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[
Alors 1'un au plus des ¢; peut &tre supérieur ou €gal 2‘1—2— . On pose le pro-

n+1

bléeme de préciser les propriétés caractéristiques de la somme Y. ¢; qui,
i=1

dans les cas ou n = 1 et n = 2, se réduit a la constante .

CAS DU TETRAEDRE A; A, A3 Ay

Nous introduirons souvent dans une méme expression ou relation les
indices i, j, k, ; il sera alors sous-entendu que (i, j, k, [) est une permutation
de (1, 2, 3, 4).

Désignant par 0 = o ({ xl-zj }) la forme w? qui est donnée par

2 2 2 (.2 2 2 2 2 2
4o = 4w® = x{; X34 (X713 + Xz4 + X[a + X323 — X1 — X34) (I11.1)
2 2 (.2 2 2 2 2 2
+ X713 X34 (%12 + X34 + X14 + X33 — X153 — X34)
2 U2 (o2 2 2 2 2 2
+ X14 X323 (xl?. + X34 + X713 + X34 — X14 — xzs)

2 .2 2 2 2 2 2 2 .2 2 .2 .2
— X192 X13X23 — X12X14X24 — X13X14X34 — X23X24 X34

on voit que, les x;; étant rangés dans un ordre déterminé, les fonctions
T4, T2, T3, T4 SONt définies sur I'ouvert connexe

U:(a({x,-zj})>0, | x2, +x35—x35 ] <2x,5 %13, 0<x;; <+ 00, i#j;

i’j = 1’ 23 3, 4)

de RS ol sont aussi définis les tétraédres. Identifions chaque point X € U au
tétra¢dre correspondant A4; A; A, 4,. La frontiére F de U dans R®donne
lieu a des tétracdres dégénérés parmi lesquels on distingue a) les figures
planes X, obtenues pour des valeurs finies et non nulles des x;;, b) les
tétraédres dégénérés X, de la forme A4; A; A, AY, A7 désignant un sommet
¢loigné a linfini, c) les tétraédres dégénérés Xy; de la forme 4; 4; A7 AT.

PropoSITION 1. Désignant par s; une valeur limite de t, sur F, [’ensemble
des systémes de valeurs (s;, s;, Sy, 8,) qui ne sont pas de la forme (t;, t;, 7y, 1)),
s’obtient en nous bornant aux tétraédres dégénérés Xy, X;,, X;5. En parti-
culier, on a sur X, :

(Sia Sjs> Sk» Sl) = (Oa 0,0, O)
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sur X ,:
(Si> Sj» Sg» ) = (sin o; siny, sin o; sin Y, sin o, siny, 0)
avec
T
O oo, =, o+a+o =7, Oglpgi,
sur X,5:
(S35 Sj5 Sg» 8)) = (sin o siny, sin o; siny, 0, 0)
= (sin ¢; sin Y, sin o; siny, 0, 0) ‘
avec
T
Ofo,0;, 57, oy +a; =m, 0§¢§5.

ProrosITION 2. Soient A,, A,, Az, A, quatre points distincts dans un
espace euclidien R" et désignons par ¢ ;;yu) | 'angle aigu (ou droit) des direc-
tions définies par A; A; et Ay A,. Alors les relations

P12)34) = Pa3)ya) = Pa4)23)

entrainent nécessairement

T
Pi12y34) = Pasyea) = Paayes) = 5

ou

Q12y34) = Pasyeey = Paays) = 0.

Démonstration. Comme

- -

2 2 2 )
2xij X COS Qijyay = 2 lxij Xul = |xi + Xjk — Xig — Xjif»
il s’ensuit
2 2 2 2 2 2 2 2
| X174 + X33 — X713 — X24 | _ | X4 + X33 — X753 — X34
X12 X34 X13 X24

2 2 2 2
_IXts X34 — X35 — X34

X14 X23
Ces relations sont d’abord remplies lorsque

x%z + x§4 = x%s + x§4 = x%4 + x%s = A%, (I111.2)
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A étant une longueur convenable, et alors

o3

Pa2)34) = Punes) = Pasnes) =

- 2 2 2 2 2 2
En cas contraire, on peut supposer Xis4 + X33 >Xi3 + X24 > X12 + X34,
ce qui donne

X13X24 = X132 X34 T X14 %23, (111.3)

