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INTRODUCTION AUX POLYNOMES D'UN NŒUD

Par Georges de Rham

1. Considérons un nœud, c'est-à-dire une courbe fermée simple C

dans l'espace R3, dont la projection C dans le plan R2 n'a pas d'autres

points singuliers que n points doubles à tangentes distinctes. Supposons

que C et R3 sont orientés. Pour fixer les idées, admettons que C coïncide

avec sa projection C' sauf au voisinage des points doubles où l'un des arcs

passe dessous. Les points de C situés sous les points doubles partagent C

en n arcs Cu C2, C„. Chaque point double est l'extrémité de la projection

C\ d'un arc C{ et l'origine de C'i + i (C'n+1 devant être remplacé par Cj),
et il est traversé par un autre arc C'j{iy Convenons de poser s (z) 1 si en

allant de C- à C'i + 1 on traverse Cm de gauche à droite et s (i) — 1 dans

le cas contraire.
Le groupe fondamental de R3-C, qu'on appelle le groupe du nœud,

peut être engendré par n éléments al9 a2ian, qui satisfont aux n relations

En choisissant pour définir le groupe un point base B situé au-dessus du

plan R2, at désigne la classe d'homotopie d'un chemin qui, partant de B,

traverse R2 à gauche de Ci? passe au-dessous de Ch et retraverse R2 à droite
de Ct pour revenir en R, sans avoir passé dessous aucun autre arc Ck. A
chaque point double correspond une relation (1), dans laquelle chaque
membre est la classe d'homotopie d'un chemin qui, partant de B, traverse
R2 à gauche des arcs de C' passant par ce point double, passe sous les arcs

correspondant de C et retraverse R2 à droite pour ensuite revenir en B.

Par exemple, pour le nœud de trèfle représenté sur la figure, on a

e(l) e (2) s(3) 1, j( 1) 3, j (2) 1, j (3) 2 et aux points

si e(i) 1

si e (0 — 1
(i 1, 2, n)

doubles correspondent les relations

a2 — a1a3 a3 a2 — a2 a1 a1 a3 — a3 a2

On démontre que ces éléments au a2, an engendrent le groupe G du
nœud, que toutes les relations qu'ils vérifient sont une conséquence des
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relations (1) et que l'une quelconque de ces relations est une conséquence
des n — 1 autres (voir par exemple [1]). Partant de là, nous allons définir
certains invariants aisément calculables qui se déduisent du groupe G:
les polynômes d'Alexander ou polynômes du nœud.

2. Nous y serons conduits en cherchant les représentations de G dans
le groupe des transformations linéaires d'une variable complexe (ou
groupe des similitudes du plan). Etant donnés deux nombres complexes x
et y, x # 0, désignons par (x, y) la transformation qui change z en

z — xz + y. On a les relations

{x~\ -x'1 y), (Xi,yi)+ y2).

Le groupe dérivé ££' ou groupe des commutateurs de S£ est le groupe des

translations (19 y), le groupe quotient S£\S£' est isomorphe au groupe
multiplicatif C* des nombres complexes ^ 0, l'homomorphisme canonique

de 3? sur C* envoyant (x, y) sur x.
Soit h : G-+ un homomorphisme, h(at) (xi9 yt). Les relations (1)

entraînent immédiatement xt- xi+19 de sorte qu'on peut poser
h (at) — (x, yt) et ces relations donnent

où naturellement, pour i n9 yn + 1 doit être remplacé par yv
Ce système d'équations linéaires en yl9 y2, yn représente la condition

nécessaire et suffisante pour que h soit un homomorphisme.
Quel que soit x, il admet la solution yt c, constante quelconque

indépendante de i, et pour x 1 il n'y en a pas d'autres. Nous pouvons
éliminer cette solution en imposant yn 0, ce qui revient à exiger que

2

r

(* -1) y,(i) -xyt+i + yi o si s(i) 1

(x-l)ym-xyt +j^i+1=0 si e(i)=-l
(; i1, 2,n)
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l'origine z — 0 soit le point fixe de la transformation h (an); si x ^ 1, la

représentation est toujours conjuguée dans à une représentation ayant
cette propriété (on peut prendre le point fixe de h (on) comme origine
Nous pouvons aussi supprimer la dernière équation (2), relative à i n,
qui est une conséquence des autres, puisque la dernière relation (1) est une
conséquence des autres. Il reste alors un système de (n — 1) équations
linéaires homogènes en yl9y2, yn-i> dont les coefficients dépendent de

x et forment une matrice M.
Si p est un nombre complexe ^0, les représentations h pour lesquelles

h (an) p sont représentées par les vecteurs (yu y2,yn-ù de C"-1 qui
satisfont à ce système où x est remplacé par p. Elles forment un sous-espace
vectoriel de Cn_1, de dimension n — l—r(p), r (p) étant le rang de la
matrice M pour x p.

