5 X) -

Considérons quelques cas particuliers de cette formule.
n = 0. Alors fest précisément un élément m de M, et on a

(dm)(x) = A(x,m) —p(m,x) = xm — mx.
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Ainsi om : V — M est la « dérivation intérieure » de ¥V dans M déterminée
par m. A vrai dire, nous avons

(om)(xy) = (6m)(x)y + x(6m)(y).
= 1. Alors f est une application linéaire ¥ — M. Supposons.o f = 0;

c’est-a-dire

0 =(5)(xp) =xf(y) —fGy) +f(X)y
ou

fxy) = xf(y) +f(x)y.

f est, d’une fagon apparente, une dérivation de ¥V dans M.

Comme autre interprétation nous considérons maintenant le cas M =
== V. fest alors une application linéaire de ¥ dans V et, quel que soit le réel ¢,
e’/ (donné par une série de puissances) est une application linéaire inversible
de V sur V: son inverse est e~ */. On obtient un produit p,é quivalent (c.-a-d.
isomorphe) a u en posant

(7 t(x,y) = e pex,ely).

Nous recherchons ’effet dans u, d’'un changement du premier ordre:

d
E#tlt=o (X,J’) = —fu(x,y) —{—'u(fx,y) +H(X,fy) _

= —f(xy) +f)y + xf(») = () (x, ).

Cela donne de ¢ f une seconde interprétation comme 1’effet du premier
ordre dans une famille & un paramétre de structures équivalentes.

n = 2. Nous considérons maintenant une famille arbitraire (différen-
tiable) p, de structures d’algébre associative; de telle sorte que, pour tout ¢,
nous avons

we (s 1 (v, 2)) — (1 (x, ), 2) = 0.
Nous différentions a nouveau et prenons ¢ = 0 (on pose u,=y), notons

£ pour Tk | t=0. Nous trouvons

Sxsn(,2) +u(x.f(,2) = f(ux,9),2) — u(fx,»),2) = 0,

ou

fyz) + xf(y,2) —f(xy,2) —f(x, )z = 0.
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Apres un réarrangement des termes, on voit que c’est exactement 6 f = O.
Ainsi, les applications bilinéaires f de V" dans lui-méme (cas M=V") vérifiant
0f = 0 sont les « déformations infinitésimales » de u. Une autre fagon
d’exprimer cela est que u + #f vérifie la condition d’associativité jusqu’aux
termes du second ordre (i.e. modulo #?) si et seulement si 6 f = 0. La famille
(7) est un cas particulier (famille d’équivalences) des familles de structures
associatives. (Noter la différence de la signification de f dans les deux cas!/)

Encore une interprétation: ce qu’on appelle le probleme de [’extension.
Le produit semi-direct W = V X M avec comme produit i celui défini
dans (2) est une algébre dans laquelle (i) M est un idéal vérifiant M? = 0
(i.e. mn = 0 quels que soient m, ne M) et dans laquelle (i) le quotient
WM est isomorphe a (V, u), tandis que (ii1) M est un module sur W/M par
Pintermédiaire de A et p. Le probleme de P’extension consiste & trouver
toutes les multiplications i’ de W telles qu’on ait (i), (ii), (iii). Il n’est pas
nécessaire que V soit une sous-algebre de W pour une de ses structures;
néanmoins nous continuerons a représenter W comme un espace vectoriel
produit de V et de M. Supposons que ji’ est un tel produit, alors (i) implique
que i et i’ coincident sur M (ils valent tous deux zéro); (ii) implique que
p et @’ différent sur V' par une application ¢ a valeurs dans M, tandis que
(iii) implique que j et i’ coincident quand on les évalue par un élément de
V = W/M et un élément de M.

En une formule,

g (G, m),(y,m) = (10, 3),0(x,») + A0, n) + p(m, ).
On voit maintenant par un calcul direct que I’associativité de i’ est équiva-
lente a
A(x,0(,2) —ple(,y),z) +o(x, 1y, 2) — ¢(u(x,»),2) =0,

c’est-a-dire & ¢ = 0. On considére comme équivalentes deux extensions
g’ et p” quand elles sont liées par un automorphisme d’espace vectoriel
de W qui induit U'identité sur M et sur W/M. Une telle application F a la

forme
F(x,m) = (x,m + f(x)), avec f:V—->M.

I’application inverse est F~ ' (x, m) = (x, m— f (x)). Les structures équiva-
lentes 4 i1 sont ainsi

g (x,my,(y,m) = F ' a(F (x,m),F(y,n) =
=F 1 a(x,m +f(x),(y,n + () =
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= F ' (ux, 9,4 n +f) +po(m +f(x),y) =
= (u(x, 1), = fuCe, ) + A(x,n) + A(x,f() + p(m,¥) +p(fx), ).

Ainsi, dans ce cas,

p(x,¥) = —f(u(x,1) + A(x.f) +p(fX),y) = ()&, ).

De ces exemples émerge une certaine idée. Dans chacun des exemples
est un probléme dont la solution « est n’importe quelle solution de éx = 0.
Parmi les solutions certaines moins intéressantes sont de la forme o = Jp.
Cela suggére 625 = 0. A vrai dire, cela peut se vérifier — nous le ferons
plus tard. Cependant, une vérification directe serait maintenant extrémement
laborieuse, et on peut s’attendre au mé€me phénomene pour d’autres calculs.
Aussi introduisons nous certaines notations comme outil pour lesmener a bien.

Pour le moment nous considérons un espace vectoriel ¥ mais ne suppo-
sons pas qu’il ait quelque structure d’algébre. Nous prenons pour f une
application linéaire d’ordre » de V dans V et de fagon analogue pour g
une application linéaire d’ordre m de V dans V. (En fait, g peut prendre ses
valeurs dans n’importe quel espace vectoriel.) Nous définissons le produit
de composition g 0 f qui est une application linéaire d’ordre n + m — 1 par

(8) (g 5f) (xl’ °-'9xn+m—1) =
= Z«l (~ 1)(i—1)(n_1)g (Xgs oo X 15 f (Xgs oevs Xigp—1) s Xigns ooes Xntm—1)

Cette définition est motivée par la suite.

APPLICATION 1.Soit u une application bilinéaire de ¥ dans ¥; on a alors

oW,y 2) = p(ux,9),2) —pux, uly,2).

Ainsi p 0 p = 0 est la condition nécessaire et suffisante pour que u définisse
sur V une structure d’algébre associative.

APPLICATION 2. Soit f une application linéaire d’ordre n de V dans V,
et u une structure associative sur V. Alors, a 'aide de la formule donnant
0 f (avec A=p=u) on trouve

of =(=D"""nof~fou.

— f 0 p correspond & la somme des termes « du milieu »; (—1)"*! uof
aux termes « extrémes ».

Nous avons ainsi montré que I’introduction de o conduit & une notation
plus courte. Pour calculer avec elle, nous avons besoin de quelques propriétés.

L’Enseignement mathém., t, XIV, fasc. 3-4. 17
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THEOREME. Soit f, g, h des applications linéaires d’ordre n, m, p de V dans
lui-méme. On a alors [’identité suivante

©) (fog)oh—fo(goh) = (D" D™D {(foh)og — fo(hog)} .

En particulier, pour n = 1 alors fo g = fo g et les deux cotés de (9)
valent zéro. Pour n = 0, alors fo g = 0.

L’identité (9) ressemble beaucoup a I'identité de Vinberg (1), excepté
en ce qui concerne I'ordre inverse des facteurs et la puissance de (—1) qui
refléte la graduation. Nous espérerons donc aussi quelques propriétés ana-
logues.

Pour prouver (9), on a besoin de quelque patience, d’une grande feuille
de papier, d’un crayon pointu et d’une bonne lumiére. Cependant I’effort
sera récompensé¢ puisque c’est I'un des quelques théorémes dont la preuve
est un peu pénible. Nous indiquons ici la méthode, laissant les détails comme
les puissances de (—1) nécessaires aux soins du lecteur.

