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On démontre que, sur un A.N.R. compact, toutes les théories de I’homo-

logie satisfaisant ’axiome de dimension coincident.
(Borsuk, chap. 5.)

Probléme : Est-ce qu’un A.N.R. compact X a le type d’homotopie d’un
C.W. complexe fini?

Remarques: D’aprés ce qui précéde, X a donc le type d’homotopie d’un
C.W. complexe dénombrable, dominé par un C.W. complexe fini.

Or Wall a construit un exemple d’un C.W. complexe dénombrable
dominé par un C.W. complexe fini, qui n’a pas le type d’homotopie d’un
complexe fini. (Cf. Wall.)

Mais Uexemple de Wall n’implique pas que la réponse au probléme
précédent soit négative.

Si X est simplement connexe, il n’est pas difficile de voir que la réponse

au probléme est affirmative.

§ 5. QUELQUES EXEMPLES INTERESSANTS

A) On a le théoréme suivant, di a J. H. C. Whitehead.

THEOREME: Soient X; et X, deux A.N.R. compacts (disjoints). Soit
X,<= X, un fermé qui soit aussi un A.N.K. Alors, si f;: X,— X, est une
application continue, I’espace X = X; U, X, est un A.N.R. (compact).

Pour une démonstration, voir Borsuk [1], chap. 5, § 9. Si X, X, X,
sont des A.R. compacts, alors X = X, U, X, est aussi un A.R. compact.

Ce théoréme permet de construire des A.N.R. ou des A.R. qui ont une

allure assez pathologique.

Par exemple : Soient
X, = un disque D? fermé, g > 2;
X, = un segment fermé contenu dans l'intérieur de X|;
X, = un disque D" fermé, n > g+1;

f: X,— X, une application continue surjective.

Alors I'espace X = X; U, X, est un A.R. compact. Il n’est pas homéo-
morphe & un complexe simplicial, ou a un C.W. complexe.
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Plus généralement, partant d’un complexe simplicial fini, on peut
s’amuser 2 faire cette construction un nombre fini de fois dans chaque
simplexe, obtenant ainsi un A.N.R. compact qui n’est pas homéomorphe

a un complexe simplicial.
Un tel exemple de « singularités » dans un A.N.R. s’appelle singularité

de Péano, pour d’évidentes raisons.
(Voir Borsuk, chap. 6, § 1.)

B) En ce qui concerne les A.N.R. compacts de dimension finie, on a
le théoréme suivant:

THEOREME: Soit X un espace métrique compact, localement contractible,
de dimension finie. Alors X est un A.N.R. Pour une démonstration, voir

Borsuk, chap. 5, § 10.
Un exemple célébre di & Borsuk montre que la condition de dimension

finie est essentielle. Voici briévement décrit I’exemple de Borsuk. (Pour plus
de détails, voir Borsuk, chap. 5, § 11.)

Soit Q le cube de Hilbert. On envisage les sous-espaces de Q
suivants:

X, ={x = {xi}lxl‘;_ 0}

s XL—‘=O i>k}.k=1,2,...

| =

, 1
X, = ={x V| — < <
k {x {xl}lk—}—l X1

On voit immédiatement que X, est homéomorphe au cube de Hilbert et
que X, est homéomorphe au cube de dimension k. Soit Xx* le bord
de X,.

Soit X = X, U Xk
k> 1

X est fermé dans Q; c’est donc un métrique compact. Il est localement
contractible. La démonstration est immédiate pour un point qui n’appar-
tient pas a X, mais plus délicate pour un point qui appartient a Xj,.

Enfin, H(X; Z)# 0 i, car X¥'*' n’est pas homologue a zéro
dans X.

Ceci montre que X n’est pas un A.N.R., car si c’était le cas, 1l serait
dominé par un C.W. complexe fini et aurait donc tous ses groupes d’homo-
logie nuls, sauf un nombre fini d’entre eux.
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