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QUELQUES THEOREMES BIEN CONNUS
SUR LES AN.R. ET LES C.W. COMPLEXES

par C. WEBER

Remarque préliminaire. Ces notes ne contiennent rien d’original. Elles
ont pour unique but de dégager parmi une littérature abondante, quelques
théorémes « utiles », dépouillés, dans la mesure du possible, d’hypothéses
inutilement restrictives.

Les références de base sont, a mon avis:

1o Le livre de Borsuk, en remarquant que ce qui est appelé ici A.N.R. est
appelé A.N.R. (O11) chez Borsuk et ce qui est appelé ici A.N.R. compact
est appelé A.N.R. chez Borsuk.

On trouvera aussi chez Borsuk une bibliographie assez étendue.

20 L’article de Palais qui, sous un volume réduit, dégage toutes les idées
essentielles.

§ 1. THEOREMES CLASSIQUES SUR LES ESPACES METRIQUES

Rappelons pour commencer le:

THEOREME DE DUGUNDJI. Soit X un espace métrisable et soit 4= X
un fermé. Soit f: A—FE une application continue, ou £ est un E.V.T. locale-
ment convexe. (Le corps de base est toujours R.) Alors f s’étend en une
application continue F: X—E, telle que F (X) soit contenu dans I’enveloppe
convexe de f(A).

Pour une démonstration, voir Dugundji, ou Borsuk, chap. 3, § 7.

On remarquera que le théoréme de Dugundji est une généralisation du
théoréme bien connu de Tietze. (La source est un peu plus particuliére,
mais le but est plus général.)

Rappelons maintenant le:

THEOREME DE KURATOWSKI-WOJDYSLAWSKI. Soit X un espace métri-
sable. Alors il existe un espace de Banach B et un homéomorphisme A

de X sur un sous-espace & (X) de B, tel que A (X) soit fermé dans I’enveloppe
convexe de & (X).




— 212 —

N. B.: h (X)n’est en général pas fermé dans B, le plongement de Kura-
towski 4 étant méme un moyen élémentaire de compléter les espaces
métriques.

Pour une démonstration, voir Borsuk, chap. 3, § 8.

Remarque. S1 X est métrisable compact, il est bien connu qu’il se plonge
comme un fermé dans le cube de Hilbert.
Rappelons aussi que tout espace métrisable est paracompact.

§ 2. THEOREMES GENERAUX SUR LES A.N.R.

Soit X un espace topologique et soit 4= X un sous-espace.

On dit que A est un rétracte de X s’il existe une application continue
r: X—A telle que r-i =id,, i: A—X étant l'injection naturelle. r est
appelé une rétraction de X sur A.

On dit que A est un rétracte de voisinage de X s’il existe un voisinage V
de A4 dans X et une rétraction de V sur A.

On remarque immédiatement que si X est séparé, et si A est un rétracte
de voisinage de X, alors 4 est fermé dans X.

Définition. Soit X un espace métrisable. On dit que X est un rétracte
absolu (en anglais « Absolute Retract », d’ou ’abréviation A.R.) si chaque
fois que I’on a un homéomorphisme /4 de X sur un sous-espace fermé 4 (X)
d’un métrisable Z alors 4 (X) est un rétracte de Z.

On dit que X est un rétracte absolu de voisinages (en anglais « Absolute
Neighborhood Retract » d’ou I’abréviation A.N.R.) si chaque fois que ’'on
a un homéomorphisme /2 de X sur un sous-espace fermé d’un métrisable Z
alors 4 (X) est un rétracte de voisinage de Z.

Le théoréme suivant donne une définition équivalente pour les A.R. et
les A.N.R. (on peut dire grossiérement que c’est parce que I’on veut ce
théoréme que I’on se restreint aux espaces métrisables dans les définitions
précédentes).