Dans la définition (8) de f 0 g, la fonction g « visite » tous les espaces
possibles sur f, avec des signes appropriés. Quand o 4 est ensuite appliqué
sur la droite, alors & « visite » tous les espaces possibles de /0 g. Dans cer-
tains termes /& occupera un espace possible de f; dans d’autres un espace
possible de g. Les derniers termes constituent exactement f o (gok); dans
les termes restants (les premiers) g et 4 occupent tous deux des espaces pos-
sibles de f. Un observateur plus fin trouvera dans ces termes une certaine
symétrie en g et #. — Les détails sont laissés au lecteur...

Les commutateurs,des produits de composition forment une algébre de
Lie graduée. Pour fixer la terminologie, nous appellerons n — 1 le degré
réduit d’une application linéaire d’ordre n; le degré « ordinaire » est n.

THEOREME. Si f, g sont des applications linéaires d’ordre n et d’ordre m
de [’espace vectoriel V dans lui-méme (les degrés réduits valent n — 1 resp.
m— 1), et si

[f.9]° =gof — (=D V" Dfsyg

alors [,1° est, par rapport a la graduation réduite, une structure d’algébre de
Lie graduée sur [’espace des applications multilinéaires. C’est-a-dire
() [f, g° est une application linéaire d’ordre n 4+ m — 1 (de degré réduit
n-+m—2) qui dépend linéairement de f et de g.

(ll) [f,g]o = (_1)(m—1)(n—1)+1[g,f]o'
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Si h est une application linéuire d’ordre p, alors
(i) (=1)O"DEOLf, 6] B + (=D DD ([, H)° ST +
£ (=)@ DD [[h,f]°,6]° = 0.

La preuve de (iii) (identité de Jacobi) est la méme que celle du théoreme
de la section 2, excepté qu’il faut veiller aux signes. — Notons "ordre inhabi-
tuel des facteurs dans la définition de [,]°; il refléte le fait que, d’un certain
point de vue, I'ordre des facteurs dans /0 g est Iordre « erroné ».

Des conséquences immédiates du théoréme sont par exemple les sui-
vaintes:

5f = —[wf1°, wmop=;[uul;

’identité de Jacobi donne, elle,

8 f = [, [, f1°]° = +[[wpl®f]° =0

lorsque u est associatif. L’identité de Jacobi donne aussi
(10) 5[f,91° = [0f,91° + (=" [f. 09]° .

5. Cohomologie.

Dans la section précédente nous avons vu un exemple de la situation
suivante: on a un systéme (C")% ___ d’espaces vectoriels (ou de modules si
on aime la généralité) et une application linéaire 6 qui envoie chaque C”"
dans C" ! telle que 6% = 0. Nous pouvons ainsi prendre pour C" ’espace
des applications linéaires d’ordre n de ¥ dans V' pour n = O et C" = {0}

pour n < 0. On peut représenter la situation par la suite
05C05C15 5Cn—lécn5cn+15

A chaque C" est associée une application entrante 6, dont on note B" I'image
(de telle sorte que B" = 6C"~ ') et une application sortante §, dont on note
le noyau (ensemble des zéros) par Z". Le fait que 6% = 0 dit que B" est un
sous-espace de Z". Les deux sections précédentes contiennent certaines
illustrations de ce que B" et Z" signifient pour les petites valeurs de » dans le
cas des algebres associatives.

La suite ci-dessus est appelée exacte en C" s1 B" = Z"; elle est dite exacte
si elle est exacte en C" pour tout n. Comme mesure du défaut d’exactitude
de la suite on introduit selon la coutume les quotients H" == Z"/B". On les
appelle les groupes de cohomologie; dans la situation présente les groupes
sont en réalité des espaces vectoriels. Z" et B” sont appelés les espaces de
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cocycles resp. de cobords. Dans le cas d’une algébre V, comme dans la section -
antérieure, on écrit H" (V, V): c’est « la cohomologie de V a coefficients dans

V'». Plus généralement, quand M est un module sur ¥, on a lzs groupes de

cohomologie H"(V, M) de V a coefficients dans M. Nous les décrirons

briévement.

Dans certaines situations, comme par exemple celle de la section précé-
dente on a des applications bilinéaires (les produits) C* x C™ — C? (dans
notre cas, le produit est donné par [,]° etp = n + m — 1), et § est une déri-
vation par rapport au produit (dans notre cas voir (10)). Alors quand on
applique 6 au produit de deux cocycles on obtient zéro; ainsi le produit de
deux cocycles est un cocycle. De fagon analogue, le produit d’un cocycle
et d’un cobord est un cobord. (Prendre dans (10) pour g un cocycle et pour
0 fun cobord. Alors le dernier terme disparait de sorte que [0 f, g]° est égal
au premier terme qui est un cobord.) Ainsi, les produits avec la propriété
de dérivation induisent pour les groupes de cohomologie des produits
H" x H™ — HP puisque le produit de deux cocycles est changé seulement
d’un cobord quand on change d’un cobord les facteurs. En particulier, dans
la situation de la section 4, on a des produits

H"(V,V) x H*(V,V) - H"*"™" Y (V, V),

produits qu’on note également [,]°. On a aussi une structure de Lie graduée
puisque toutes les propri€tés qu'on peut décrire par des équations se géné-
ralisent quand les opérations des équations se généralisent.

Dans le cas général de H" (V, M), nous avons déja décrit les espaces C”
et ’application § au début de la section 4. Tout ce qui nous reste a faire est
de prouver 6% = 0 ce qui jusqu’ici n’a été fait que pour M = V. A cette fin,
nous considérons a nouveau le produit semi-direct W = V x M. Soit fun
¢élément de C", i.e. une application linéaire d’ordre n de V' dans M ; on associe
a f une application f linéaire d’ordre n de W dans W par le procédé évident

« d’extension »
f—(('xl’ ml) s °'-9(xn7 mn)) = (Oaf(xla ---axn)) £

Notons que f = O si et seulement si f = 0. Le produit dans W est encore
noté ji (quoique ji n’est pas obtenu a partir de u comme f I’est & partir de f;
ji contient aussi A et p). On invite le lecteur & vérifier que ji 0 fet f o i tous
les deux ont la propriété de valoir zéro chaque fois qu’'une de leurs entrées
vient du facteur M et que les valeurs sont toujours dans le facteur M. Une
recherche soigneuse montrera, en fait, que 6f (qui est une application linéaire
d’ordre n -+ 1 de W dans W) est juste la méme chose que la fonction obtenue
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en « étendant » 6 f. Clest-a-dire 6f = Jf. Cela implique 6% f = 6% =0,
donc 62 f=0.

Les exemples discutés dans la section 3 ont les interprétations cohomolo-
giques suivantes:

V est une algébre associative, M un V-module.

ExemMPLE 1. B! (V, M) est espace des dérivations intérieures de V' dans
M. Z' (V, M) est 'espace de toutes les dérivations de V' dans M. L’espace
quotient H*' (V, M) mesure & quel point il y a d’autres dérivations que les
dérivations intérieures.

EXEMPLE 2. B> (V, V) est I’ensemble de toutes les déformations infini-
tésimales du produit u obtenues par une famille de transformations inver-
sibles de V. Ces déformations en réalité ne déforment rien; elles effectuent
simplement un changement de base. Z2 (V, V) est 'espace de toutes les défor-
mations infinitésimales. Le quotient H? (V, V) mesure & quel point il y a
de vraies déformations infinitésimales. Dans la section suivante nous verrons
que H? (V, V) détermine 4 quel point une déformation infinitésimale appar-
tient réellement a une famille de déformations. Par exemple c’est toujours
le cas pour H> (V, V) = 0.

