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INTRODUCTION AUX POLYNOMES D’UN NEUD

Par Georges DE RHAM

1. Considérons un nceud, c’est-a-dire une courbe fermée simple C
dans 'espace R?, dont la projection C’ dans le plan R* n’a pas d’autres
points singuliers que n points doubles & tangentes distinctes. Supposons
que C et R® sont orientés. Pour fixer les idées, admettons que C coincide
avec sa projection C’ sauf au voisinage des points doubles ol I'un des arcs
passe dessous. Les points de C situés sous les points doubles partagent C
en n arcs Cy, Cs, ..., C,. Chaque point double est I'extrémité de la projec-
tion C; d’un arc C; et Iorigine de C;., (C,,; devant étre remplacé par C,),
et il est traversé par un autre arc C; ;. Convenons de poser ¢ (i) = 1 si en
allant de C; & C;,, on traverse C;;, de gauche a droite et ¢ (i) = —1 dans
le cas contraire.

Le groupe fondamental de R®*—C, qu’on appelle le groupe du nceud,
peut étre engendré par n éléments a,, a,, ..., 4,, qui satisfont aux » relations

(1) { a,_'aj(i) == aj(i)ai-i-l Sl 8(1) = 1 (Z = 1,2, ...,n)-

Aiy1 Ay = iy Ay si e(i) = —1

En choisissant pour définir le groupe un point base B situé au-dessus du
plan R? g, désigne la classe d’homotopie d’un chemin qui, partant de B,
traverse R? a gauche de C,, passe au-dessous de C,, et retraverse R? a droite
de C; pour revenir en B, sans avoir passé dessous aucun autre arc C,. A
chaque point double correspond une relation (1), dans laquelle chaque
membre est la classe d’homotopie d’un chemin qui, partant de B, traverse
R? & gauche des arcs de C’ passant par ce point double, passe sous les arcs
correspondant de C et retraverse R* 4 droite pour ensuite revenir en B.
Par exemple, pour le neeud de trefle représenté sur la figure, on a

e()=e@)=¢e@) =1, j(1)=3, j2) =1, j(38) =2 et aux points
doubles correspondent les relations

aza1=ala3, a3a2=a2a1, a1a3=a3a2.

On démontre que ces éléments a4, a,, ..., a, engendrent le groupe G du
neeud, que toutes les relations qu’ils vérifient sont une conséquence des
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relations (1) et que 'une quelconque de ces relations est une conséquence
des n—1 autres (voir par exemple [1]). Partant de 13, nous allons définir
certains invariants aisément calculables qui se déduisent du groupe G:
les polynémes d’Alexander ou polyndmes du nceud.

D

C,

2. Nous y serons conduits en cherchant les représentations de G dans
le groupe % des transformations linéaires d’une variable complexe (ou
groupe des similitudes du plan). Etant donnés deux nombres complexes x
et y, x # 0, désignons par (x,y) la transformation qui change z en
z' = xz + y. On a les relations '

(xay)—l = (x—la —x_ly)a (x19y1)°(x25y2) = (xl x2>x1 V2 + yl)

Le groupe dérivé £’ ou groupe des commutateurs de % est le groupe des
translations (1, y), le groupe quotient /%’ est isomorphe au groupe
multiplicatif C* des nombres complexes % 0, ’homomorphisme cano-
nique de Z sur C* envoyant (x, y) sur x.

Soit h: G—% un homomorphisme, £ (a;) = (x;, ¥;). Les relations (1)
entrainent immédiatement x; = Xx;,;, de sorte qu’on peut poser
h(a;) = (x, y;) et ces relations donnent

2) x—=Dyjoy —Xyiz1 +yi =0 si ¢(i) =1
‘ x=Dyjmy =%y +y+1 =0 i e = —1
i=1,2,...,n)

ou naturellement, pour i = n, y,,,; doit €tre remplacé par y,.

Ce systéme d’équations linéaires en y,, y,, ..., y, représente la condition
nécessaire et suffisante pour que 4 soit un homomorphisme.

Quel que soit x, il admet la solution y; = ¢, constante quelconque
indépendante de i, et pour x = 1 il n’y en a pas d’autres. Nous pouvons
éliminer cette solution en imposant y, = 0, ce qui revient a exiger que
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Porigine z = 0 soit le point fixe de la transformation % (a,); si x # 1, la
représentation est toujours conjuguée dans ¥ a une représentation ayant
cette propriété (on peut prendre le point fixe de % (a,) comme origine !).
Nous pouvons aussi supprimer la derniére équation (2), relative a i = n,
qui est une conséquence des autres, puisque la derniére relation (1) est une
conséquence des autres. Il reste alors un systéme de (n—1) équations
linéaires homogénes en y,, y,, ..., ¥,—1, dont les coefficients dépendent de
x et forment une matrice M.

Si p est un nombre complexe #0, les représentations # pour lesquelles
h(a,) = p sont représentées par les vecteurs (¥, Vs, ..., Yo—y) de C*~1 qui
satisfont a ce systéme ol x est remplacé par p. Elles forment un sous-espace
vectoriel de C"~', de dimension n—1—r(p), r (p) étant le rang de la
matrice M pour x = p.

Cela nous améne a considérer le plus grand commun diviseur 4, (x)
des mineurs d’ordre n—k dela matrice M. Ce sont justement les polyndmes
d’Alexander, ou polyndémes du nceud. Et nous avons obtenu la proposition
suivante:

Les représentations h de G dans & pour lesquelles h (a,) = (p, 0)
forment un espace vectoriel complexe de dimension égale au plus grand entier k
tel que A, (p) = 0.