THEOREME. 1) X est un A.R. si et seulement si chaque fois que I'on a
un métrisable Y, un fermé Y'< Y, et une application continue f: Y'— X,
alors f's’étend en une application F: Y- X.

2) X est un A.N.R. si et seulement si chaque fois que I’on a un métri-
sable Y, un fermé Y'< Y, et une application continue f: Y'— X, alors f
s’étend en une application F: V— X, V étant un voisinage de Y’ dans Y.



— 213 —

Preuve. Indiquons comment 1’'on démontre 2), la démonstration de 1)
étant tout a fait analogue.

a) Si X est un AN.R. d’aprés le théoréme de Kuratowski il existe
un plongement 4 de X dans un Banach B, tel que 4 (X) soit fermé dans
Penveloppe convexe C (4 (X)); de plus il existe une rétraction r: V—h (X),
V étant un voisinage de / (X) dans C (4 (X)).

D’aprés le théoréme de Dugundji, #°f s’étend en une application
F,: Y—C (h(X)). Soit % = F {*(V). % est un voisinage de Y’ dans Y et
F:h™'ereF, | % est I'extension cherchée.

b) Soit X homéomorphe a un sous-espace fermé de Z. Prenons Y = Z,
Y' = X, f: Y- X l’application identique. Par hypothese, f s’étend en une
application définie sur un vg. de X dans Z et fournit ainsi une rétraction

d’un vg. de X dans Z, sur X.
C.q.fd.

Corollaire. Un rétracte d’'un A.R. est un A.R.

On voit donc qu’un E.V.T. localement convexe, métrisable est un A.R.,
en vertu du théoréme de Dugundji. En particulier, un Fréchet, un Banach,
un préhilbert, un Hilbert sont des A.R. (Ceci sans hypothése de séparabilité !)

De méme une partie convexe d’un E.V.T. localement convexe métrisable
est un A.R. Le cube de Hilbert est un A.R. compact.

Un rétracte d’une telle partie convexe est aussi un A.R., et réciproque-
ment un A.R. est toujours un rétracte d’'une partie convexe d’'un E.V.T.
localement convexe métrisable.

En conséquence, un A.R. est contractible.

Corollaire. Un rétracte de voisinage d’'un A.N.R. est un A.N.R. Un
ouvert d’un A.N.R. est un A.N.R.

Utilisant les théorémes de plongements et de voisinages réguliers bien
connus, on voit donc, par exemple, qu'une variété différentiable para-
compacte de dimension finie ou qu’un polyédre sont des A.N.R. (Nous
reviendrons plus loin sur ce sujet.)

On voit aussi qu’il existe un voisinage de la sphére d’Alexander 32 < §3
qui se rétracte sur 22, (En vertu du théoréme de van Kampen, il ne saurait
y avoir de voisinage qui se rétracte par déformation sur X?2.)

THEOREME DE HANNER (GENERALISE). Un espace séparé, paracompact
qui est localement un A.N.R. est un A.N.R.
Ce théoréme est le théoréme 5 de Palais.
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Le théoréme de Hanner disait quun métrique qui est une réunion
dénombrable d’ouverts A.N.R. est un A.N.R. (Dans la démonstration de
Hanner thm. 3.2, ’hypothése de séparabilité n’est pas essentielle.)

Pour montrer le théoréme généralisé de Palais, on utilise le théoréme
de Smirnov qui affirme qu’un paracompact séparé est métrisable s’il est
localement métrisable. Ensuite, grace a la paracompacité, on se raméne au
cas envisagé par Hanner.

On voit donc qu’une variété topologique paracompacte, séparée,
modelée sur un E.V.T. localement convexe métrisable est un A.N.R.

De méme, on voit qu’un polyédre localement fini est un A.N.R. '

On peut remarquer que le théoréme de Palais répond affirmativement
a une question posée par Borsuk. (Borsuk, Problem 10.6, chap. IV.)