2 2
X13 X24 (xfs + x§4) = X123 X34 (xfz + X34) + X4 X33 (X4 + X33)
(I11.4)

Il en résulte

2 2 2 2 2 2 2 2
X1y X34 (XT3 + X34 + X714 + X33 — X1z — X32)
2 2 i ( 2 + 2 ))
= X12 X34 (x13 Xp4 (X714 + X33) — X14X23 (X713 X24)) >

2 .2 (.2 2 2 2 2 2
X713 X34 (X715 + X34 + X74 + X33 — X3 — X24) , ,
2 2
= X13 X34 (X14 X23 (X172 + X34) + X12 X34 (X174 + X23)) >

2 .2 4.2 2 2 2 2 2
X1a X323 (X12 + X34 + X713 + X34 — X{4 — X23)

= Xy4 X33 (%13 X24 (x3; + x34) — X123 X34 (75 + x§4)) .
Remplagant dans (III. 1) on trouve
0({ xiZj }) = — (X132 X13X23 + X13X14 X34 — X132 X14X24 — X233 X24 x34)2 .
Comme o ({ x,-zj 1) > 0, VXeU, il reste a voir s’il existe des Xy tels que
X13(X12 X235 + X14X34) = X34 (X153 X34 + X23X34) . (I11.5)

Remplagant les valeurs des x; 3, X,4, tirées des (I11. 3), (III. 5), dans (III. 4) on
obtient (x;, — X53)° = (X1, + X34)% ce qui donne x;, = X1, + Xp3 + X34
OU X3 = X,y + X14 + X43. Les points A4y, 4,, 45, A, sont donc alignés et
P12)i34) — Pa3yee) = Puaye3) = 0.

Tout tétraédre satisfaisant a (III. 2) sera dit normal. On considére aussi

des tétraédres normaux dégénérés X,,, X;,, X5 résultant des déformations
continues des tétraedres normaux.

COROLLAIRE. Pour qu’un tétraédre soit normal il faut et il suffit que

ow om ow Jw ow Jw

X12
0% 0%X34 0X13 0% 24 014 0X33

T ’Frncaionamant mathdm + WTIT facr 2 14
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ou, en vertu du théoréme d’Euler,

dw ow ow ow :
X2 + X34 = w, X3 + X24 = (I11.6)
0X1, 0X34 0X13 0% 24
ou encore, en posant y;; = X3, o =0({y;}),
do 0o do do
V12 + V3a =0, Vi3 + Va2a = 0. (IIL.T7)
0y12 0Y34 Y13 0Y24
4 ]
PROPOSITION 3. La relation ) ¢; = = est valable pour tout tétraédre
i=1
normal.

Démonstration. En vertu de (III. 2), on peut associer a chaque sommet
A; d’un tétraédre normal le parameétre y; défini par les relations

- > - > -> - 5

2 2
2x; % = 2Xp Xy = Xy Xy = X5 + Xy — X
2 2 2 2 2 2 _

= Xjp + Xi — X = Xy + x5 —x;; = 2y;, (II1.8)

d’ou

Vi + Yy, vty =A%, xi2j=yij=yi+yja (i#ji,j =1,2,3,4).
| (I111.9)
) oo 0o )
Remplagant dans I’expression de — on trouve — = y, y, et ensuite,
5)’;',' 5)’ij

moyennant (III. 7),

O =Y1Y2Y3 T V1YV2Ya +V1V3Vs T YV2V3)a-. (I11.10)

Comme d’ailleurs

2

Xij Vi i
2 2.2 .2 2.2
o= \V: Xig Vi ""xijxikxil""}* Vi
2
Yi Vi Xu
on en déduit
2.2
) o A% Yy
0052¢i=1_31n2¢i=1_ 2 2.2 2

2_.2°
Xij Xik X Xij X Xil

ij
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Désignant par /;; 'angle des vecteurs xy, x;;, 1l s’ensuit, d’aprés (IIL. 8),
T
que les Y/, Yy, Yy, sont tout ensemble inférieurs, égaux ou supérieurs a 5

suivant que y; > 0, y; = 0 ou y; < 0. Selon la définition de ¢;, on a donc
respectivement ‘

T T 74
s L — . . == — ou i > = s
<5, $i=3 b > 3
et cela prouve que
Ay
cos ¢; = D
Xij Xik Xi1

Remplagant les sin ¢;, cos ¢; dans I'identité
sin (¢ + ¢ + @3 + ¢4) =
Y sin ¢; cos ¢; cos ¢, cos ¢, — > cos P, sin ¢; sin ¢, sin ¢,

et tenant compte des (II1. 9), (III. 10), on obtient

| N
sin(¢y +¢, +P3+¢,) =
Y12V13 V14 V23 V24 V34

((y1y2y3 + Y1Y2Va +V1Y3Ya+V2Y3y) A2 — (Y1 + Y2+ Y3 +ys) 0) = 0.