EXeEMPLE 3. Quand dans I’exemple 1 nous prenons M = V alors B! (V,V)
est une algebre de Lie par rapport au produit [,]°. C’est I'algébre de Lie du
groupe des opérations b |- aba” ' (automorphismes intérieurs) de ’algébre,
ou a est un élément inversible quelconque. (S’il n’y a pas d’unité dans V,
on peut prendre b |- (I+a) b (I+a)~! ou a est tel que la multiplication
gauche comme la multiplication droite par I + a est inversible.) Z* (V, V)
est aussi une algebre de Lie, & savoir celle du groupe de tous les automor-
phismes. Comme le premier groupe est normal dans le dernier, le quotient
est un groupe. Son algébre de Lie est juste H' (V, V) avec le produit induit
par [,]°.

EXEMPLE 4. H? (V, M) mesure l’existence d’extensions de ¥ par M a une
cquivalente pres. L’ensemble de toutes les extensions est paramétrée par
Z* (V, M);les extensions inessentielles par B2 (V, M).

6. Déformations d’algébres associatives.

Dans la section 4, nous avons déja discuté briévement le concept de
déformation infinitésimale d’une algébre associative V (cf. le cas n = 2);
dans le cas # = 1 nous avons identifié les déformations infinitésimales dues
a une famille de transformations inversibles de V. Dans la section 5,
exemple 2, nous avons indiqué la relation avec la cohomologie. Nous allons
maintenant recommencer en utilisant les opérations & et [,1° et leurs pro-
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priétés y compris leurs relations avec la cohomologie. Au cours des calculs
nous essayerons de montrer ’efficacité de o et de [,]° a accomplir les opéra-
tions essentielles.

La condition que p est une multiplication associative de I’espace vectoriel
V s’exprime par p 0 u = 0. Supposons que u + ¢, ou ¢ est une application
linéaire de V dans V, est aussi associatif; alors

0 =@+p)o(u+) =pop+poQ +Qou+@op =

= —5@ +;1g[§0’§0]o7
ou

(11) o —t[p,0]° = 0.

C’est I’équation de déformation. Nous serons intéressés a trouver toutes les
« petites » solutions ¢ de cette équation.

Il existe diverses méthodes pour résoudre (11). La méthode des séries
formelles de puissances est intuitivement la plus simple, quoique pas tou-
jours la plus pratique dans les situations réelles. Nous posons donc

@=t§01+tz(p2+t3§03+..

et substituons dans (11). (A strictement parler, ¢ est une « variable » dans
un sens technique. Si ’on permet de considérer des séries de puissances en ¢
dont les coefficients sont des applications bilinéaires, on est obligé de fagon
analogue de considérer des séries de puissances en ¢ dont les coefficients sont
des applications multilinéaires quelconques ou des nombres réels quel-
conques. Nous n’entrerons pas dans les détails et passerons tant bien que mal
a travers tout cela aussi bien que nous le pourrons.) La suite suivante d’équa-
tions apparait quand on annule les coefficients des puissances de 7.

op; =0
ép, — 3 [e, 041° =0
opy — [(P1»(P2]O =0

5(Pn+1 —% Z [(pia ¢n+1—i]o =0

i=1

Ainsi, il est nécessaire que ¢, soit un cocycle. Les résultats de la section 5
impliquent que, alors, 4 [¢4, ¢;]° est aussi un cocycle, donc représente une
classe de cohomologie dans H?> (V, V). Si cette classe (appelée I'obstruction
premiére) vaut zéro, alors % [¢4, ¢4]° est un cobord, et on peut trouver ¢,.
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Naturellement, ¢, est unique & quelque chose dont le 6 vaut zéro 1.e. & un
cocycle prés. Si’on peut trouver ¢,, on peut continuer avec @,. Nousallons
montrer que 4 chaque étape nous trouvons un cocycle pour I’expression
a laquelle le ¢ suivant doit étre égal. Si cette expression est un cobord ou si
on peut en faire un cobord en modifiant d’un cocycle le ¢ précédent, alors
nous pouvons considérer le pas suivant.

Ainsi supposons que l’on a trouvé ¢4, @, ..., ¢,; 1.6. qu’en posant

0 =1to; + @+ o F e F T+
(les ¢, et les coefficients suivants sont arbitraires)

on a

[‘u—f‘@,/l‘l‘@:]o = tn+1Fn+1 + ...
avee

Fn+1 = - 25@71+1 + Z [@ia qon-i—l—i]o‘

i=1

A cause de l'identité de Jacobi pour les algebres de Lie graduées nous
obtenons (3 termes sont égaux !)

0 =[p+o,[u+o,u+el°]° =[u+to+.. " F o +..]° =
= " [, Fugg]® + oo

Comme le coefficient de "*! doit étre zéro, on obtient

n
0 = [, Fpr1]® = — 6F, 0y = — 36 21 [%a §0n+1—i]o
3=

qui est ce que nous voulons montrer: 'expression a laquelle d¢, , ; doit étre
égale est toujours un cocycle. C’est seulement si sa classe de cohomologie
(« Pobstruction d’ordre n ») s’évanouit qu’on peut trouver ¢,. ;. — Nous
voyons que H? (V, V') = 0 entraine que chaque cocycle ¢, peut « s’étendre »
a une famille & un paramétre de déformations.

Par souci de généralité, nous considérons briévement une série pour ¢
qui commence a un terme d’ordre plus grand:

Q = thDk = tk+1(pk+1 + ... (k>1).

Alors, en substituant dans (11), on montre comme auparavant que non seule-
ment @, mais aussl @y, 1, ..., Px— sont des cocycles.

L’« apparence » d’une famille de déformations peut changer quand on
la compose avec une famille F, = I + #f; + t*f, - ... de transformations
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inversibles de V; f1, 15, ... sont ici des applications linéaires ¥ — V et on peut
calculer F, terme par terme, par exemple les premiers termes sont

Fil =1-—1tfi + tz('—fz'*‘f%) + (= fs+fifs +f2f1—f§) + s
La déformation modifiée est donnée par
w(x,y) = F ', (Fx,Fy) = F{' u(Fx,Fy) + F{ o (Fx, Fy).

Supposons que la série de puissances de ¢ commence comme ci-dessus
par t* (k= 1) et décidons de la composer avec un F, qui commence 3 la méme
puissance: F, = I + t*f,-- ... On trouve alors

pe(x,9) = p(x,y) + (= fin(x,¥) + u(fix, y) + p(x, £iy)) +
+ * o + ...

ol les points indiquent les termes d’ordre plus grand que k. Ainsi, en posant
¢ = — p ona
¢ = 1(=0fitor) + ..

autrement dit, étant donné une famille de déformations de y, on peut par
le choix de F, changer d’un cobord arbitraire le terme principal de 'expan-
sion en série de puissances. En ce sens, seule la classe de cohomologie du
terme principal « compte ». En particulier, si le terme principal est un
cobord, on peut le changer en zéro par un choix convenable de F,. Comme
corollaire, si H* (V, V) = 0, chaque terme principal, étant un cocycle, est
en fait un cobord et peut €tre changé en zéro. Nous pouvons montrer que,
en fait, on peut alors trouver une famille F, telle que le ¢’ final est zéro
c’est-a-dire qu’on a le

THEOREME. Si H* (V, V) = 0, alors toute famille u, de déformations
d’une structure associative u est triviale si c’est une famille a un paramétre
comme série formelle de puissances. i.e. existe une famille F, de transformations
inversibles de [’espace vectoriel sous-jacent développables en séries formelles
de puissances a un parameétre telle que

e (x,y) = Fi P p(Fx, Fry) .
(Dans ce cas, on dit que s est rigide)

La seconde méthode pour résoudre (11) est & vrai dire la méthode clas-
sique utilisée dans la résolution des équations linéaires — on exprime cer-
taines des inconnues au moyen d’autres, les paramétres. Dans ce cas,
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cependant, les équations ne sont pas linéaires et il peut y avoir en pratique
des difficultés a trouver explicitement les solutions.