Une autre propriété intéressante des A.N.R. est la suivante:

THEOREME (d(i a Kuratowski): Soit X, un sous-ensemble d’un compact X.
Soit Y un A.N.R. et soit y, € Y.

L’espace des applications continues (Y, y,)***® de X dans Y, envoy-
ant Xx, sur y,, muni de la topologie canonique, est un A.N.R.

Pour une démonstration, voir Borsuk [1], chap. 4, § 5.

Produits.
THEOREME: 1) Un produit dénombrable d’A.R. est un A.R.

2) Un produit dénombrable d’A.N.R.: { X;},,y parmi
lesquels tous les X; sauf un nombre fini d’entre eux sont
des A.R. est un A.N.R.

Un produit dénombrable d’A.N.R. n’est en général pas un A.N.R.
comme le montre I’ensemble de Cantor.
Pour une démonstration, voir Borsuk, chap. 4, § 7.

§ 3. PROPRIETES HOMOTOPIQUES DES A.N.R.

Lemme : Soit X un espace métrisable. Soit A= X un fermé. Soit
Z = Xx{0}udxIcXxI Alors, si ¥V est un vg. de Z dans XX/, il
existe une application p de X'x I dans V qui est I'identité sur Z.

(La démonstration de ce lemme est élémentaire.)

On déduit alors la proposition suivante:

Proposition : Soit X un métrisable, soit Ac X un fermé. Soit Y un
A.N.R. Soit F: X— Y une application et soit f,: A— Y une homotopie de
Fl A= fy. Alors f, s’étend en une homotopie F,: X— Y telle que F, = F.
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Preuve :

F et f, définissent une application continue de Z dans Y. Comme Y
est un A.N.R. cette application s’étend en une application g: V—1Y ou V
est un certain voisinage de Z dans XX 1.

g° p: XxI-Y est alors ’homotopie F, cherchée.

Cq.fd.

Corollaire : Un métrique X est un A.R. si et seulement si c’est un A.N.R.
contractible.

Preuve :

Nous avons déja vu qu’un A.R. est un A.N.R. contractible.

Pour démontrer la réciproque, on ne restreint pas la généralité en suppo-
sant que X est un fermé dans un convexe Q d’un Banach B.

Soit A,: X— X une homotopie telle que:

ho(X):xOEX et hl—_—'ldx.

Soit H: Q— X T'application constante sur x,.
Par la propriété d’extension des homotopies,

] H;: Q- X telle que H, | X = h,.

L’application H; est alors une rétraction de Q sur X. Un rétracte d’'un
A.R. étant un A.R., la démonstration est achevée.

C.q.fd.

Plusieurs propriétés homotopiques du A.N.R. découlent du fait qu’ils
sont des rétractes de voisinages de convexes dans un E.V.T. localement
convexe. Par exemple:

Proposition : Un A.N.R. est localement contractible.

Preuve :

On peut supposer que X est un fermé d’un convexe Q d’un Banach B
et qu’il existe un ouvert V= Q qui se rétracte sur X.

V' est localement contractible et 1’on voit facilement que tout rétracte
d’un espace localement contractible est localement contractible.

C.q.f.d.
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N.B. Un espace sera dit localement contractible s’il posséde un
systeme fondamental de voisinages contractibles.

Deux applications suffisamment proches d’un métrique dans un A.N.R.
sont homotopes. De fagon plus précise:

Proposition. Soit E un espace topologique et X un A.N.R. Alors, il
existe un recouvrement ouvert { U, },.; de X tel que, si f et g sont deux
applications de E dans X qui sont a-proches, alors elles sont homotopes.

Rappel. On dit que f et g sont a-proches, si Vx e E, il existe un:ouvert
U, tel que f(x) et g (x) e U,.

Preuve ;

A nouveau, considérons X comme un fermé dans un convexe Q d’un
Banach B; et soit V= Q un ouvert se rétractant sur X.

V étant localement convexe, on voit immédiatement que la conclusion
de la proposition est vraie pour V.

