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QUELQUES THÉORÈMES BIEN CONNUS
SUR LES A.N.R. ET LES C.W. COMPLEXES

par C. Weber

Remarque préliminaire. Ces notes ne contiennent rien d'original. Elles

ont pour unique but de dégager parmi une littérature abondante, quelques

théorèmes « utiles », dépouillés, dans la mesure du possible, d'hypothèses
inutilement restrictives.

Les références de base sont, à mon avis:

1° Le livre de Borsuk, en remarquant que ce qui est appelé ici A.N.R. est

appelé A.N.R. (TTt) chez Borsuk et ce qui est appelé ici A.N.R. compact
est appelé A.N.R. chez Borsuk.

On trouvera aussi chez Borsuk une bibliographie assez étendue.

2° L'article de Palais qui, sous un volume réduit, dégage toutes les idées

essentielles.

§ 1. Théorèmes classiques sur les espaces métriques

Rappelons pour commencer le:

Théorème de Dugundji. Soit X un espace métrisable et soit de I
un fermé. Soit/: A->E une application continue, où E est un E.V.T. localement

convexe. (Le corps de base est toujours R.) Alors / s'étend en une
application continue F: X-+E, telle que F (X) soit contenu dans l'enveloppe
convexe de f{A).

Pour une démonstration, voir Dugundji, ou Borsuk, chap. 3, § 7.

On remarquera que le théorème de Dugundji est une généralisation du
théorème bien connu de Tietze. (La source est un peu plus particulière,
mais le but est plus général.)

Rappelons maintenant le:

Théorème de Kuratowski-Wojdyslawski. Soit X un espace métrisable.

Alors il existe un espace de Banach B et un homéomorphisme h
de X sur un sous-espace h (X) de B, tel que h (X) soit fermé dans l'enveloppe
convexe de h (X).
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N. B. : h (X) n'est en général pas fermé dans B, le plongement de Kura-
towski h étant même un moyen élémentaire de compléter les espaces
métriques.

Pour une démonstration, voir Borsuk, chap. 3, § 8.

Remarque. Si X est métrisable compact, il est bien connu qu'il se plonge
comme un fermé dans le cube de Hilbert.

Rappelons aussi que tout espace métrisable est paracompact.

»

§ 2. Théorèmes généraux sur les A.N.R.

Soit X un espace topologique et soit ^cl un sous-espace.
On dit que A est un rétracte de X s'il existe une application continue

r: X->A telle que r°i=idA, i: A-+X étant l'injection naturelle, r est

appelé une rétraction de X sur A.
On dit que A est un rétracte de voisinage de X s'il existe un voisinage V

de A dans X et une rétraction de V sur A.
On remarque immédiatement que si X est séparé, et si A est un rétracte

de voisinage de X, alors A est fermé dans X.

Définition. Soit X un espace métrisable. On dit que X est un rétracte
absolu (en anglais « Absolute Retract », d'où l'abréviation A.R.) si chaque
fois que l'on a un homéomorphisme h de X sur un sous-espace fermé h (X)
d'un métrisable Z alors h (X) est un rétracte de Z.

On dit que X est un rétracte absolu de voisinages (en anglais « Absolute
Neighborhood Retract » d'où l'abréviation A.N.R.) si chaque fois que l'on
a un homéomorphisme h de X sur un sous-espace fermé d'un métrisable Z
alors h (X) est un rétracte de voisinage de Z.

Le théorème suivant donne une définition équivalente pour les A.R. et
les A.N.R. (on peut dire grossièrement que c'est parce que l'on veut ce

théorème que l'on se restreint aux espaces métrisables dans les définitions
précédentes).

Théorème. 1) X est un A.R. si et seulement si chaque fois que l'on a

un métrisable F, un fermé Y'a F, et une application continue /: F'-»X,
alors / s'étend en une application F: Y-+X.

2) X est un A.N.R. si et seulement si chaque fois que l'on a un métrisable

F, un fermé F'cF, et une application continue f: Y'-*X, alors /
s'étend en une application F: V-+X, V étant un voisinage de Y' dans F.
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Preuve. Indiquons comment l'on démontre 2), la démonstration de 1)

étant tout à fait analogue.

a) Si X est un A.N.R. d'après le théorème de Kuratowski il existe

un plongement h de X dans un Banach B, tel que h (X) soit fermé dans

l'enveloppe convexe C (h (X)); de plus il existe une rétraction r : V->h (X),
V étant un voisinage de h (X) dans C (h (X)).