ILa méthode est fondée sur deux idées: (i) partager (11) en trois ensembles
d’équations et les résoudre consécutivement, (i) choisir les paramétres les
plus favorables. Les deux buts sont atteints en observant qu’on peut décom-
poser ’espace des applications linéaires d’ordre n de V" dans V" en une somme
directe de trois sous-espaces. Le premier est B", I'espace des cobords, le
second nous I’appellerons (par abus de notation) H"; c’est tout sous-espace
de Z" complémentaire de B", il est isomorphe & H* (V,V). Le troisieme U”
est complémentaire de Z", de telle sorte que I’espace en entier est la somme
directe de Z" et de U". La décomposition est ainsi B" + H" -+ U", ou 2" +
+ U™, comme le dictera la nécessité. Les applications de projection corres-
pondantes sont notées ng, my et mwy.

L’équation (11) se partage maintenant comme il suit:

(117) a) 6¢ —ingle,0]° =0

b) mu @, ]° =0

c) ny[e,¢]° =0
En se rappelant I’origine de (11), nous voyons que (11'.c) est équivalent a
(11".¢") nyle+o,p+e]° = 0.

Nous I'utiliserons sous cette forme.
Dans (11'.2) posons ¢ = z + u, ou ze Z* et ue U?, et considérons z
comme un parameétre. (11°.a) devient alors, puisque 6z = 0

(11".a") ou —inglz+u,z+ul]®> =0.

Le codté gauche note, pour chaque z, une application qui envoie u € U? dans
un cobord de B>. Pour z = 0, cette application est justement u |— du qui
est un isomorphisme entre U? et B>. Le théoréme des fonctions implicites
nous dit alors que pour un petit z on peut trouver un voisinage de u = 0
qui est appliqué de maniére biunivoque sur un ensemble ouvert de B3 et
que lorigine de B* est dans I'image. Désignons par & (z) I'image inverse
de 0; ainsi u = @ (z) est une solution de (11’.a"). Le théoréme des fonctions
implicites nous dit que @ paramétrise toutes les solutions petites ¢ = z +
+ @ (z) et que @ est analytique.

Nous substituons maintenant ¢ = z ++ @ (z) dans (11°.b). Malheureu-
sement on n’a aucune garantie que I’équation qui en résulte

(11°.6") Q(z) = gornglz+P(2),z+P(2)]° =0
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a de nombreuses solutions. Cette équation correspond aux obstructions
que nous avons trouvées dans la méthode des séries de puissances. C’est
pourquoi, on appelle Q [’application obstruction.

En ce qui concerne la troisieme équation (11°.c”), les choses vont mieux:
pour les petits ¢ c’est une conséquence des deux premiéres équations
(I11'a, b), qu’il n’y a pas de conditions supplémentaires. Cela correspond
au fait que dans la méthode des séries de puissances, F,, ; est automatique-
ment un cocycle. Pour prouver cela, nous avons seulement a montrer ce qui
suit: si ¢ est tel que w = [u+¢, u--¢@]° appartient & U> et si ¢ est petit,
alors w = 0. Grace a I'identité de Jacobi et avec les hypothéses faites nous
avons

0 = [u+q0,[,u-l—g0,u+(p]°]° = [u+oe,w]°.

Or, on peut prendre pour w n’importe quel élément de U> pour lequel
[t+¢@, w]° = 0 et nous montrons que c’est zéro quand ¢ est petit. Or
w |— [u, w]° = — Sw est une application de U? dans I’espace des applica-
tions linéaires d’ordre 4 qui est une injection. Un changement: remplacer
[, .]° par [u+e, .]° ne change pas la propriété (biunivoque) de I'injection
quand ¢ est petit. (Le rang d’une application linéaire ne diminue pas par
un petit changement.) Par suite, il y a dans U> un seul w pour lequel
[u+@, w]° = 0 quand ¢ est petit; la seule valeur est évidemment w = O.

Ainsi, toutes les petites solutions de (11) sont de la forme ¢ = z 4+ @ (2),
ou @ est analytique dans un voisinage du 0 de Z?* et ol de plus z est limité
par la condition Q(z) = 0; Q est aussi analytique & valeurs dans H°,
(Notons que H> (V, V) = 0 entraine que les petites solutions ¢ de (11)
forment une variété locale sans singularités; son espace tangent est Z2.)

Pour considérer les équivalences parmi les déformations, nous observons
que dans le cas ou o : ¥ — V est inversible il lui correspond une transforma-
tion sur une multiplication u’ donnée par ' (x, y) = o~ ' u (0x, ap).

De fagon analogue, a toute application, linéaire d’ordre n, f correspond
une nouvelle application appelée o (o) f :

(0 () f) ey or ) = a7 f(0xy, .oy 00X,) .

On a u' = o () . I est facile de voir a partir de la définition de 0 que

g (o) (fog) = o (0)foo(n)g.

Ainsi, siona pou =0, on a aussi ¢ (x) 0 o (2) p = 0. (Cela exprime
le fait évident que des algebres isomorphes & des algebres associatives sont
elles-mémes associatives.) Si o est prés de ’application identité 7, « est de la
forme e, ou B est une application linéaire.
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Lemme. Si B : V — Vest linéaire et si fest une application linéaire d’ordre
n de V dans V, alors

g f =",
ot 65/ = [B, /T

Pour montrer cela, nous remplagons 8 par 7§ et nous différentions par
rapport & ¢. Vu la définition de o on a

% o (@ f = —Boo(eNf +a(eNfop =[B.a(eN)f]° = d,0(")f.

Or = et 6, commutent puisque f est indépendant de ¢ et nous trouvons
¢

(%)N (e f =358,0(")f.

IN
Si I’on pose ¢ = 0 c’est le coefficient de o dans le développement en série de

Taylor de o (e'f) f. Pour ¢ == 0, le coté droit coincide avec 52’ f. Ainsi nous
trouvons

t < tN d N t < tN N g
o @f =Y {(m) 6@ hio = 3 1 03 = ¢S

N=0 NI

Il suffit de faire ¢ = 1 pour prouver le lemme.
Comme pour la notation J, on peut poser 6,f = [g,f]°. On a alors
6,/ = [, f1° = — 6f de sorte que 6 = — §,. Notons aussi que

5[3/" = [ﬁ,’u]o = - I:‘u)ﬁ]o = 5ﬁ .

L’action d’un opérateur o () sur u donne quelque chose qui dépend
du choix de B. Pour fe Z' (V, V) on a 6 = d,u = 0 de telle sorte que
o (ef) = €°f u = p; i.e. une change pas. Pour fe Z' (V, V), les e# appar-
tiennent au groupe d’automorphismes de p. On peut ainsi voir que les e’
pour f € U' sont & vrai dire les seuls intéressants si ’on veut que u « bouge ».
Comme alors dyu n’est jamais zéro (excepté pour S = 0), les éléments
o (e’) u, pe U', sont tous distincts 'un de I’autre pour B petit et forment
en p une variété locale dont I’espace tangent est B* == §U'. Quand u'
est distinct de p mais proche de u, I’ensemble des o (e) u' pour fe U?
proche de O forme aussi une variété locale dont I’espace tangent en u'
est proche de B2 Ainsi on voit intuitivement que pour u’ prés de u et f3
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dans un voisinage de 0 contenu dans U? toutes les orbites o (e”) u’ se coupe-
ront en u suivant un sous-espace transversal & B?. (Les considérations pré-
cédentes sont purement intuitives; le théoréme des fonctions implicites
fournit la preuve actuelle.) Ainsi si nous prenons le plan P passant par u
dans la direction de H? 4 U?, alors P contient en particulier au moins
un point de ’ensemble des o (e’) u' pour tous les u’ proches de pu. Les p/
associatifs dans P ont, cependant, justement la forme pu + z + @ (z) ou z
est réduit & H? et vérifie Q (z) = 0. Les pu' considérés représentent toutes
les classes d’équivalence des multiplications associatives proches de u et,
comme nous le voyons, sont paramétrés par les zéros d’une application
analytique Q de H? 2 valeurs dans H°>.