X étant un rétracte de V, il est facile de voir que la conclusion reste

vraie pour X.
Cq.fd.

Définition. On dit qu'un espace A est dominé par un espace B s’il existe
deux applications f: A—B, g: B— A, telles que g ° f soit homotope a id,.

Proposition. Un A.N.R. est toujours dominé par un complexe sim-
plicial (et donc par un C.W. complexe).

Avant de donner une idée de la démonstration, définissons ce que ’on
entend par « complexe simplicial ».

C’est un C.W.-complexe pour lequel les modeles de cellules fermées sont
les Simplexes standards et les applications attachantes sont des applications
simpliciales injectives.

Idée de la démonstration (cf. Palais [1], thm. 14).

On commence par démontrer le lemme suivant:

Lemme. Soit X paracompact. Soit { W, },., un recouvrement ouvert
de X. Alors, il existe un recouvrement ouvert { 0 },.5 de X (plus fin que

n n

{ W, }), localement fini, tel que si N Oy # &, alors N 05 W, pour un

i=1 i=1

certain o € A.
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(Palais, lemme 6.2.)

Une fois en possession de ce lemme, on poursuit la démonstration de
la fagon suivante:

Comme la relation « étre dominé par » est transitive, on ne restreint
pas la généralité en supposant que X est un ouvert d’un convexe contenu
dans un E.V.T., localement convexe, métrisable.

On choisit un recouvrement ouvert { W, },., de X par des ouverts
convexes. |

On choisit un recouvrement ouvert { 0, } ;.5 de X, satisfaisant la conclu-
sion du lemme.

Soit K le complexe simplicial associé au recouvrement { O; }z.5; on
considérera K comme réalisé géométriquement dans R®’, les sommets de K
étant les vecteurs de la base standard.

Comme d’habitude, une partition de 1'unité, associée au recouvrement
{ 0z } fournit une application f/ de X dans K.

Si, pour tout B € B, on choisit un point x; € 0, on deﬁmt une applica-
tion linéaire de R® dans I'E.V.T., dont la restriction g 4 K a son image

n
dans X, car si une intersection N 04 # &, I’enveloppe convexe de sa
i=1
réunion < W,, et donc dans X.
Pour une raison analogue g ° f est homotope a idy.

C.q.f.d.

N. B.: La méme preuve montre que si X est séparable, il est dominé
par un C.W.-complexe dénombrable et que s’il est compact il est dominé
par un C.W. complexe fini.

§ 4. RELATIONS ENTRE A.N.R. ET C.W. COMPLEXES

Rappelons pour commencer quelques définitions et un théoréme.

Soient X et Y deux espaces topologiques connexes et soit /: X— Y telle
que f: m,(X, Xo)—m, (¥, o) soit un isomorphisme, 7. On dit que £ est alors
une €quivalence d’homotopie faible.

Par opposition, une équivalence d’homotopie (usuelle) est parfois
appelée équivalence d’homotopie forte.

THEOREME: Si X et Y sont deux espaces topologiques connexes dominés
par des C.W. complexes, une équivalence d’homotopie faible entre X et ¥

est nécessairement une équivalence d’homotopie forte.
(J. H. C. Whitehead, thm. 1.)
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N. B.: On passe des espaces connexes aux espaces non-connexes de
fagon évidente. Par « connexe », on entend « connexe par arcs ».

Rappelons maintenant un théoréme dii 2 J. H. C. Whitehead, Giever,
Milnor, etc. Pour une démonstration, voir Milnor [1].

THEOREME: Soit X un espace topologique connexe. Alors X a le type
d’homotopie faible d’un C.W. complexe.
Idée de la démonstration : (Cf. Milnor [1].)

Soit S (X) ’ensemble semi-simplicial ayant pour n-simplexes les appli-
cations continues ¢: A"— X; et les opérateurs « faces » et « dégénérescences »
¢vidents. |

Soit ] S (X )| la réalisation géométrique de S (X).

