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du théorème 8, la différence vr (x) — drx étant ainsi équivalente au produit

d'une constante par xr + 1 (log x) 2, où r est le plus grand entier a tel

que f(pa) 0.

b) La démonstration du développement asymptotique mentionné ci-
dessus, et a fortiori ceux des théorèmes 5 et 8 (et, pareillement, ceux des

théorèmes 1 et 4), peut se faire en n'utilisant le théorème des nombres

premiers que sous sa forme asymptotique, c'est-à-dire:

La méthode de l'hyperbole, parce qu'elle est élémentaire, a une efficacité

limitée (la rédaction complète de la démonstration du théorème 8,

faisable pour m 2, devient horrible pour m ^ 3).

H. Delange, par des méthodes analytiques, retrouve tous les résultats

contenus dans cet article de façon plus rapide et plus générale, et va beaucoup

plus loin. Trois articles à ce sujet [8], [9] et [10] sont à paraître en 1970

dans Acta Arithmetica.

Nous montrons ici comment on peut retrouver, de façon élémentaire,
le résultat de Renyi (et même un peu mieux) et le théorème A de Delange.

Théorème. Notons toujours par vm (x) le nombre des n ^ x tels que
Q (ri) — cd (n) m. Alors :

a) Sans utiliser aucune estimation de n (x) [autre que l 'estimation banale

n (x) O (x)], nous avons :

V,„ (x) dmx+logx).

IV. Méthode analytique

Appendice

b) L 'estimation de Tchebicheff n (x) O implique :

vm(x) dmx + 0(7* (log log
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c) Le théorème des nombres premiers n (x) implique :
logx_

vm(x) dmx+ o[\J~x(loglogx)m~*).
Démonstration :

a) Reprenons les expressions Vr(x), Vnn (x), Vri r2 n (x),... définies

précédemment. Compte tenu de la relation Q (x) 2L x + O G/x) [dont la

démonstration ne fait appel à aucune estimation de n (x)], nous avons:

Vn,r2, .„(x) =Lx^p-(n + r2 + + rk) r2) + £ 771
p \l>jx J \ i^y/xL

constante x + O (yjx log x).

En utilisant alors la relation (10) et ses analogues [rencontrés au cours de

la démonstration du théorème 8], on obtient par addition

vm(x) dmx +(V* log x).

b) L'estimation de Tchebicheff n (x) Ol 1 implique:
Vlog XJ

£ l (Ioglogx)4"1
1 < i<* V'°sx

CO (0 < k

Nous obtenons donc cette fois:

vn,n,...,rkO) constante x + O[x £ l~2[ + £ i]
l > Vx l ^ V3c

CO (l) ^ k CD (l) ^ k

constante x + O [^/x^oglogx/]
En utilisant alors la relation (10) et ses analogues, on obtient donc:

v„,(x) dmx +O(y/x(loglog x)m).

X
c) Le théorème des nombres premiers n (x)

log x
implique :

£ 1 ~ £ î~77 77". ' (log log x)'' 1

1<ï<* (/C — 1) lOgX
co (l)< k Q (l) k

La relation vm(x) dm x -\- o (^/x (log log x)m (s'obtient alors de
façon analogue à b), en remarquant que cette fois: (x) + (x/x).
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