De fagon plus explicite: chaque structure associative y’ proche de pu
est de la forme u’' = o (¢) (p+2z+@ (z)) ol z appartient a un voisinage de 0
contenu dans H? et vérifie Q (z) = 0 tandis que 8 appartient & un voisinage
de 0 contenu dans U™,

Dans le cas particulier ou H* (V, V') = 0 cela signifie qu’il y a seulement
une classe d’équivalence: celle de u. Cest-a-dire que toutes les multiplica-
tions associatives proches de u sont équivalentes a p. C’est une autre forme
du théoréme de rigidité.

On doit remarquer que bien que o (e®) 4 = u pour fe Z!, en général
o (¢) ' # ' pour y proche de u et pour le méme f. Pour trouver les équi-
valences entre les u’ proches de u on n’a pas pris les transformations en consi-
dération. Comme résultat, on peut en général trouver leurs équivalents
parmi les p’ de P.

7. Un exemple simple.

Nous calculerons les petites déformations de I’algébre associative a deux
dimensions V dont les éléments sont de la forme a -+ be, ou a et b sont réels
et €2 = 0. Une base de V sur les nombres réels est constituée par les élé-
ments 1 et &. Soit f: V' — V une application linéaire, §f est donnée par

(0f)(1,1) =1.f(1) _—f(1~1) +f(D).1 =f(Q1),
(6f)(1,e) = (6f)(e, 1) = 1_-f(8) —f(le) +f(1).e = ef (1),
(0f)(e,8) = e.f(e) —f(e.e) +f(e).e = 2¢ef(¢)

Par suite, f est une dérivation si f(1) = 0 et si (&) est un multiple de e.
L’espace Z' = H' des dérivations est & une dimension et une base en est
donnée par I’élément { avec

{(a+be) = be.
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Soit maintenant une application bilinéaire ¢. On peut alors calculer ¢
de fagon analogue. Cependant nous savons déja que 6 (6f) = 0 quand f est
linéaire. Aussi pouvons nous restreindre ¢ & un sous-espace W complé-
mentaire & B? et dont les éléments ont la propriété que ¢ (1,1) = 0 et
¢ (g, ¢) € R. Pour ces ¢ la, on trouve -

Gp)(1,1,1) = (59) (L&, 1) = (69) (&, &, 8) = 0,
Gp)(1,1,8) = ¢(1,9), (00) (&, 1,1) = — g (e, 1),
Gp) (L, e,8) = — e9(1,6),(30) (e:6, 1) = — (2, 1),
(G0) (e 1,e) = e(p(1,8) — (e, 1).

Les ¢ pour lesquels ¢ = 0 donnent H?. Ils sont caractérisés par ¢ (1, &) =
— ¢ (s, 1) = 0 — et naturellement ¢ (1, 1) = 0 et ¢ (¢, &) € R. Donc H?
est 3 une dimension et est engendré par I’application z avec z (g, &) = 1,
z étant nul pour toutes les autres paires d’éléments de la base. Pour ce z,

onazoz = 0.Si ¢ = z -+ uest une solution de (11), alors on a dans ce cas

ou +(zou+uoz4+uou) =0,

qui est vérifié pour u = 0. Ainsi si ¢ est un paramétre réel, les multiplications
déformées sont u' = p + 1z; i.e.

p (a+be,c+de) = ac + (ad+bc)e +t.bd,

ou encore

w1 =1, pe)=pu(l) =¢, pee =t.

On distingue ¢ > 0 et ¢ < 0 en posant £ = + k2. Avec le nouvel élément
de base ¢’ = ¢/k on a

‘ul(gl’ 8,) — i 1
et
' (a+be',c+de"y = (ac+bd) + (ad +be) g .

Ainsi toutes les structures correspondant & # > 0 sont isomorphes et il en
est ainsi pour celles qui correspondent & ¢ < 0. Les derniéres sont justement
les nombres complexes.

Comme exercice, on peut vouloir calculer le produit de z et de . On
observe que { (¢) et z (g, &) sont les seuls éléments non nuls et que les valeurs
.de { sont des multiples de ¢; celles de z des multiples de 1. Dot { 6z = 0.

|
4
S
l
|
?
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On trouve -

18, 2]° (e, &) = (200) (5, 8) = z({(2),¢) + z(e,((e)) = 2 = 2z (e, 9),
tandis que les autres valeurs de [(, z]° et de z sont zéro. Autrement dit,
[¢,z]° = 2z.

L’espace ne nous permet pas d’expliquer comment cette formule est liée
au fait que u est une structure de « saut »: il change une fois (dans chaque
direction de ¢); ensuite la structure reste constante. C’est un cas particulier
de la situation décrite dans la derniére remarque de la section 6.

PARTIE II1: Algébres de Lie et algébres de Vinberg
— plus sur les déformations —
systéemes de composition

Introduction.

Le produit de composition pour des algébres associatives a été introduit
dans la partie II, de méme que quelques applications — principalement
celles concernant les déformations de telles algébres. Cependant les possi-
bilités du produit de composition n’ont pas été 1a épuisées: il préte lui-méme
a d’autres questions de déformation qui sont mentionnées dans la partie
présente: déformations d’homomorphismes d’algébres et déformations de
sous-algébres. Le crochet [, ]° de la partie II était a vrai dire un commutateur
de produits de composition: on peut le comparer avec I’algebre de Lie des
commutateurs d’une algebre de Vinberg. On montre maintenant que le
produit de composition « plus fin » permet la construction d’autres struc-
tures graduées de Lie notées [,]" et [,] qu’on ne pourrait obtenir a partir de
[,]° seul. Les nouveaux crochets sont utilisés pour les déformations d’homo-
morphismes et de sous-algébres.

Les considérations de cette sorte ne sont nullement limitées aux algébres
associatives: notre premiere tache consiste & définir les produits de compo-
sition pour les algébres de Lie et les algébres de Vinberg de telle fagon qu’en-
suite toutes les discussions s’appliquent également aux trois types d’algébres.
(Elles s’appliquent aussi aux algébres associatives et commutatives; cf. les
notes bibliographiques.) Quoiqu’on n’ait pas beaucoup a dire en ce qui
concerne les produits de composition dans les algébres de Lie et les algébres
de Vinberg (tous les commentaires antérieurs s’appliquent presque mot pour
mot) nous avons pensé¢ appuyer sur leur utilit¢ en donnant un exemple de
déformation d’algebre de Lie.



L utilité « universelle » du produit de composition que nous avons ainsi
exhibé nous conduit & la question que peut-étre d’autres types d’algébres
pourraient admettre aussi des produits de composition. A vrai dire, s’il en
est ainsi, alors il y aurait pour chacun de ces types une théorie toute faite de la
cohomologie et des sortes variées de déformations attendant pour E€tre
appliquées. Les algébres de Vinberg peuvent par exemple €tre considérées
comme un exemple de type d’algébre pour lequel on attendait une théorie
toute faite.

De facon 2 asseoir la théorie de fagon suffisamment ferme pour per-
mettre de telles théories toutes faites, il est nécessaire de réduire non seule-
ment toutes les définitions mais aussi toutes les preuves de théorémes a des
propriétés explicitement énoncées du produit de composition. L’espace
ne nous permet pas la pleine exécution d’un tel programme. Cependant,
nous donnons un exposé explicite des propriétés requises du produit de
composition (introduisant 1a les systémes de composition), et montrons
comment certaines propriétés décisives suivent des axiomes.

8. Un deuxieme produit de composition.

On a montré que le produit de composition introduit dans la section 4
est justement la picce de mécanisme qu’il faut pour un certain nombre de
questions liées aux algébres associatives. Nous introduisons maintenant
— dans un style beaucoup plus bref — un deuxiéme produit de composition
qui fait de méme pour les algébres de Lie de fagon si semblable qu’il y a
réellement trés peu a dire. La répétition de la méme histoire ne servirait
aucun but; il est assez de suggérer que le lecteur se convainque lui-méme
en parcourant une fois encore le matériel.