On a une application f: | S (X) [——»X naturelle. En effet, soit x un point
de | S (X)| appartenant & la n-cellule ¢: 4"— X. Par définition, / envoie x
sur @ (x).

La restriction de f a chaque cellule est évidemment continue. Par la
propriété fondamentale de la topologie faible, f est continue.

Enfin, Milnor montre que f induit un isomorphisme sur les groupes
d’homotopie.

C.q.fd.

Corollaire : Un espace topologique dominé par un C.W. complexe a le
type d’homotopie d’un C.W. complexe.

Corollaire : Un A.N.R. a le type d’homotopie d’un C.W. complexe.
Corollaire : Un A.N.R. X est un A.R. si et seulement si ;(X) = 0V,

Il est clair qu'un A.N.R. n’est pas homéomorphe & un C.W. complexe,
en général.

Réciproquement, un C.W. complexe n’est généralement pas homéo-
morphe 4 un A.N.R. En effet, un C.W. complexe n’est, en principe, pas
métrisable. On montre qu'un C.W. complexe est métrisable si et seulement
¢’il est localement fini. Dans ce cas, il est homéomorphe a un A.N.R. (voir
Borsuk, chap. 4).

Jignore si un C.W. complexe a toujours le type d’homotopie d’un
AN.R. En ce qui concerne les A.N.R. séparables, Milnor [2] rappelle
que I’on a le théoréme suivant:



— 219 —

THEOREME: Les quatre propriétés suivantes sont équivalentes:
1) X est dominé par un C.W. complexe dénombrable;
2) X a le type d’homotopie d’un C.W. complexe dénombrable;

3) X ale type d’homotopie d’un complexe simplicial dénombrable, locale-
ment fini;

4) X a le type d’homotopie d’un A.N.R. séparable.

Indiquons briévement sur quoi repose la démonstration:

a) 1) = 2) Ceci est essentiellement une astuce de Whitehead [2].
X étant dominé par un C.W. complexe, /2 | S (X)|— X est une équivalence
d’homotopie. Soit g un inverse de f. Soit, de plus, K un C.W. complexe
dénombrable et soient A: X—K et u: K- X telles que p-4 =~ idy. Soit:
gop:K—|S(X)|. Comme K est dénombrable, I'image de K par cette
application est contenue dans un sous-complexe L, de |S (X)|, dénombrable.

Soit H,: | S(X) |—>| S(X) | une homotopie reliant I'identité a gof.
Soit L, un complexe contenant I'image de L; par '’homotopie H.On peut
choisir L, dénombrable. En itérant indéfiniment le procédé, on construit
une suite de sous-complexes dénombrables L, L,, ..., L, ... L, étant un
sous-complexe contenant I'image par Hde L,_;.Onal, c L, < ....

Soit L = v L,. L est dénombrable.

k
Soit f; :fl Lo>Xetsoitg =gopuol: X—L.
On vérifie facilement que g, f; ~ idet f, 0g, ~ id.
2) = 3) est le théoréme 13 de Whitehead [1].
3) = 4) et 4) = 1) résultent de ce qui précéde.

Corollaire : L’espace des lacets itérés n-fois Q" K ou K est un C.W,
complexe dénombrable a le type d’homotopie d’un C.W. complexe.

Ceci résulte du théoréeme précédent et du théoréme de Kuratowski.

Whitehead remarque qu’un compact dominé par C.W. complexe est
dominé par un C.W. complexe fini.

En conséquence, un A.N.R. compact est dominé par un polyédre
compact. (Cela résulte d’ailleurs aussi de la démonstration du théoréme
qui affirme qu'un A.N.R. est dominé par un C.W. complexe.)

