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QUELQUES THÉORÈMES BIEN CONNUS
SUR LES A.N.R. ET LES C.W. COMPLEXES

par C. Weber

Remarque préliminaire. Ces notes ne contiennent rien d'original. Elles

ont pour unique but de dégager parmi une littérature abondante, quelques

théorèmes « utiles », dépouillés, dans la mesure du possible, d'hypothèses
inutilement restrictives.

Les références de base sont, à mon avis:

1° Le livre de Borsuk, en remarquant que ce qui est appelé ici A.N.R. est

appelé A.N.R. (TTt) chez Borsuk et ce qui est appelé ici A.N.R. compact
est appelé A.N.R. chez Borsuk.

On trouvera aussi chez Borsuk une bibliographie assez étendue.

2° L'article de Palais qui, sous un volume réduit, dégage toutes les idées

essentielles.

§ 1. Théorèmes classiques sur les espaces métriques

Rappelons pour commencer le:

Théorème de Dugundji. Soit X un espace métrisable et soit de I
un fermé. Soit/: A->E une application continue, où E est un E.V.T. localement

convexe. (Le corps de base est toujours R.) Alors / s'étend en une
application continue F: X-+E, telle que F (X) soit contenu dans l'enveloppe
convexe de f{A).

Pour une démonstration, voir Dugundji, ou Borsuk, chap. 3, § 7.

On remarquera que le théorème de Dugundji est une généralisation du
théorème bien connu de Tietze. (La source est un peu plus particulière,
mais le but est plus général.)

Rappelons maintenant le:

Théorème de Kuratowski-Wojdyslawski. Soit X un espace métrisable.

Alors il existe un espace de Banach B et un homéomorphisme h
de X sur un sous-espace h (X) de B, tel que h (X) soit fermé dans l'enveloppe
convexe de h (X).
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N. B. : h (X) n'est en général pas fermé dans B, le plongement de Kura-
towski h étant même un moyen élémentaire de compléter les espaces
métriques.

Pour une démonstration, voir Borsuk, chap. 3, § 8.

Remarque. Si X est métrisable compact, il est bien connu qu'il se plonge
comme un fermé dans le cube de Hilbert.

Rappelons aussi que tout espace métrisable est paracompact.

»

§ 2. Théorèmes généraux sur les A.N.R.

Soit X un espace topologique et soit ^cl un sous-espace.
On dit que A est un rétracte de X s'il existe une application continue

r: X->A telle que r°i=idA, i: A-+X étant l'injection naturelle, r est

appelé une rétraction de X sur A.
On dit que A est un rétracte de voisinage de X s'il existe un voisinage V

de A dans X et une rétraction de V sur A.
On remarque immédiatement que si X est séparé, et si A est un rétracte

de voisinage de X, alors A est fermé dans X.

Définition. Soit X un espace métrisable. On dit que X est un rétracte
absolu (en anglais « Absolute Retract », d'où l'abréviation A.R.) si chaque
fois que l'on a un homéomorphisme h de X sur un sous-espace fermé h (X)
d'un métrisable Z alors h (X) est un rétracte de Z.

On dit que X est un rétracte absolu de voisinages (en anglais « Absolute
Neighborhood Retract » d'où l'abréviation A.N.R.) si chaque fois que l'on
a un homéomorphisme h de X sur un sous-espace fermé d'un métrisable Z
alors h (X) est un rétracte de voisinage de Z.

Le théorème suivant donne une définition équivalente pour les A.R. et
les A.N.R. (on peut dire grossièrement que c'est parce que l'on veut ce

théorème que l'on se restreint aux espaces métrisables dans les définitions
précédentes).

Théorème. 1) X est un A.R. si et seulement si chaque fois que l'on a

un métrisable F, un fermé Y'a F, et une application continue /: F'-»X,
alors / s'étend en une application F: Y-+X.

2) X est un A.N.R. si et seulement si chaque fois que l'on a un métrisable

F, un fermé F'cF, et une application continue f: Y'-*X, alors /
s'étend en une application F: V-+X, V étant un voisinage de Y' dans F.
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