Cela nous amène à considérer le plus grand commun diviseur Ak (x)
des mineurs d'ordre n — k delà matrice M. Ce sont justement les polynômes
d'Alexander, ou polynômes du nœud. Et nous avons obtenu la proposition
suivante :

Les représentations h de G dans S£ pour lesquelles h (a„) — (p, 0)
forment un espace vectoriel complexe de dimension égale au plus grand entier k
tel que Ak(p) 0.

Chacun de ces polynômes est divisible par le suivant. Le premier, le
plus intéressant, n'est autre que le déterminant de la matrice M. Notre
système d'équation se réduisant pour x 1 à

± 0^-^+1) 1 0 1,2, ± 0

on voit que At (1) ±1. Par suite, Ak(l) ±1 pour tout n - 1.

Nous conviendrons de poser, pour k > n, par définition, Ak (x) 1.

La proposition ci-dessus montre que les racines de ces polynômes sont
des invariants du nœud, liés à son groupe G.

D'après la théorie des matrices sur un anneau principal, la matrice M
est équivalente, sur l'anneau Q (x) des polynômes en v à coefficients rationnels,

à une matrice diagonale, dans laquelle chacun des éléments oq,
a2,..., oc„ de la diagonale principale divise le suivant (voir par exemple
N. Bourbaki, Algèbre, chap. VII, pp. 94-95). On peut obtenir que chaque
a; soit un polynôme en x à coefficients entiers premiers entre eux
dans leur ensemble; ils sont alors déterminés au signe près, et l'on a

^ k ±ai a2 ••• an-k- Si oc„_s est de degré >0 et oq 1 pour i < n — s,
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en posant

ßt «n-t *n-t-î0 1, 2,s)
on a

^n— s ~ ßs ^m-s+1 ßs-1 ßs » •••? a/i-l ~ ßl ßl ßs

et par suite, au signe près,

^1 ßißl-ßl, A2 ß2ßl...ßaa-1...A, ßa

et Ak I pour k >s. Les d*. sont ainsi déterminés par les polynômes /?s.

Pour s'assurer que non seulement les racines des Ak sont des invariants
du nœud, mais aussi ces polynômes eux-mêmes, il faudrait caractériser
l'ordre de multiplicité de ces racines. Si les racines de ßx ß2 ßs

sont toutes simples, les relations ci-dessus font connaître ces ordres de

multiplicité, et la connaissance des Ak n'apporte rien de plus que celle de
leurs racines. Cette circonstance se présente dans les exemples traités dans
le livre de Richard H. Crowell et Ralph H. Fox ([1], pp. 124-132).

Mais nous allons reprendre la question d'un point de vue algébrique
plus général et montrer que non seulement les polynômes Ak, mais les

idéaux Jk de l'anneau Z [x] engendrés par les mineurs d'ordre n — k de la
matrice M sont des invariants liés au groupe G.

3. Considérons plus généralement un groupe G tel que G/G' soit

cyclique infini, comme pour le groupe d'un nœud, et supposons que l'on
ait choisi un générateur x de G/Gf (l'autre générateur étant x"1). Soit G"
le groupe dérivé de G' et F G/G". Son groupe dérivé F' G'/G" est

abélien et comme F/F' ~ G/G', nous identifierons r/T' avec G/Gr, de sorte

que x sera aussi bien un générateur de r/r'. Chaque élément y de F induit
un automorphisme de F", qui change c g F' en cy ycy_1. Cet automor-
phisme ne dépend que de la classe de y (mod F'), c'est-à-dire de l'image
de y dans F/F', qui est une puissance xk de x; cela parce que F' est abélien.

En utilisant pour F' la notation additive, nous désignerons cy par xk c.

Ainsi G/G' F/F' opère sur F' et F' se présente comme un module sur
l'anneau A =» Z [F/F']. Cet anneau est formé des polynômes en x et x-1
à coefficients entiers.

Revenons un instant aux représentations h de G dans S£. Comme S£'

est abélien, F£" est le groupe trivial (réduit à l'élément neutre) et par suite

le noyau de tout homomorphisme de G dans S£ contient G" et les

représentations de G dans JS? se ramènent ainsi aux représentations de F. Elles

ne peuvent donc nous renseigner que sur la structure de F. Les racines
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des polynômes Ak sont donc des invariants de F. Mais en étudiant directement

le ^-module F', nous allons voir que non seulement les racines,

mais ces polynômes eux-mêmes sont des invariants de F.