D'après le théorème de Dugundji, h °f s'étend en une application

Fi : Y-+C(h(X)). Soit m Fï\V). % est un voisinage de Y' dans Y et

F: h"1 ° r ° Fx | °U est l'extension cherchée.

b) Soit X homéomorphe à un sous-espace fermé de Z. Prenons Y Z,
Y' X, f: Y'->X l'application identique. Par hypothèse, f s'étend en une

application définie sur un vg. de X dans Z et fournit ainsi une rétraction
d'un vg. de X dans Z, sur X.

C.q.f.d.

Corollaire. Un rétracte d'un A.R. est un A.R.

On voit donc qu'un E.V.T. localement convexe, métrisable est un A.R.,
en vertu du théorème de Dugundji. En particulier, un Fréchet, un Banach,

un préhilbert, un Hilbert sont des A.R. (Ceci sans hypothèse de séparabilité
De même une partie convexe d'un E.V.T. localement convexe métrisable

est un A.R. Le cube de Hilbert est un A.R. compact.
Un rétracte d'une telle partie convexe est aussi un A.R., et réciproquement

un A.R. est toujours un rétracte d'une partie convexe d'un E.V.T.
localement convexe métrisable.

En conséquence, un A.R. est contractible.

Corollaire. Un rétracte de voisinage d'un A.N.R. est un A.N.R. Un
ouvert d'un A.N.R. est un A.N.R.

Utilisant les théorèmes de plongements et de voisinages réguliers bien

connus, on voit donc, par exemple, qu'une variété différentiable para-
compacte de dimension finie ou qu'un polyèdre sont des A.N.R. (Nous
reviendrons plus loin sur ce sujet.)

On voit aussi qu'il existe un voisinage de la sphère d'Alexander I2 c= S3

qui se rétracte sur Y2. (En vertu du théorème de van Kampen, il ne saurait

y avoir de voisinage qui se rétracte par déformation sur S2.)

Théorème de Hanner (généralisé). Un espace séparé, paracompact
qui est localement un A.N.R. est un A.N.R.

Ce théorème est le théorème 5 de Palais.
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Le théorème de Hanner disait qu'un métrique qui est une réunion
dénombrable d'ouverts A.N.R. est un A.N.R. (Dans la démonstration de

Hanner thm. 3.2, l'hypothèse de séparabilité n'est pas essentielle.)
Pour montrer le théorème généralisé de Palais, on utilise le théorème

de Smirnov qui affirme qu'un paracompact séparé est métrisable s'il est

localement métrisable. Ensuite, grâce à la paracompacité, on se ramène au
cas envisagé par Hanner.

On voit donc qu'une variété topologique paracompacte, séparée,
modelée sur un E.V.T. localement convexe métrisable est un A.N.R.

De même, on voit qu'un polyèdre localement fini est un A.N.R.
On peut remarquer que le théorème de Palais répond affirmativement

à une question posée par Borsuk. (Borsuk, Problem 10.6, chap. IV.)
Une autre propriété intéressante des A.N.R. est la suivante:

THÉORèME (dû à Kuratowski) : Soit X0 un sous-ensemble d'un compact X.
Soit Y un A.N.R. et soit y0 e Y.

L'espace des applications continues (Y, j0)(Xo'xo) de X dans Y, envoyant

x0 sur y0, muni de la topologie canonique, est un A.N.R.
Pour une démonstration, voir Borsuk [1], chap. 4, § 5.

Produits.

Théorème: 1) Un produit dénombrable d'A.R. est un A.R.

2) Un produit dénombrable d'A.N.R.: { Xt }ieN parmi
lesquels tous les Xt sauf un nombre fini d'entre eux sont
des A.R. est un A.N.R.

Un produit dénombrable d'A.N.R. n'est en général pas un A.N.R.
comme le montre l'ensemble de Cantor.

Pour une démonstration, voir Borsuk, chap. 4, § 7.

§ 3. Propriétés homotopiques des A.N.R.

Lemme : Soit X un espace métrisable. Soit AaX un fermé. Soit

Z Xx { 0 } uA x/clx/. Alors, si V est un vg. de Z dans Xxl, il
existe une application p de Xxl dans V qui est l'identité sur Z.

(La démonstration de ce lemme est élémentaire.)
On déduit alors la proposition suivante:

Proposition: Soit X un métrisable, soit un fermé. Soit Y un
A.N.R. Soit F: X-+ Y une application et soit /j: A-> Y une homotopie de

f | A f0. Alors ft s'étend en une homotopie Ft : X-> Y telle que F0 — F.
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Preuve :

F et ft définissent une application continue de Z dans Y. Comme Y

est un A.N.R. cette application s'étend en une application g: V-+Y où V

est un certain voisinage de Z dans Xxl.
g ° p: Xx /-» Y est alors l'homotopie Ft cherchée.