Corollaire : L’homologie d’'un A.N.R. compact est de type fini. Le
groupe fondamental d’'un A.N.R. compact est de présentation finie.
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On démontre que, sur un A.N.R. compact, toutes les théories de I’homo-

logie satisfaisant ’axiome de dimension coincident.
(Borsuk, chap. 5.)

Probléme : Est-ce qu’un A.N.R. compact X a le type d’homotopie d’un
C.W. complexe fini?

Remarques: D’aprés ce qui précéde, X a donc le type d’homotopie d’un
C.W. complexe dénombrable, dominé par un C.W. complexe fini.

Or Wall a construit un exemple d’un C.W. complexe dénombrable
dominé par un C.W. complexe fini, qui n’a pas le type d’homotopie d’un
complexe fini. (Cf. Wall.)

Mais Uexemple de Wall n’implique pas que la réponse au probléme
précédent soit négative.

Si X est simplement connexe, il n’est pas difficile de voir que la réponse

au probléme est affirmative.

§ 5. QUELQUES EXEMPLES INTERESSANTS

A) On a le théoréme suivant, di a J. H. C. Whitehead.

THEOREME: Soient X; et X, deux A.N.R. compacts (disjoints). Soit
X,<= X, un fermé qui soit aussi un A.N.K. Alors, si f;: X,— X, est une
application continue, I’espace X = X; U, X, est un A.N.R. (compact).

Pour une démonstration, voir Borsuk [1], chap. 5, § 9. Si X, X, X,
sont des A.R. compacts, alors X = X, U, X, est aussi un A.R. compact.

Ce théoréme permet de construire des A.N.R. ou des A.R. qui ont une

allure assez pathologique.

Par exemple : Soient
X, = un disque D? fermé, g > 2;
X, = un segment fermé contenu dans l'intérieur de X|;
X, = un disque D" fermé, n > g+1;

f: X,— X, une application continue surjective.

Alors I'espace X = X; U, X, est un A.R. compact. Il n’est pas homéo-
morphe & un complexe simplicial, ou a un C.W. complexe.
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Plus généralement, partant d’un complexe simplicial fini, on peut
s’amuser 2 faire cette construction un nombre fini de fois dans chaque
simplexe, obtenant ainsi un A.N.R. compact qui n’est pas homéomorphe

a un complexe simplicial.
Un tel exemple de « singularités » dans un A.N.R. s’appelle singularité

de Péano, pour d’évidentes raisons.
(Voir Borsuk, chap. 6, § 1.)

B) En ce qui concerne les A.N.R. compacts de dimension finie, on a
le théoréme suivant:

THEOREME: Soit X un espace métrique compact, localement contractible,
de dimension finie. Alors X est un A.N.R. Pour une démonstration, voir

Borsuk, chap. 5, § 10.
Un exemple célébre di & Borsuk montre que la condition de dimension

finie est essentielle. Voici briévement décrit I’exemple de Borsuk. (Pour plus
de détails, voir Borsuk, chap. 5, § 11.)

Soit Q le cube de Hilbert. On envisage les sous-espaces de Q
suivants:

X, ={x = {xi}lxl‘;_ 0}

s XL—‘=O i>k}.k=1,2,...

| =

, 1
X, = ={x V| — < <
k {x {xl}lk—}—l X1

On voit immédiatement que X, est homéomorphe au cube de Hilbert et
que X, est homéomorphe au cube de dimension k. Soit Xx* le bord
de X,.

Soit X = X, U Xk
k> 1

X est fermé dans Q; c’est donc un métrique compact. Il est localement
contractible. La démonstration est immédiate pour un point qui n’appar-
tient pas a X, mais plus délicate pour un point qui appartient a Xj,.

Enfin, H(X; Z)# 0 i, car X¥'*' n’est pas homologue a zéro
dans X.

Ceci montre que X n’est pas un A.N.R., car si c’était le cas, 1l serait
dominé par un C.W. complexe fini et aurait donc tous ses groupes d’homo-
logie nuls, sauf un nombre fini d’entre eux.
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