Comme d’ailleurs 0 < ¢; + ¢, + ¢35 + ¢, < 27, il s’ensuit
¢+ ¢+ P33+ Pu =7 .

COROLLAIRE. Si ¢; > 0,0=1,2,3,4), et ¢, + ¢, + ¢35 + ¢, ==, il
existe une infinité de tétraédres normaux tels que v; = sin ¢, (i = 1, 2, 3, 4).
Leurs arétes sont données par les formules

Xij = Xji = k\/ctgqbi + clg ij s
k étant une longueur arbitraire.

4
La relation ) ¢; =n s’étend immédiatement aux tétraédres normaux
1

dégénérés Xy, Xyp, Xy3. Il n’en est pas de méme pour tous les autres X,
X4z, Xy3. S1un X, par exemple, est tel que

T T T

¢12=53 l//13>5a ‘¢14>5,
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4
la somme ) ¢;, calculée sur les X qui ont pour limite X, aura deux valeurs
1

limites, O et 7.

DETERMINATION DES BORNES D’UNE FONCTION NUMERIQUE f (7, 75, T3, T4)
PAR APPLICATION DES FORMULES (I. 1). La forme de f est supposée telle que
S (uy, uy, us, uy) soit continue sur un ouvert de R* contenant le cube
0=suy; =1, (i=1,2,3,4). Lensemble E, «c U, donc aussi £ < U,
s’obtient par I'intermédiaire de ensemble des points de R* ot les dérivées
de f(uy, u,, us, u,) ne sont pas définies. !

En ce qui concerne la détermination de E;, on peut se limiter a la consi-
dération de I’ensemble £ n H, H étant un hyperplan (x,; = c,3 > 0),
puisque f est homogene de degré zéro. Etant donné que

P (2 ) L (5, )

ax ‘ot ! ot W 0x;; 1o,

on obtient la relation

of of 0w 0w ( ¢ af
<x12 0X1, a4 6x34> <x12 0X1, T34 0X34 ) };‘Tq a7,

et les deux autres qui s’en déduisent par permutation d’indices. Par consé-
quent les €équations

0f_6f_6f~6f_6f_0
0x1, 0%  0%;3 0%y  0%g4

sont d’abord remplies sur ’ensemble E; = E n H défini par

af__af_afzéf

=0,
oty 0Ot, 013 Oty

puis sur un ensemble E; = E n H tel que tout X e E satisfasse aux (III. 6)
et soit donc normal. Ainsi E, = E; U E; et f(E,) = f(E}) uf(El) Etant
donné qu’en tout X € E; la valeur de f est de la forme

f(sin ¢y, sin ¢,, sin ¢, sin@p,) = g (P4, Po, P3,Ps) avec 12‘15; =T,

suivant la proposition 3, on peut éviter la détermination de E; en lui
substituant le probléme, plus facile en général, de la détermination des
bornes de g (¢;, ¢,, ¢, ¢4) sous les conditions

4
O<(,f)i<7t, (i=1,2,3,4), Z¢l=7t
1
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En ce qui concerne le calcul des sup L' (F), inf L' (F), ou L' (F) est
Pensemble des valeurs limites qui ne sont pas de la forme f(ty, T2, T3, T4)s
on voit, compte tenu de la proposition 1, que a) les X;; donnent la seule
valeur £(0, 0,0, 0), b) les X,, donnent les fonctions

f (sin ay siny, sin «, siny, sin a3 siny, 0),
f (sin o, siny, sin a, siny, 0, sin o3 sinyy)
f (sin a; siny, 0, sin o, sin Y, sin o3 siny) ,

£(0, sin «, siny, sin a, sin ¥, sin o3 siny),

IA
S

):

dont les bornes s’obtiennent moyennant les formules (I.1), ¢) les Xy;
donnent les fonctions

f (sin o sin ¥, sin a siny, 0,0), f(sinasiny, 0, sin o siny, 0),
f(sinesiny, 0,0, sinasiny), f(0,sinasiny,sinasiny,0),
f(0,sinasiny, 0,sinasiny), f(0,0,sinasiny,sinasiny),

<0<o<<n 0 <y = Z)

dont les bornes s’obtiennent également par la méthode générale.
Ayant obtenu les sup L’ (F), inf L’ (F), on a

sup f = sup (f(Eg)u f(E)u {supg,sup L'(F)}),
inf f = inf(f (Eg)u f(E)u {infg, inf L' (F)}).