C.q.f.d.

Corollaire : Un métrique X est un A.R. si et seulement si c'est un A.N.R.
contractible.

Preuve :

Nous avons déjà vu qu'un A.R. est un A.N.R. contractible.

Pour démontrer la réciproque, on ne restreint pas la généralité en supposant

que X est un fermé dans un convexe Q d'un Banach B.

Soit ht: X-+X une homotopie telle que:

h0 (X) x0e X et /q idx

Soit H: Q-+X l'application constante sur x0.
Par la propriété d'extension des homotopies,

] Ht: Q-*X telle que Ht \ X ht.

L'application H1 est alors une rétraction de Q sur X. Un rétracte d'un
A.R. étant un A.R., la démonstration est achevée.

C.q.f.d.

Plusieurs propriétés homotopiques du A.N.R. découlent du fait qu'ils
sont des rétractes de voisinages de convexes dans un E.V.T. localement
convexe. Par exemple:

Proposition : Un A.N.R. est localement contractible.

Preuve :

On peut supposer que X est un fermé d'un convexe Q d'un Banach B
et qu'il existe un ouvert Va Q qui se rétracte sur X.

V est localement contractible et l'on voit facilement que tout rétracte
d'un espace localement contractible est localement contractible.

C.q.f.d.
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N. B. Un espace sera dit localement contractible s'il possède un
système fondamental de voisinages contractibles.

Deux applications suffisamment proches d'un métrique dans un A.N.R.
sont homotopes. De façon plus précise:

Proposition. Soit E un espace topologique et X un A.N.R. Alors, il
existe un recouvrement ouvert { Ua }aeJ de X tel que, si / et g sont deux

applications de E dans X qui sont a-proches, alors elles sont homotopes.

Rappel. On dit que/ et g sont a-proches, si VxeE, il existe un »ouvert

Ua tel que f(x) et g (x) e Ua.

Preuve :

A nouveau, considérons X comme un fermé dans un convexe Q d'un
Banach B; et soit VczQ un ouvert se rétractant sur X.

V étant localement convexe, on voit immédiatement que la conclusion
de la proposition est vraie pour V.

X étant un rétracte de V, il est facile de voir que la conclusion reste

vraie pour X.

C.q.f.d.

Définition. On dit qu'un espace A est dominé par un espace B s'il existe

deux applications /: A->B, g: B-+A, telles que g °f soit homotope à idA.

Proposition. Un A.N.R. est toujours dominé par un complexe sim-

plicial (et donc par un C.W. complexe).
Avant de donner une idée de la démonstration, définissons ce que l'on

entend par « complexe simplicial ».

C'est un C.W.-complexe pour lequel les modèles de cellules fermées sont
les simplexes standards et les applications attachantes sont des applications
simpliciales injectives.

Idée de la démonstration (cf. Palais [1], thm. 14).

On commence par démontrer le lemme suivant:

Lemme. Soit X paracompact. Soit { Wa }aeA un recouvrement ouvert
de X. Alors, il existe un recouvrement ouvert { 0^ }ßeB de X (plus fin que

n n

{ Wa }), localement fini, tel que si n 0ßi ^ 0, alors n 0ßia Wa, pour un
i=l i= 1

certain aeA.
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(Palais, lemme 6.2.)
Une fois en possession de ce lemme, on poursuit la démonstration de

la façon suivante:
Comme la relation « être dominé par » est transitive, on ne restreint

pas la généralité en supposant que X est un ouvert d'un convexe contenu
dans un E.V.T., localement convexe, métrisable.

On choisit un recouvrement ouvert { Wa }aeA de X par des ouverts

convexes.
On choisit un recouvrement ouvert { 0ß }ßeB de X, satisfaisant la conclusion

du lemme.
Soit K le complexe simplicial associé au recouvrement {0ß}ßeB; on

considérera K comme réalisé géométriquement dans R(ß), les sommets de K
étant les vecteurs de la base standard.

Comme d'habitude, une partition de l'unité, associée au recouvrement

{0ß} fournit une application / de X dans K.
Si, pour tout ß e B, on choisit un point xß e 0ß, on définit une application

linéaire de R(ß) dans l'E.V.T., dont la restriction g k K a son image
n

dans X, car si une intersection n 0ßi ^ 0, l'enveloppe convexe de sa
i=l

réunion c= Wa, et donc dans X.
Pour une raison analogue g\f est homotope à idx.