Nous prenons a nouveau un espace vectoriel V" et prenons pour applica-
tions linéaires d’ordre n de V dans V seulement celles d’entre elles qui sont
alternées. Pour deux telles applications, f et g (la derniére étant linéaire
d’ordre m) on définit f & g (prononcez f « hook » g) par

(12) (fxg)(xla”'axn—}—m—l) -

= X Sg Tf(g (xr(l)a ceo xt(m))> xt(m-i-l)) e meap xt(n+m—1)) >

ou la sommation est sur les permutations ¢ de { I,..,n+m — 1} pour
lesquelles

(D <...<t(m) et t(m+)<..<t(n+m—-1).

On peut aussi sommer sur toutes les permutations et diviser par m ! (n—1) !.
Notons que pour que cette formule ait un sens les valeurs de f n’ont pas
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besoin d’€étre dans V' mais peuvent appartenir a n’importe quel espace
vectoriel.

La relation avec les algébres de Lie est la suivante: si u est une applica-
tion bilinéaire alternée de V" dans V, alors u définit une structure d’algébre
de Lie si et seulement si 4 7 ¢ = 0. Une copie donne la vérification immé-
diate de I'identité de Jacobi

(Wrw) (x,y,2) = u(p(x, ), z) —p(pE, 2),y) +u(p@®,2),x) =
= p(u(x,y),2) +u(u®y,2),x) + p(u(z,x),).

Une fois donnée la définition de & on répéte avec presque une monotonie
assommante en prenant 6 comme modele: (9) est valable (la preuve suit la
méme idée), [,]° est défini comme dans le dernier théoréme de la section 4
et donne a nouveau une structure d’algébre de Lie graduée. Le cobord o
est défini comme auparavant par 6f = — [u, /]°. En considérant le produit
semi-direct d’une algeébre de Lie et d’un module on trouve pour §f dans le
cas ou f est une application d’ordre #n alternée de V' dans M la formule:

(0f) (x05 -5 Xy) = Z (=1 % f (X0 w5 Xim 15 X 15 200 X) +

+ Z (= DT (1 (X0 X), Xy wves Xm0 X g oees Xjmgs X 15 eees Xn) 5
i<j
qui dans cette situation est exactement la formule classique.

Les applications et les exemples des sections 4 et 5 peuvent étre répétés
presque mot pour mot. La théorie de la déformation de la section 6 marche
sans changement perceptible.

On doit faire une petite modification dans I’exemple 3 de la section 5.
Le groupe des automorphismes intérieurs d’une algebre de Lie doit étre
défini différemment. On utilise le fait qu’a chaque algebre de Lie correspond
un groupe de Lie (pas du tout unique) et que les automorphismes intérieurs
de ce groupe (donnés par les applications de la forme b |— aba™ ') induisent
un groupe d’automorphismes de I’algébre de Lie. (Le groupe est unique si
par exemple nous exigeons qu’il soit connexe.) L’algébre de Lie est exacte-
ment B! (V, V). Toutes les remarques ultérieures de ’exemple 3 continuent

a s’appliquer.

9. Un autre exemple.
Nous étudions maintenant les déformations d’une algébre de Lie V de
dimension trois ayant pour base p, g, 1 telle que

p(p,q) =1, p(g,1) =upud,p) =0;
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les physiciens la nomment d’aprés Heisenberg. En vue de la simplicité,
nous considérerons les équivalences sur les nombres complexes de sorte
que V sera un espace vectoriel complexe. (Autrement il faudrait distinguer
entre les racines réelles et les racines imaginaires des équations, etc.).

Soit £ : V' — V une application linéaire, on a alors
NP = uw(p.f(@) — 1(q.f(p) = f(ulp.9) = u(p,f(Q)) -
—u(q,f(p) —f(1),
0@, = u(g,fO) —u(1,f(@) —fulg, D) = u(g,fD)),
(0N, p) = u@,f(P) —ulp,f@) —f(u@,p) = — u(p,.f(D).

Soit
S =01+, X)p +f,()q,

de telle sorte que f; (x), etc., sont les composantes de f(x); on a alors
6N 0 =@+, -1 =f,Dp —f(Dq,
0f) g, 1) = —f,(DH1,
(01, p) = —f,(D1.
Par suite, f est une dérivation si et seulement si
(D) =1, =f(@+/f,(p—-fiD) =0.

De plus, B* est engendré par les applications bilinéaires alternées 0
pour lesquelles (en utilisant pour les composantes une notation analogue)

0@, ) =@, 9, o (1, p) = o,(p,q),
9,(q,1) = ¢,(.1) = ¢,(1,p) = ¢,(1,p) = 0.

Un espace complémentaire a B* est formé des ¢ pour lesquels @, = 0.
Soit @ € W; on calcule 6¢:

09) (.4, D) = p(p, @ (g, D) + u(q, ¢ (1, p) + u(1, ¢ (p, q) +
—ow®a).1) e 1D,p) —eud,p,q) =
¢, (0, D1 —,1,p)1 +0—-0—-0—-0.

Ainsi on a d¢p = 0 pour ¢ € W si et seulement si ¢,(q,1) = ¢,(1, p). Les
composantes encore libres d’un cocycle ¢ de W sont donc

¢, 9,1, o,1,p), @,(,9). 0,0, q),

L’Enseignement mathém,. t. XIV, fasc. 3-4. 18
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tandis que ¢, (1, p) doit étre égal & ¢, (¢, 1) et que ¢, = 0. Donc H? est de
dimension 5. Un espace complémentaire U? consiste en les ¢ pour lesquels
¢, (1, p) est libre tandis que les autres valeurs sont zéro.

L’équation de déformation est

ou —(z4+u)n(z4+u) =0,
ou on doit prendre z dans H? et u dans U?2. D’apres le calcul précédent on a

(514) (p: g, 1) = T U (13 p) 1.

Comme les valeurs de z et de u sont dans le sous-espace engendré par p
et g, il en est de méme de (z+u) & (z-+u). Puisque les valeurs de du sont des
multiples de 1, il s’en suit que u peut satisfaire a ’équation de déformation
seulement pour du = 0, i.e. u = 0. Par suite, nous trouvons que toutes les
déformations dans P sont donnéespar ' = u + zavecze H*etz 5 z = 0.
(La derniére équation est exactement Q (z) = 0.)

Nous avons donc

(z7z2)(p,q, 1) = z(z(p,q),1) + z(z,(q¢, D p + z,(q, D q,p) +
4+ z(z,(A,pp + 2,(1,p)q,9) .

Les deux derniers termes s’éliminent puisque z, (g, 1) = z, (1, p); ainsi
z » z = 0 est équivalent a

z(z(p,q),1) = 0.

Cela termine réellement la partie théorique du probléme de déformation.
Nous utilisons maintenant des méthodes classiques pour trouver les solu-
tions.

Pour résoudre I’équation, nous considérons I’application « : x |—
— z (x, 1) de x dans I’espace X engendré par p et gq. Les composantes relati-
vement a la base p, ¢ de X sont données par la matrice

z,(p, 1) z,(p, 1)
z,(q, 1) z,(q, 1)

Comme cette matrice a pour trace z€ro, la forme canonique de Jorden est

20 0 0
(a) [ 0 J on (b) [1 0].

Notons encore p, g la base par rapport a laquelle est assurée une de ces
formes. On peut supposer que la transformation qui méne de I’ancienne base
a la nouvelle a pour déterminant 1; alors u(p, g) ne change pas.
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Nous distinguons plusieurs cas.
Cas 1. z(p, g) = 0. La forme (a) n’a lieu alors que pour A # 0, car
sinon on a z = 0 (donc aucune déformation). On trouve (cas 1a)

W(p,g) =1, wigl) =2, pw@p =7p.