Supposons maintenant que G soit défini par un nombre fini de générateurs

au a2,an et un nombre fini de relations. Nous pouvons aussi

supposer que l'image de an dans GjG' est précisément le générateur x, car

on pourra toujours satisfaire à cette condition en ajoutant un générateur

et une relation. Soit xni l'image de at dans G/G'; alors b( =® atanni est

dans G', et bu b2,..., bn„u an est un nouveau système de générateurs de G.

Les bt et tous leurs transformés par toutes les puissances de an engendrent G'

et les relations de définition de G peuvent s'écrire avec ces éléments seulement.

En remplaçant ces éléments par leurs images dans F', désignant par
ct l'image de bt et, passant à la notation additive, par xk c{ celle de akn bt a~k,

on déduit de ces relations un système de la forme:

(3) I PijCj° (i l,2,...)
j i

où les pij sont des éléments de l'anneau A Z [F/F'] Z [x, x-1]. Les ct
forment une base du v4-module F' et les relations (3) le définissent complètement.

En multipliant chaque relation (3) par une puissance convenable de x,
on peut obtenir que les ptj soient des polynômes en x, ceux d'une même

ligne de la matrice ne s'annulant pas tous pour x 0. En remplaçant Cj

par xmi Cj et choisissant convenablement mj9 on pourra obtenir aussi que
ceux d'une même colonne ne s'annulent pas tous pour x 0.

Dans le cas où G est le groupe d'un nœud défini comme plus haut, cette
matrice P ||ptj || n'est pas autre chose que la matrice M, comme on le
vérifie facilement. Soit m— 1 l'ordre maximum des mineurs de P non
identiquement nuls, Jk l'idéal engendré par les mineurs d'ordre m — k et Ak (x)
leur plus grand commun diviseur. Dans le cas de la matrice M, on a

m n et Ak (x) est bien le fc-ième polynôme d'Alexander. Or nous allons
voir que, dans le cas général, les polynômes Ak (x) et aussi les idéaux Jk
sont des invariants du ^-module F'.

4. Considérons plus généralement un anneau commutatif quelconque A
avec élément unité et un -module de type fini M. Nous allons définir une
suite d'idéaux de A associée à Jt9 appelée la chaîne des idéaux élémentaires
de J4 1).

Comme me signale D. Amiguet, cette question fait l'objet d'un exercice de Bourbaki (Algèbre
commutative, chap. 7, p. 106) qui nomme ces idéaux dèterminaritiels.
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Soit S= (ai9 a2,an) un système de générateurs de«^, % un ^(-module
libre de rang n de base [ul9 ul9un]9 h l'homomorphisme de ^ sur M tel

que h (ui) a{ (i 1, 2,..., n) et V le noyau de h, en sorte que M <%/V.

Les composantes des éléments v de Vrelativement à la base [ul9 u2,un],
c'est-à-dire les coefficients xt des ut dans l'expression v Y xi
engendrent un idéal qui ne dépend pas du choix de la base de (JU9 car il
est engendré par les valeurs sur les éléments de V des formes linéaires

sur % ; désignons-le par a (<%9 V).
La puissance extérieure p-ième de °U est un ^4-module libre ÔUV de rang

(p), ayant pour base les (p) produits extérieurs uix a ui2 a a uip( 1 < i1 < i2

< < ip< n). Les produits extérieurs de p éléments de V engendrent un
sous-module Vp de °Up et leurs composantes engendrent l'idéal a {0lp9 Vp).

Il est clair que a (°Up9 Vp) => a {^p+l9 Vp+1)9 car si v e V et w e Vp9 les

composantes de v a w sont des combinaisons linéaires de celles de w.

Ces idéaux étant déterminés à partir du système S, posons ap (S)
— a (%p9 Vp) pour 1 < p < n, et de plus ap (S) (1) sip < 0 et ap (S) (0)
si p > n.

Considérons maintenant le système de générateurs S' (al9 a2, an9
n

an+1) obtenu en adjoignant à S l'élément an+1 Y ytai Où e Â) mon-
i

trons que l'on a ap+1 (S') ap {S).
Soit <%' le ^4-module libre de rang n+1, ayant pour base [ul9 un9 un+1]9

en sorte que °U c <%t\ L'homomorphisme h s'étend, en posant
h (w„+i) an+l9 en un homomorphisme de °ll surJt. En remplaçant un+1 par

n

U un + 1 — Yyi ui> °n a une autre t>ase [UU Utv U\ h (u) 0,
1

d'où résulte que le noyau V' de l'homomorphisme h de °U' est engendré

par u et V.