C.q.f.d.

N. B. : La même preuve montre que si X est séparable, il est dominé
par un C.W.-complexe dénombrable et que s'il est compact il est dominé
par un C.W. complexe fini.

§ 4. Relations entre A.N.R. et C.W. complexes

Rappelons pour commencer quelques définitions et un théorème.
Soient A" et Y deux espaces topologiques connexes et soit /: Y telle

que/: nn(X, x0)-*nn Y, y0) soit un isomorphisme, \/n. On dit que/est alors
une équivalence d'homotopie faible.

Par opposition, une équivalence d'homotopie (usuelle) est parfois
appelée équivalence d'homotopie forte.

Théorème: Si X et Y sont deux espaces topologiques connexes dominés
par des C.W. complexes, une équivalence d'homotopie faible entre X et Y
est nécessairement une équivalence d'homotopie forte.

(J. H. C. Whitehead, thm. 1.)
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N. B. : On passe des espaces connexes aux espaces non-connexes de

façon évidente. Par « connexe », on entend « connexe par arcs ».

Rappelons maintenant un théorème dû à J. H. C. Whitehead, Giever,
Milnor, etc. Pour une démonstration, voir Milnor [1].

Théorème: Soit X un espace topologique connexe. Alors X a le type
d'homotopie faible d'un C.W. complexe.

Idée de la démonstration : (Cf. Milnor [1].)
t

Soit S (X) l'ensemble semi-simplicial ayant pour «-Simplexes les

applications continues cp : An-+X; et les opérateurs « faces » et « dégénérescences »

évidents.
Soit | S (X) | la réalisation géométrique de S (X).
On a une application /: | S (X) \-+X naturelle. En effet, soit x un point

de | S (X) | appartenant à la «-cellule cp: An~>X. Par définition,/ envoie x
sur cp (x).

La restriction de / à chaque cellule est évidemment continue. Par la

propriété fondamentale de la topologie faible, / est continue.

Enfin, Milnor montre que / induit un isomorphisme sur les groupes
d'homotopie.

C.q.f.d.

Corollaire : Un espace topologique dominé par un C.W. complexe a le

type d'homotopie d'un C.W. complexe.

Corollaire: Un A.N.R. a le type d'homotopie d'un C.W. complexe.

Corollaire : Un A.N.R. X est un A.R. si et seulement si n^X) — OVj.

Il est clair qu'un A.N.R. n'est pas homéomorphe à un C.W. complexe,

en général.

Réciproquement, un C.W. complexe n'est généralement pas
homéomorphe à un A.N.R. En effet, un C.W. complexe n'est, en principe, pas
métrisable. On montre qu'un C.W. complexe est métrisable si et seulement

s'il est localement fini. Dans ce cas, il est homéomorphe à un A.N.R. (voir
Borsuk, chap. 4).

J'ignore si un C.W. complexe a toujours le type d'homotopie d'un
A.N.R. En ce qui concerne les A.N.R. séparables, Milnor [2] rappelle

que l'on a le théorème suivant:
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Théorème: Les quatre propriétés suivantes sont équivalentes:

1) X est dominé par un C.W. complexe dénombrable;

2) X a le type d'homotopie d'un C.W. complexe dénombrable;

3) X a le type d'homotopie d'un complexe simplicial dénombrable, locale¬

ment fini;

4) X a le type d'homotopie d'un A.N.R. séparable.

Indiquons brièvement sur quoi repose la démonstration:

a) 1) => 2) Ceci est essentiellement une astuce de Whitehead [2].

X étant dominé par un C.W. complexe,/: | S (X) |-*Xest une équivalence

d'homotopie. Soit g un inverse de f. Soit, de plus, K un C.W. complexe
dénombrable et soient X: X-+K et fi: K-^X telles que ji° X ~ idx. Soit:

g o fi: K-+\ S (X)\. Comme K est dénombrable, l'image de K par cette

application est contenue dans un sous-complexe de \S (X)|, dénombrable.

Soit Ht: | S (X) |-»| 5(X) | une homotopie reliant l'identité k go f.
Soit L2 un complexe contenant l'image de Lx par l'homotopie H. On peut
choisir L2 dénombrable. En itérant indéfiniment le procédé, on construit
une suite de sous-complexes dénombrables LUL2, ...,Lk, Lk étant un
sous-complexe contenant l'image par H de Lk_l. On aLt c L2 a

Soit L u Lk. L est dénombrable.
k

Soit — f | L-*X et soit gx g o fi o X: X-*L.
On vérifie facilement que gx ft ~ id et fo gx ~ id.