En prenant la base (p/A}/?, /A2, 1/2) on obtient une réduction de plus

.u/(p>Q) =1,
cas la uw(g,1) =q,
w(@,p) =p.

Dans le cas (b) on trouve

1,
P,
0

wp,q) =
cas 1b u (g, 1)

n' (1, p)

Cas 2. z(p,q) # 0. Dans ce cas, z(p, q) est un vecteur nul pour a,
donc A = 0 et z(p, q) est un multiple de p; disons z (p, §) = ap par rapport
a une base convenable. Dans le cas (a) on trouve

Au,(p9Q): 1+ap9 ,LL,(C],I):O, #’(LP)ZO

Par rapport a la base (ap+1, g, 1) cela devient

w(p,q) =p,
cas 2a u(g,1) =0,
w(@,p) =0.

Considérons maintenant a nouveau le cas (b); alors

w(p,q) =1+ap,u (@1 =p,u(1,p) =0,

outa # 0. Tout élément n qui n’est pas dans le plan Y de 1 et de p induit une

application y |- u’ (y, n); elles différent toutes uniquement par un facteur.
[

Pour # = g, nous avons f :y |- u' (y, g). La matrice de f§ est la { (1)}, son

polyndme caractéristique est A* — al + 1. Le discriminant a® — 4 est
# 0 pour a # + 2, de telle fagon que les valeurs propres 4 et 1/ sont soit
distinctes de + 1 (puisque a #0) ou toutes deux égales & + 1. Dans le pre-
mier cas une base pour Y existe (encore notée (p, 1) telle que

p(p.q) =2p,u'(g,1) = —A"'1,4A,p) =0.
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On divise g par A, on pose — 1/4% == 7 et on trouve

1 (p,q) = p, (t#0, +1).
cas 2b’ w (g, 1) = 1,

W @p)=0.

Les cas 7 et 1/t sont équivalents: changer p et 1 et remettre g a I’échelle.

Dans le dernier cas, la matrice de f8 est | j:? (1)] ,

qui est équivalente a

1 O resp. —1 0
1 1 1 -1\

Les u' correspondants sont équivalents; pour le premier on trouve

w(p,q) =rp,
cas 2b"” wig,1) = —1—-p,
w(@p =0.

Toutes les structures suivantes peuvent a vrai dire €tre atteintes par
de petites déformations arbitraires:

Cas la. z(p,q) =0, z(p, 1) = —tp, z(q,1) =1tq,
Cas Ib. z(p,q) = 0, z(p,1) =0, z(q,1) = tp,
Cas 2a. z(p,q) =tp, z(p,1) =0, z(g,1) =0,
Cas2b. z(p,q) = tap, z(p,1) =0, z(g,1) = —tp.

10. Un troisiéme produit de composition

Pour étudier les algebres de Vinberg on a encore besoin d’un autre pro-
duit de composition. Le trait qui le distingue principalement est qu’il est
beaucoup moins connu que les deux autres. Nous le noterons €. Les fonc-
tions linéaires d’ordre n que nous considérons sont celles qui sont alternées
par rapport aux » — 1 premiéres variables. Il est parfois utile de les consi-
dérer aussi comme des applications alternées, d’ordre n — 1, /" de V a
valeurs dans I’espace End (V'), des applications linéaires V' — V.

Supposons maintenant que f est comme ci-dessus, et g de méme mais
linéaire d’ordre m. Alors f C g est de la méme sorte, linéaire d’ordre n +
+ m — 1 et donné par |

(fCPD Fis oy Xprm—1) =
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= leg O—f(g (xa(1)> cees xo-(m—l)a xa(m))s xa(m+1)9 sy xa‘(m+n—2)5 xn+m—1) +
+ (— 1)(m~1)(n_1) 2559 Gf(xa(l)a cees Xg(n—1)»
g (xa(n)’ ceeo xa(n+m—2)a xn+m—1))9

ol Y, porte sur toutes les permutations o de {1,..,n 4 m — 2} telles que
(1) <..<o(m—1ets(m+l) <..<o(ntm—2)tandisque la somme
Y, porte sur les permutations ¢ vérifianto (1) < .. < 0o (n—1eto@n) <
< ..< o (n+m—2). Notons que g est complétement antisymétrique par
rapport & la premiére somme, mais ne 1’est pas par rapport a la deuxi¢me.
Notons aussi que x,.,—; n’est dans aucune des permutations.

Une forme plus courte pour la définition de fC g est obtenue a I'aide
de /' et g, les applications alternées linéaires d’ordre (n—1) resp. (m—1)
de ¥ dans End V. Nous avons besoin aussi de g le g complétement alterné,
ainsi g est une application linéaire d’ordre m de V dans V.
Avec ces conventions on a

(fC9)' =f"7g + (=D DEDf A g,
Notons que f' A g’ est le produit extérieur de deux formes alternées a
valeurs dans I’algébre (associative) End V'; comme cette algébre n’est pas
commutative, il n’y a pas de relation simple entre f* A g'et g'A f. La
deuxiéme forme est plus commode pour prouver (9) en ce qui concerne .
Lorsque u est une application bilinéaire de V dans V, p Cp = 0 est
juste la condition (1); en fait

(G (x,y,2) = p(px,y),z) —p(u®y,x),z) — plx, 1y, 2)) +

+ u(y, u(x, 2).

Le produit de composition associ€¢ aux algebres de Vinberg, comme on
I’a donné, différe de celui qui a été donné pour les algébres associatives et les
algébres de Lie par un aspect important: les applications multilinéaires
pour lesquelles il est défini ont un degré positif: les produits f ' x (avec
xeV’) n’ont pas été définis. Nous les poserons arbitrairement égaux a zéro.
La signification la plus profonde de la difficulté a trouver une définition
naturelle de f (' x vient du fait que les commutateurs (voir le cas n=0
de la section 4: « dérivations intérieures ») ne donnent pas des dérivations
dans les algebres de Vinberg. Les exemples 1 et 3 de la section 5 deviennent
vides: B! (V, M) = 0 et le groupe des automorphismes intérieurs se réduit
a I'identité.

Toutes les autres remarques faites dans la section 8 pour les algébres
de Lie valent maintenant pour les algébres de Vinberg avec seulement les
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modifications évidentes. Nous copions la formule des cobords. Rappelons

quedf = —fCu+ (=) 'uCs:
(5f)(x09-"7 Z (_l)lx f(x09'°' l—laxi+19“'9xn—1>xn) .

+ Z (—l)f(xO,... l_l,xi+1, ...,xn_l,xi)xn

.<Z ( )l+]+1f([xwx] L—laxi+1a-°'axj—19xj+19'“7xn-19xn) -
i<j<n

2 (= 1) (X5 s Xim 15 X1 coos Xy 15 XiXy) -

Les deux premiéres sommes viennent de la partie u C f, les autres de f C pu.
Notons a nouveau que x, est toujours la derniére variable; il n’est sujet a
aucune des sommations.

Nous récrivons, en utilisant 1/, le cobord et trouverons ainsi une relation
avec la cohomologie de I’algébre de Lie.

i (5f)(x09""xn) =
Z (_l)l{x {f (XO,..- t——lﬂxi+19"'axn-1)xn} _'

= (X coes Xim g5 Xy 15 oees X 1) (XX,) +
F S (g vves Xim 15 Xit 15 oo X 1) Xi } X } —
Z ( 1)1+J+1f ([xwx] L—laxi+1a"'axj—laxj+19'--axn—l)xn

i<j<n

L’expression intérieure aux grandes accolades de la premiére somme peut

étre écrite

{Lx,f (%05 +evs Xim 15 Xt 15 eves Xpe1) =S (X eoes Xy 15 Xip g5 2evs Xp—1) L, +
+ Lf’ (Xp5eres Xj—15 Xi 41000y xn_l)xi} Xn

En comparant cela avec I'exemple du module de Vinberg End (V) de
la section 3, on voit (en utilisant la méme notation) que

(5.,f)(x09 ---’xn) =
n—1

= Z (_l)i}-(xi,j‘,(xO, ...,Xi_l,xi+1, ...,xn_l))xn _
i=0

Z( l)lﬂﬂf ([xl’x_]] z—1axi+19°“>xj—1’xj+13"'axn—l)xn
i<j<n

C’est la formule des cobords de la section 8 puisque, comme nous le rap-
pelons, x |— A (x, &) est une représentation (& gauche) de l'algébre de Lie
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V. associée a I'algébre de Vinberg V. Avec des notations évidentes par
elles-mémes nous avons donc:

(5Vinbergf)/ = 5Lief/ .
Une conséquence directe de cela est
H*(V,V) = H™ ' (V, End (V)) .