Soit encoie %p la puissance extérieure p-ième de et Vp le sous-module
de typ engendré par les produits extérieurs de p éléments de V. Tout
élément £ de %P + 1 peut se mettre d'une manière unique sous la forme

£ a a u + ß où ae°Up et ß e %p+1

Les composantes de £ sont donc les composantes de a et celles de ß. Et
chaque couple a e°Up9 ßetftp+1 définit un Çe%'p + 1. Pour que ÇeVp + l9

il faut et il suffit que a g Vp et ß e Vp+1. Par suite, l'idéal a (Wp + l9 Vp + 1)

engendré par les composantes des £ e Vp + 1 est identique à l'idéal a (%p9 Vp)

engendré par les composantes des oceVp (les composantes des ßeVp+1
appartenant aussi à cet idéal puisque a (%p+i Lp+1) a a (°llp9 Vp)).
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Nous avons ainsi prouvé que ap+1 (S') ap (S). Cela vaut aussi pour

p — 0, car u e V' ayant une composante égale à l, ax (*S") (1) a0 (S).

Soit alors S un autre système quelconque de générateurs, en nombre m.

La proposition établie entraîne ap+m (S u S) ap (S) et ap+n (S u S)

ap (S), d'où ap (S) ap+m„n (S). Nous voyons qu'en changeant le

système de générateurs, on obtient la même suite d'idéaux qui est simplement
décalée si les nombres de générateurs ne sont pas égaux.

Soit q l'indice du premier idéal ap (S) égal à (0), de sorte que aq (S) (0)

et ciq-i (S) 7^ 0. Posons, pour k > 1, Jk aq^k(S). La suite croissante

d'idéaux de A

Ji J2 ^ ••• ^ Jk ^ Jk+i ^ ••• (1)

qui se termine par (1) pour un k S n ne dépend que du ^4-module Jt :

c'est la chaîne des idéaux élémentaires de Ji.
Pour déterminer ces idéaux, on prend un ensemble de générateurs Vj

(j 1, 2, m) de F, on les représente à l'aide de la base [uu un] de °U,

vu

vJ E yjk uk
k= 1

et l'on considère la matrice des coefficients j| yjk ||. Il résulte alors des règles
de la multiplication extérieure que ap (%, V) est engendré par les mineurs
d'ordre p de cette matrice.

5. Il résulte de là que les idéaux Jk définis à la fin du n° 4 sont précisément

les idéaux élémentaires du A-module T' G'jG", A étant l'anneau
Z [G/G'] Z [x, x-1]. Ainsi, à tout groupe G tel que G/G' est cyclique
infini, est associée une chaîne d'idéaux élémentaires de cet anneau A.

Les unités de A sont les monômes ±xk et tout élément ^0 de A est
associé à un polynôme en x qui ne s'annule pas pour x 0, bien déterminé
au signe près. On sait que ces polynômes se décomposent d'une manière
unique en facteurs irréductibles, déterminés au signe près; les polynômes
irréductibles de degré zéro étant les nombres premiers. Par suite, tout
ensemble d'éléments de A, en particulier tout idéal, a un plus grand commun
diviseur. Ainsi, à la chaîne des idéaux élémentaires Jk est associée une suite
de polynômes Ak9 Ak étant le p.g.c.d. des éléments de Jk.

Dans le cas du groupe G d'un nœud, Jx est l'idéal principal engendré

par le déterminant Ax de la matrice M définie au n° 2, et les Ak sont les

polynômes d'Alexander dont l'invariance est ainsi complètement établie.
Mais nous avons aussi prouvé que l'idéal Jk engendré par les mineurs
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d'ordre n — k de M sont des invariants. Et cela est important: il existe en
effet des nœuds dont les groupes ont les mêmes polynômes Ak mais pas
les mêmes idéaux Jk. Voir un exemple dans [1], pp. 128-130.

Il faut remarquer que la chaîne des idéaux élémentaires associée à un

groupe G n'est bien déterminée que si l'on a choisi un générateur x de G/G'.
En remplaçant x par l'autre générateur x*"1, ces idéaux sont changés en
leurs conjugués par l'automorphisme x->x_1 de A, et chaque polynôme Ak

est changé en le polynôme réciproque. Dans le cas du groupe d'un nœud,

nous avons lié un générateur x à des orientations de C et de R3. Mais il
faut ici mentionner un théorème profond de Seifert: les idéaux assoèiés au

groupe d'un nœud sont invariants par la conjugaison x-»x~ *, les polynômes
Ak sont réciproques [2]. Une démonstration particulièrement remarquable
de ce théorème est celle de Milnor [3] (voir aussi [4]). Seifert a donné[2]
un exemple d'un nœud dont le groupe G est tel que G' G", pour lequel T'
est donc trivial, sans que G' le soit. La considération du ,/4-module V ne

permet pas de distinguer un tel groupe du groupe cyclique infini. Seifert

a alors recours à des représentations dans le groupe des déplacements du

plan non-euclidien.
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