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On démontre que, sur un A.N.R. compact, toutes les théories de l'homo-
logie satisfaisant l'axiome de dimension coïncident.

(Borsuk, chap. 5.)

Problème : Est-ce qu'un A.N.R. compact X a le type d'homotopie d'un
C.W. complexe fini

Remarques : D'après ce qui précède, X a donc le type d'homotopie d'un
C.W. complexe dénombrable, dominé par un C.W. complexe fini.

Or Wall a construit un exemple d'un C.W. complexe dénombfable
dominé par un C.W. complexe fini, qui n'a pas le type d'homotopie d'un
complexe fini. (Cf. Wall.)

Mais l'exemple de Wall n'implique pas que la réponse au problème
précédent soit négative.

Si X est simplement connexe, il n'est pas difficile de voir que la réponse

au problème est affirmative.

§ 5. Quelques exemples intéressants

A) On a le théorème suivant, dû à J. H. C. Whitehead.

Théorème: Soient X1 et X2 deux A.N.R. compacts (disjoints). Soit

X0aX1 un fermé qui soit aussi un A.N.R. Alors, si fp. X0->X2 est une

application continue, l'espace X — X1 Uf X2 est un A.N.R. (compact).
Pour une démonstration, voir Borsuk [1], chap. 5, § 9. Si X0, Xl9 X2

sont des A.R. compacts, alors X X1Uf X2 est aussi un A.R. compact.
Ce théorème permet de construire des A.N.R. ou des A.R. qui ont une

allure assez pathologique.

Par exemple : Soient

X1 un disque Dq fermé, q > 2;

X0 un segment fermé contenu dans l'intérieur de Xx ;

X2 un disque Dn fermé, n > q+1;

/: X0-+X2 une application continue surjective.

Alors l'espace X X1 Uf X2 est un A.R. compact. Il n'est pas homéo-

morphe à un complexe simplicial, ou à un C.W. complexe.
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Plus généralement, partant d'un complexe simplicial fini, on peut
s'amuser à faire cette construction un nombre fini de fois dans chaque

simplexe, obtenant ainsi un A.N.R. compact qui n'est pas homéomorphe
à un complexe simplicial.

Un tel exemple de « singularités » dans un A.N.R. s'appelle singularité
de Péano, pour d'évidentes raisons.

(Voir Borsuk, chap. 6, § 1.)

B) En ce qui concerne les A.N.R. compacts de dimension finie, on a

le théorème suivant:

Théorème: Soit Xun espace métrique compact, localement contractible,
de dimension finie. Alors X est un A.N.R. Pour une démonstration, voir
Borsuk, chap. 5, § 10.

Un exemple célèbre dû à Borsuk montre que la condition de dimension
finie est essentielle. Voici brièvement décrit l'exemple de Borsuk. (Pour plus
de détails, voir Borsuk, chap. 5, § 11.)

Soit Q le cube de Hilbert. On envisage les sous-espaces de Q
suivants :

On voit immédiatement que X0 est homéomorphe au cube de Hilbert et
que Xk est homéomorphe au cube de dimension k. Soit Xk le bord

X est fermé dans Q ; c'est donc un métrique compact. Il est localement
contractible. La démonstration est immédiate pour un point qui n'appartient

pas à X0i mais plus délicate pour un point qui appartient à X0.
Enfin, Ht(X; Z)=£ 0 \/z, car xl+1 n'est pas homologue à zéro

dans X.
Ceci montre que X n'est pas un A.N.R., car si c'était le cas, il serait

dominé par un C.W. complexe fini et aurait donc tous ses groupes d'homo-
logie nuls, sauf un nombre fini d'entre eux.

x0 { X { Xi } I xx 0 }

de Xk>

Soit X X0 u xk.
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