2) => 3) est le théorème 13 de Whitehead [1].

3) => 4) et 4) => 1) résultent de ce qui précède.

Corollaire : L'espace des lacets itérés «-fois Qn K où K est un C.W.
complexe dénombrable a le type d'homotopie d'un C.W. complexe.

Ceci résulte du théorème précédent et du théorème de Kuratowski.
Whitehead remarque qu'un compact dominé par C.W. complexe est

dominé par un C.W. complexe fini.
En conséquence, un A.N.R. compact est dominé par un polyèdre

compact. (Cela résulte d'ailleurs aussi de la démonstration du théorème
qui affirme qu'un A.N.R. est dominé par un C.W. complexe.)

Corollaire : L'homologie d'un A.N.R. compact est de type fini. Le
groupe fondamental d'un A.N.R. compact est de présentation finie.
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On démontre que, sur un A.N.R. compact, toutes les théories de l'homo-
logie satisfaisant l'axiome de dimension coïncident.

(Borsuk, chap. 5.)

Problème : Est-ce qu'un A.N.R. compact X a le type d'homotopie d'un
C.W. complexe fini

Remarques : D'après ce qui précède, X a donc le type d'homotopie d'un
C.W. complexe dénombrable, dominé par un C.W. complexe fini.

Or Wall a construit un exemple d'un C.W. complexe dénombfable
dominé par un C.W. complexe fini, qui n'a pas le type d'homotopie d'un
complexe fini. (Cf. Wall.)

Mais l'exemple de Wall n'implique pas que la réponse au problème
précédent soit négative.

Si X est simplement connexe, il n'est pas difficile de voir que la réponse

au problème est affirmative.

§ 5. Quelques exemples intéressants

A) On a le théorème suivant, dû à J. H. C. Whitehead.

Théorème: Soient X1 et X2 deux A.N.R. compacts (disjoints). Soit

X0aX1 un fermé qui soit aussi un A.N.R. Alors, si fp. X0->X2 est une

application continue, l'espace X — X1 Uf X2 est un A.N.R. (compact).
Pour une démonstration, voir Borsuk [1], chap. 5, § 9. Si X0, Xl9 X2

sont des A.R. compacts, alors X X1Uf X2 est aussi un A.R. compact.
Ce théorème permet de construire des A.N.R. ou des A.R. qui ont une

allure assez pathologique.

Par exemple : Soient

X1 un disque Dq fermé, q > 2;

X0 un segment fermé contenu dans l'intérieur de Xx ;

X2 un disque Dn fermé, n > q+1;

/: X0-+X2 une application continue surjective.

Alors l'espace X X1 Uf X2 est un A.R. compact. Il n'est pas homéo-

morphe à un complexe simplicial, ou à un C.W. complexe.



— 221 —

Plus généralement, partant d'un complexe simplicial fini, on peut
s'amuser à faire cette construction un nombre fini de fois dans chaque

simplexe, obtenant ainsi un A.N.R. compact qui n'est pas homéomorphe
à un complexe simplicial.

Un tel exemple de « singularités » dans un A.N.R. s'appelle singularité
de Péano, pour d'évidentes raisons.

(Voir Borsuk, chap. 6, § 1.)

B) En ce qui concerne les A.N.R. compacts de dimension finie, on a

le théorème suivant:

Théorème: Soit Xun espace métrique compact, localement contractible,
de dimension finie. Alors X est un A.N.R. Pour une démonstration, voir
Borsuk, chap. 5, § 10.

Un exemple célèbre dû à Borsuk montre que la condition de dimension
finie est essentielle. Voici brièvement décrit l'exemple de Borsuk. (Pour plus
de détails, voir Borsuk, chap. 5, § 11.)

Soit Q le cube de Hilbert. On envisage les sous-espaces de Q
suivants :

On voit immédiatement que X0 est homéomorphe au cube de Hilbert et
que Xk est homéomorphe au cube de dimension k. Soit Xk le bord

X est fermé dans Q ; c'est donc un métrique compact. Il est localement
contractible. La démonstration est immédiate pour un point qui n'appartient

pas à X0i mais plus délicate pour un point qui appartient à X0.
Enfin, Ht(X; Z)=£ 0 \/z, car xl+1 n'est pas homologue à zéro

dans X.
Ceci montre que X n'est pas un A.N.R., car si c'était le cas, il serait

dominé par un C.W. complexe fini et aurait donc tous ses groupes d'homo-
logie nuls, sauf un nombre fini d'entre eux.

x0 { X { Xi } I xx 0 }

de Xk>

Soit X X0 u xk.
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