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L'ensemble f(U)\jL(F) étant fermé, il contient la valeur sup /; donc on
ne modifie pas le sup (/(£/) u L (F)) en retranchant de cet ensemble toute
valeur inférieure à sup /. Il en est ainsi en particulier des valeurs /(x)
pour xeE,x$E1, puisquef (x) — supf x g E => x e El9 et aussi des valeurs
inférieures à sup L (F), d'où le résultat.

Les formules (I. 1) permettent souvent le calcul des sup f inff sans

aucune hypothèse concernant les dérivées secondes. Leur extension au cas

où U est un ouvert d'une variété C1 est immédiate, mais, pour éviter les

complications,/doit alors être supposée différentiable en tout point de E;
on peut d'ailleurs les compléter d'une façon évidente lorsque / présente des

discontinuités dans E0.

II. Détermination du minimum de certaines fonctions convexes

Dans l'espace Rn, muni de la distance euclidienne, on se donne q points

au a2, aq tels que Rn soit le plus petit espace linéaire qui les contient.
Nous allons considérer des fonctions de la forme

/ O) E/1; lvi
i 1

où jui9 vt sont des nombres réels tels que Hi > 0, vt ^ 1, (/ 1, 2, q).

Dans le cas trivial où n *= 1, v± v2 vq 1, on a

inf/= inf {f(at),f(a2), ...,f(aq) },
parce que le graphe de / est alors une ligne brisée convexe de sommets

(tfp/(#;))> 0' L 2, q); si cette ligne possède un côté parallèle à

l'axe des x, la fonction / n'est pas strictement convexe.

Proposition. Le cas trivial ci-dessus étant écarté, f est toujours strictement

convexe et l'équation df 0 admet une ou n'admet aucune solution.

Si df — 0 pour x x0, le point x0 appartient à l'intérieur T de l'enveloppe

convexe T des a1? a2, aq et fournit le minimum. Si l'équation df 0

n 'a pas de solution, on aura inf f inf { f (af) | vt 1 }, ce qui montre en

particulier que la solution x0 existe quand vt > 1 pour i 1, 2, q.

Démonstration. La fonction | x |y, où v ^ 1, étant convexe, il en est de

même des | x — at \vi et de leur somme/(x). La fonction | x \v, où v > 1,

étant strictement convexe, il s'ensuit la même propriété pour / lorsqu'il
existe un indice tel que vt > 1. Lorsque vx v2 vq l, alors

n ^ 2; donc, Vx e Rn, Vx' e Rn, on aura | ocx + (1 — a) x' — a{ |
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I a (x — at) + (1 — a) (V — a;) | < a | x | + (1 — a) | — |,

(0 < a < 1), pour un indice au moins, d'où le résultat dans ce cas aussi.

Comme / est strictement convexe, 0 admet au plus une solution.

La relation

dfE /9 vi\x~a;lvi~2(* -a')) dx
i= 1

entraîneEq { | v( 1 }. Sic/ Opourx x0, onax0<£ {a,-1 vt 1},

Ei { x0}, d'où, d'après (I. 1), inf/= inf ({/(ß;) | v; 1 } {/(*<,)});
considérant la restriction de/à la ligne droite joignant x0 à un point at tel

que Vj 1, on constate que/ (x0) < /(u;)> d'où inf/ / (x0). Si df (x) ^ 0,

Vx^ {at| vt 1 }, ona£j 0 etinf/= inf/CEo) inf | v; 1 }.
Si df0 pour x x0 et si x0 £ T, il existera un (n — 1) — plan H

tel que x0 e H, H n T —0. Soit ele vecteur unitaire normal à //définissant
o

le demi-espace défini par H contenant T. Alors la dérivée de / en x0 dans

la direction de e,

df q

T I ftVjIxo-a, lvi 2(x0-fli)e,
de i=1

sera négative non nulle, ce qui est impossible; donc x0 e T.

Corollaire. Lorsque inf { f (af) | 1 } se réalise en deux points
de E0 { a^ | vr= 1 }, alors df 0 admet une solution x0. Lorsque
inf { f (af) | vf 1 } se réalise en un seul point ak, alors la solution x0 de

df 0 existe si, et seulement si, dans une boule de centre afc et de rayon
arbitrairement petit, il existe un point x tel que f (x) < f (ak).

Quand la solution x0 existe, on peut la déterminer, par rapport à des

coordonnées rectangulaires (x1, x"), en limitant ses opérations dans le

domaine T. Posant

df
(*

on voit que l'équation f± 0 admet une solution x1 cp1 (x2, x71)

unique et telle que (cp1 (x2, x"), x2, x") $ { at \ vt 1 } ; l'équation

f2 (cp1 (x2, xn), x2, x") 0 admet aussi une solution unique
x2 cp2 (x3, x") et il en est de même de /3 (<p19 <p2, x3,..., x") 0, etc...
L'équation fn (cp\ (p2, cpn~\ xn) 0 fournit finalement la coordonnée x"
et, remplaçant successivement dans <p"_1, cp2, cp1, on obtient aussi les

autres coordonnées x""1, Xq, xj de x0.
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Suivant les données concrètes du problème, la recherche de x0 peut être

simplifiée, notamment si vt v2 ~ vq «= 1, cas dans lequel df 0

s'écrit

x — a{
Ltovi 0 où vi ~ r-
î I * ~ a, |

Lorsque, par exemple, n 2, q 3, Vj^ v2 « v3 =« 1, la condition

3

o
1 '

ne peut être vraie que si ^ + fi2 > pi3,\ — fi2\ < fi3; donc quand ces

relations ne sont pas remplies, on a inf/ inf {f(a1),f(a2),f(a3) }. Si

elles sont remplies, on considère les angles Âu Â2, Â3 d'un triangle At A2 A3

tel que \A2A3\ jau \A3A1\ ji2, | Au A2 \= n3l alors, si les angles

n — Âl9 n — Â2, 7i—Â3 sont supérieurs respectivement aux angles <£. (a2 ax a3),

> (1a3 a2 ax), £ (at a3 a2), le point x0 existe et, compte tenu des £ (a2x0 a3)

=7z — Â1, <£(a3x0a1)=7i — Ä2, ^(^Xq a2)= 71 — Â3, se détermine facilement;
en cas contraire, on a encore inf/ inf {/(fli),/(a2),f (a3) }.

III. Sur les relations métriques dans un simplexe

Etant donné un simplexe euclidien A1 A2 An+1, on désigne par xtj le

vecteur At Ap ce qui entraîne | xu | | | xtj xjb (/ ^ j\ Uj
— 1, 2, « + 1), et par œ le volume du parallélépipède construit sur les

vecteurs xn, xi2, xu-l9 xM+1, xit„+1, issus de Ab Ce volume, qui ne

dépend pas du sommet choisi, permet d'associer à chaque sommet At un
angle défini par les conditions suivantes:

œ
à) sin</>; 1

xn xi7 • • • Xi t _ 1 x,/+1 ...xi,i— 1 Ai,i+1 ••• xi,n+ 1

71

b) 0 <</);<- lorsque parmi les angles que font les vecteurs

x;i, xi2, X; xM+1, xUn+1, pris deux à deux, il y en

n n
a au moins un inférieur à -;-<<»,< en cas contraire.
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