De nombreuses propriétés de la cohomologie des algébres de Vinberg
peuvent donc étre déduites de la cohomologie des algebres de Lie. Notons,
cependant, que la structure de Vinberg n’a pas été perdue dans cet isomor-
phisme. Elle a été utilisée essentiellement par la définition sur End (V)
d’une structure inaccoutumée (a savoir, 1) de module sur V.

Comme dans le cas associatif et le cas de Lie, la cohomologie de V a
coefficients dans V' induit une structure graduée de Lie [,]°. On peut se
demander si, vu I'isomorphisme précédent, cela peut étre « expliqué » par
quelque structure graduée de Lie connue portant sur la cohomologie de
V5. a coefficients dans End (V). La réponse n’est pas connue pour 'instant.

11. Le cup-crochet.

Jusqu’a maintenant tous les problémes que nous avons considérés
tournent autour du crochet [,]° que nous pouvons appeler le crochet de
composition. Nous avons montré, par exemple, que I’opérateur cobord et
les problémes de déformation peuvent s’exprimer au moyen de ce produit
seul. S1 nous utilisons 0 (ou & ou ) avant tout, c’est parce que @ 0 @
est plus facile a écrire (ou a copier) que % [¢, ¢]°.

Cependant en principe, [,]° et ses propriétés suffiraient pour les parties
théoriques et la structure « plus fine » 0 n’était pas nécessaire.

Dans cette section nous introduisons le cup-crochet [,]Y qui peut étre
défini au moyen de o seul, mais ne peut pas I’étre au moyen de [,]°. Ainsi
sa définition dépend de la structure disponible la plus fine.

En partant pour 'instant sur une ligne plus intuitive, nous considérons
un homomorphisme arbitraire 4 : V' — V' d’algébres dont on désigne les
produits par u et y'. Ainsi 4 vérifie

hu(x,y) = w' (hx, hy).

S ¢ : ¥V — V' est linéaire, alors & + ¢ est un autre homomorphisme (3 vrai
dire déformé) si

(ht+o)u(x,y) = w(h+9)x,(h+9¢)y).
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En utilisant la formule ci-dessus on peut récrire cela

p' (hx, y) — ou(x,y) + p' (ox, hy) + u' (¢x, ¢y) = 0.

Or V' est un V-module via /; dans le cas associatif et dans le cas de Vinberg
donné par

A, y) = p (hx,y’), p(x',y) = w' (x',yh),
et dans le cas de Lie par seulement la premiére de ces formules. Dans les
trois cas, les premiers trois termes sont exactement (d¢) (x, y). Le dernier

terme est par une définition que nous allons donner tout a ’heure égal a
2 Lo, 1" (x, y). L’équation de déformation devient ainsi
Sp +1[p,0]° =0;

c’est la forme habituelle (cf. (11)), quoique le degré de @, I'image de ¢ et le
crochet soient différents. |

Pour les algébres associatives le cup-produit est bien connu. Soit f, g
des applications linéaires d’ordre n resp. m de V dans V’; alors fu g est
donné par

(fug) (xls "'9xn+m) = /‘L, (f('x1> "'>xn)’g (xn+1> °">xn+m)) .

Le cup-produit est évidemment associatif, et on peut montrer aisément que
0 est une dérivation:

0(fug) = dfug +(=1"fudg.

Il s’en suit (voir la section 5) qu’un cup-produit est induit dans la cohomo-
logie de V' a coefficients dans V'. En prenant les commutateurs

[f,9]Y =fug —(=D™guf

on obtient une structure graduée d’algébre de Lie: le cup-crochet. Natu-
rellement 6 est encore une dérivation. ,
Dans le cas des algébres de Lie V, V' on définit [, ]" directement:

[f: g]u(xl’ "'9xn+m) =

= Xsgou (f(xa(1)7 oo xa'(n)) » g (xa(n+1)9 ""xa(n-i-m))) )
avec
c()<..<a(m et on+l)<..<odg(m+m).

Le cup-crochet définit une structure graduée d’algébre de Lie, et 6 est une
dérivation par rapport a [,]".
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Dans le cas des algébres de Vinberg on pose

(fug)(xlﬁ"'ﬂxn+m) =
= X sgou (f(xo(1)> s Xg(n—1)> xa(n))a g (xa'(n+1)> ces Xogn+m—1)> xn+m))

avec
c(l)<..<om—1) et on+l)<..<om+m—1).

Notons que I’on ne permute pas x,,,, et qu'on a symétrisé¢ a gauche f. Ce
produit vérifie

(fug vk —fulguk) = (=D™{(guf)uk —gu(fub)},

de telle sorte que les commutateurs définissent une algébre de Lie graduée
(le cup-crochet) [,]Y; cf. la fin de la section 4 pour une situation semblable.
L’application f |- /' ¢ u est une dérivation par rapporta u; donc aussi par
rapport 4 [,].Y De fagon analogue, f - (=1D)"uCf=(=1)"fuh —
— huf= — [hf]" est une dérivation par rapporta [,]" grace a 'identité
de Jacobi. Par suite § est une dérivation par rapport a [, ]"; cependant ce
n’est pas une dérivation par rapport a uU.

Ainsi, nous avons, dans les trois cas, un cup-crochet [, ] qui donne une
structure graduée de Lie et pour laquelle § est une dérivation. De plus, si
@ : V — V' est linéaire, alors dans les trois cas

e, 1% (x,9) = 1 (ox, @p) .

Cela justifie la notation de I’équation de déformation.

Comme affirmé au début de cette section, [f, g]° peut €tre exprimé au
moyen du produit de composition resp. o, » et C. Nous le montrons d’abord
pour V' = V. La preuve est assez simple dans les trois cas pourvu qu’on
aille réellement dans les détails de la déduction de (9) qui utilisent les sugges-
tions qui suivent (9). La comparaison de la preuve et de la définition de
[, ]¥ nous montrera alors que

[f,9]1° = (=D"" " {(uog)of —pua(gof)},

et de méme pour 1 et C. Dans les trois cas il est utile de considérer d’abord
le terme en p 0 g resp. u ¢ g pour lequel g occupe par rapport & p la seconde
place; pour 1 'a g nous bougerons simplement g pour qu’il soit & la seconde
place — ensuite nous appliquons sur la droite o /' (C fresp. & f). Le lecteur
peut 4 nouveau suppléer aux détails complémentaires. Notons que (9)
implique

[f.9]” = (=D™" [g,f]".
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La formule donnant [f, g]¥ peut étre résumée si on se rappelle que p 0 g
est un terme de dg; de fagon analogue u o (gof) est un terme de 6 (gof).
En insérant les termes omis et en appliquant (9) on trouve

[f,9]° =dg90f —(=1)"god6f+(—1)"d(g0f).

(Naturellement on a la méme chose pour » et ¢.) Cette formule a quelques
conséquences intéressantes. Elle nous indique tout d’abord que 6 n’est pas
en général une dérivation par rapport & o; deuxiémement il s’en suit que le
produit [,]” induit dans la cohomologie de V" a coeflicients dans V vaut zéro
(il n’en est pas ainsi quand les coefficients sont dans V.)

Une troisieme remarque est que la propriété de dérivation de 6 par
rapport a [,]” suit assez facilement de la dernié<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>