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L’ensemble f(U) u L (F) étant fermé, il contient la valeur sup f; donc on
ne modifie pas le sup (f(U) u L (F)) en retranchant de cet ensemble toute
valeur inférieure a sup f. Il en est ainsi en particulier des valeurs f(x)
pour x € E, x ¢ E, puisque f (x) = sup f, x € E = x € E, et aussi des valeurs
inférieures a sup L (F), d’ou le résultat.

Les formules (I. 1) permettent souvent le calcul des sup f, inf f, sans
aucune hypothése concernant les dérivées secondes. Leur extension au cas
ou U est un ouvert d’une variété C! est immédiate, mais, pour éviter les
complications, f doit alors étre supposée différentiable en tout point de E;
on peut d’ailleurs les compléter d’une fagon évidente lorsque f présente des
discontinuités dans E,.

II. DETERMINATION DU MINIMUM DE CERTAINES FONCTIONS CONVEXES

Dans I’espace R", muni de la distance euclidienne, on se donne ¢ points
ay, as, ..., a, tels que R” soit le plus petit espace linéaire qui les contient.
Nous allons considérer des fonctions de la forme

q

f&x) = lei|x_ailvi

i=1
ou u; v; sont des nombres réels tels que u; > 0,v; =21, = 1,2, .., 9).
Danslecas trivialoun=1,v, = v, = ... =v,=1,0na
inff = inf { £ @),/ (@), .. /(@) }.
parce que le graphe de f est alors une ligne brisée convexe de sommets
(a, f(a)), G = 1,2, ..q); si cette ligne possede un cdté parallele a
I’axe des x, la fonction f n’est pas strictement convexe.

PROPOSITION. Le cas trivial ci-dessus étant écarté, { est toujours stricte-
ment convexe et I’équation df = 0 admet une ou n’admet aucune solution.

Si df = 0 pour x = X,, le point X, appartient a [’intérieur T de [’enveloppe
convexe T des ay, a,, ..., a, et fournit le minimum. Si [’équation df =0
n’a pas de solution, on aura inf f = inf { f (a,) | v; =11}, ce qui montre en
particulier que la solution X, existe quand v; > 1 pour 1=1,2, ..., q.

Démonstration. La fonction | X |”, ou v = 1, étant convexe, il en est de
méme des g; | x — a;|* et de leur somme f(x). La fonction | x |*, ot v > 1,
étant strictement convexe, il s’ensuit la méme propriété pour f lorsqu’il
existe un indice tel que v; > 1. Lorsque v; = v, = ... = vy, = 1, alors
n>=2; donc, Vxe R, Vx'eR", on aura |ox + (1 —0)x" —a;|=
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=|a(x—a)+ (1 — ) (x" — a) | <oc|x——al-| + (1 —oc)lx'——a,-l,

(0 < a < 1), pour un indice au moins, d’ou le résultat dans ce cas aussi.
Comme f est strictement convexe, df = 0 admet au plus une solution.
La relation

q
df = (Z B Vi | x—ailvi_z (x "ai))dx
i=1

entraine B, = {a;|v; = 1}.Sidf = O pour x = xo, onax ¢ { a; |vi =1},
E, = {x,},don, daprés (I 1), inf /= inf ({ /(@) | vi=1} u {f (%) });
considérant la restriction de f a la ligne droite joignant x, a un point a; tel
que v; = 1, on constate que f (xo) < f(a;), d’ouinf f = f(x,). Si df (x) # O,
vxé¢{a;|vi=1},onakE = etinff=inff(E,) = inf {f(a) [ v, =1}

Si df = 0 pour x = x, et si x;, ¢ flo", il existera un (n — 1) — plan H
tel que xo € H, H N T = @ . Soit e le vecteur unitaire normal & H définissant

le demi-espace défini par H contenant T. Alors la dérivée de fen x, dans
la direction de e,

af < -
P = Z tvi | Xo—a; "7 (xg—a))e,

i=1

Q
sera négative non nulle, ce qui est impossible; donc x, € T.

COROLLAIRE. Lorsque inf { f (a;) | v; =1} se réalise en deux points
de Ey={a;|v;=1}, alors df =0 admet une solution x,. Lorsque
inf { f(a;) | v, =1} se réalise en un seul point a,, alors la solution x, de
df = 0 existe si, et seulement si, dans une boule de centre a, et de rayon
arbitrairement petit, il existe un point x tel que f (x) < f (a,).

Quand la solution x, existe, on peut la déterminer, par rapport a des
coordonnées rectangulaires (x', ..., x"), en limitant ses opérations dans le

domaine 7. Posant

fe = , (s =1,2,...,n),

on voit que I’équation f; = 0 admet une solution x* = ¢! (x?, ..., ¥
unique et telle que (o' (X% .., x", x% .., x)¢ {a;|v,=1}; Iéqua-
tion f, (@' (x*, ..., x"), x%, .., x") = 0 admet aussi une solution unique
x? = @*(x°, ..., x") et il en est de méme de f; (¢, @2, x3, ..., x") =0, etc...
L’équation f, (¢, ¢, ..., "7, x") = 0 fournit finalement la coordonnée x”
et, remplacant successivement dans ¢" ', ..., ¢ @', on obtient aussi les

autres coordonnées x5, ..., x5, x5 de x,.
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Suivant les données concrétes du probléme, la recherche de x, peut étre
simplifiée, notamment si v, = v, = ... = v, = 1, cas dans lequel df = 0
s’écrit
X —a;

Zuivi=0 01‘1 'Ui= —
1 , |x — a;|

Lorsque, par exemple, n = 2,q = 3, v; = v, = v; = 1, la condition

1 !

ne peut €tre vraie que si p, + g, > Us, [ 1y — U | < ps; donc quand ces
relations ne sont pas remplies, on a inf f = inf { f(ay), f(a,), f(as) }. Si
elles sont remplies, on considére les angles A,, A,, A, d’un triangle 4, A, A,

—_— ——y _—
tel que | A, As|=py, | A3 4, | = po, | Ay, Ay | = p3; alors, si les angles
n— A,,n — A4,, n — A, sont supérieurs respectivement aux angles ¥ (a, a, a5),
*(aza,a), ¥ (a;a;5a,), le point x, existe et, compte tenu des <« (a,x,as)
=n—A,, ¥ (a3 x0a,)=n—A,, ¥ (a, x,a,)=n— A, se détermine facilement;
en cas contraire, on a encore inf f = inf { f(a,), f (a,), f (a3) }.

III. SUR LES RELATIONS METRIQUES DANS UN SIMPLEXE

Etant donné un simplexe euclidien A; A4, ... 4,,,, on désigne par )7; le

—_— ) — —
vecteur 4; A,, ce qui entraine |x;; | = |x;;|=x; = x;, ( #j; i,j=
=1,2,..,n+ 1), et par w le volume du parallélépipede construit sur les

—_ — —_ —> —_—
VECteUrS X1, Xia, «oes Xiiv1> Xiit+1s o> Xin+1, 155Us de A;. Ce volume, qui ne

dépend pas du sommet choisi, permet d’associer a chaque sommet A4; un
angle ¢; défini par les conditions suivantes:

, W
a) sing; = 1; = ;
Xig Xig oo Xii—1 Xiir1 oo Xipt o

T
b) 0 < ¢; < 5 lorsque parmi les angles que font les vecteurs

— — —_— — —
Xit> Xi2s oos Xii=1s Xii+1> o> Xin+1, PUis deux a deux, il y en

a au moins un inférieur a

>

yis
3 < ¢; < m en cas contraire.

o a
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