(0<oc1,oc2,oc3<n, o +o, +oayg =7, 0<Y

Si I'on désigne par arc sin 7; le plus petit arc positif ayant le sinus t,,
la démonstration des propositions suivantes est maintenant immédiate.

4
PROPOSITION 4. La fonction Z arc sin t; vérifie les relations

4
< > arcsint; 7.
1

La borne supérieure nt s’obtient a) sur tout tétraédre normal pour lequel
F) r | n /4 1 TL
['un des ¢; est égal a 5 b) sur tout tétraédre normal pour lequel ¢, < —,

(1 =1, 2, 3, 4), ¢) sur tout tétraédre normal dégénéré X,,, A;A;A AT, dont
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la face A; A; A, wa aucun angle supérieur a — , d) sur tout tétraédre normal

o

I

o a

dégénéré Xy, A; A; A} AT, tel que ¢; = b,

Par conséquent, pour tout tétraédre qui n’est pas normal, on a

4
Y arcsint; <.
1

PROPOSITION 5. La fonction

3
— arcsint, + Y arcsinr;
1

vérifie les relations

3
0 < —arcsint, + ) arcsint; < 7.
1

La borne inférieure O s’obtient a) sur tout tétraédre normal pour lequel
n r r ’ I é |

by = 5 b) sur tout X, et sur toute autre forme dégénérée pour laquelle

$; = 8, = 83 = 84 = 0, ) sur tout tétraédre normal dégénéré Ay A; A; AT

tel que Y4y = g, d) sur tout X, de la forme A, A; A% A%.

Par conséquent, pour tout tétraédre qui n’est pas normal, on a

3
— arcsint, + ) arcsint; > 0.
1

THFEOREME. Pour qu’un tétraédre soit normal, il faut et il suffit que la

4
relation Y ¢, = n soit valable.
1

n .
Démonstration. Si le tétraédre n’est pas normal, on a ¢; # 3 (i =

4

T
= 1, 2, 3, 4) . Par suite, ou bien ¢; < > pour i=1,2,3,4,cetalors ) ¢;
o 1
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T . g .
< m, suivant la proposition 4, ou bien ¢; > 5 pour un seul indice, soit

4 4
n . - - .
Py > 7> et alors Y ¢; >, suivant la proposition 5. Donc la relation ) ¢;
1 1

= 1 n’est jamais vraie pour un tétraédre qui n’est pas normal. Cela démontre
le théoréme, compte tenu aussi de la proposition 3.

4

T .
La borne supérieure de ) ¢; — = lorsque ¢, > 5 par exemple, se réalise
1

sur la frontiére du domaine U’ < U obtenu en adjoignant les conditions

[/ T

0
— > > —
‘/’41>2, ‘//42=2, ‘//43_.2

aux relations définissant U. Sans entrer dans les détails, on remarque que

4
'ensemble des valeurs de ) ¢; — = sur des X,, de la forme A, A5 A, A5
1

avec

T

i
W4z =§’ a3 > =,

n
Yag > = 5

2 b
admet le maximum

1 1
2 arc sin —— — arc CoS —

J3 J3

qui semble €tre le stnremum cherché.

Toutes les propriétés précédentes sont de caractére local, parce
qu’elles se traduisent, d’une fagon évidente, par des propriétés des angles
que font deux a deux les six droites d;; = II, n II,, en désignant par
II;, (i = 1, 2, 3, 4), quatre plans issus d'un méme point de R" et paralléles
aux faces du tétracdre.

CAS D’UN SIMPLEXE QUELCONQUE A; A4, ... 4,,,.

4
Les deux exemples suivants montrent que la relation Y. ¢; = ne peut pas
1

s’étendre de la méme fagon a des simplexes de dimension n > 4
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