Chacun de ces polyndmes est divisible par le suivant. Le premier, le
plus intéressant, n’est autre que le déterminant de la matrice M. Notre
systtme d’équation se réduisant pour x = 1 &

i(yi—‘yi-kl) =1 (l = 192:--'an_2)a i‘yn~1 =0

on voit que 4, (1) = +1. Par suite, 4, (1) = +1 pour tout k < n—1.
Nous conviendrons de poser, pour k = n, par définition, 4, (x) = 1.

La proposition ci-dessus montre que les racines de ces polyndmes sont
des invariants du nceud, liés & son groupe G.

D’apres la théorie des matrices sur un anneau principal, la matrice M
est équivalente, sur 'anneau Q (x) des polyndmes en x & coefficients ration-
nels, & une matrice diagonale, dans laquelle chacun des éléments oy,
%, ..., &, de la diagonale principale divise le suivant (voir par exemple
N. BOURBAKI, Algébre, chap. VII, pp. 94-95). On peut obtenir que chaque
a; soit un polyndme en x A coefficients entiers premiers entre eux
dans leur ensemble; ils sont alors déterminés au signe prés, et 'on a

4 = Foq oy .. o,y Sioa,_ est de degré >0 et a; =1 pour i < n—ys,




en posant

on a
Upos = Pss  Uyosir = Bso1Bss> sty = B1 By ... By
et par suite, au signe prés,
Ay = BiBoBss Az = BaB5. B4y = By

et 4, = 1 pour k >s. Les 4, sont ainsi déterminés.par les polyndmes f..

Pour s’assurer que non seulement les racines des 4, sont des invariants
du nceud, mais aussi ces polyndmes eux-mémes, il faudrait caractériser
Pordre de multiplicité de ces racines. Si les racines de a,_; = B; B, ... B;
sont toutes simples, les relations ci-dessus font connaitre ces ordres de
multiplicité, et la connaissance des 4, n’apporte rien de plus que celle de
leurs racines. Cette circonstance se présente dans les exemples traités dans
le livre de Richard H. CRoweLL et Ralph H. Fox ([1], pp. 124-132).

Mais nous allons reprendre la question d’un point de vue algébrique
plus général et montrer que non seulement les polyndmes 4,, mais les
idéaux J, de 'anneau Z [x] engendrés par les mineurs d’ordre n—k de la
matrice M sont des invariants liés au groupe G.

3. Considérons plus généralement un groupe G tel que G/G’ soit
cyclique infini, comme pour le groupe d’un nceud, et supposons que 1’on
ait choisi un générateur x de G/G’ (’autre générateur étant x~ ). Soit G”*
le groupe dérivé de G’ et I' = G/G". Son groupe dérivé I'" = G'/G" est
abélien et comme I'/I’ ~ G/G’, nous identifierons I'/T"" avec G/G’, de sorte
que x sera aussi bien un générateur de I'/T’. Chaque élément y de I" induit
un automorphisme de I, qui change ceI” en ¢’ = ycy~'. Cet automor-
phisme ne dépend que de la classe de y (mod I'), c’est-a-dire de I'image
de y dans I'/T”, qui est une puissance x* de x; cela parce que I" est abélien.
En utilisant pour I'" la notation additive, nous désignerons ¢’ par x* c.
Ainsi G/G' = I'/I"" opére sur I'' et I'' se présente comme un module sur
'anneau A = Z [I'/I"]. Cet anneau est formé des polyndmes en x et x~!
a coefficients entiers.

Revenons un instant aux représentations 2 de G dans . Comme &’
est abélien, £’ est le groupe trivial (réduit a I’élément neutre) et par suite
le noyau de tout homomorphisme de G dans & contient G’ et les repré-
sentations de G dans % se raménent ainsi aux représentations de I'. Elles
ne peuvent donc nous renseigner que sur la structure de I'. Les racines
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des polyndmes 4, sont donc des invariants de I'. Mais en étudiant directe-
ment le 4-module I, nous allons voir que non seulement les racines,
mais ces polyndmes eux-mémes sont des invariants de I'.

Supposons maintenant que G soit défini par un nombre fini de génera-
teurs aj, ds, ..., @, et un nombre fini de relations. Nous pouvons aussi
supposer que I'image de a, dans G/G’ est précisément le générateur x, car
on pourra toujours satisfaire a cette condition en ajoutant un générateur
et une relation. Soit x" I'image de a; dans G/G’; alors b; = a;a,™ est
dans G, et by, b,, ..., b,_;, a, est un nouveau systéeme de générateurs de G.
Les b, et tous leurs transformés par toutes les puissances de a, engendrent G
et les relations de définition de G peuvent s’écrire avec ces éléments seule-
ment. En remplagant ces éléments par leurs images dans I'', désignant par
¢; image de b, et, passant & la notation additive, par x* ¢; celle de d b; a’*,
on déduit de ces relations un systéme de la forme:

n—1
(3) Y pyc; =0 (i=1,2,.)
j=1

ol les p;; sont des éléments de 'anneau 4 = Z [['/T"] = Z [x, x~11. Les ¢
forment une base du A-module I'’ et les relations (3) le définissent complé-
tement.

En multipliant chaque relation (3) par une puissance convenable de x,
on peut obtenir que les p;; soient des polyndmes en x, ceux d’une méme
ligne de la matrice ne s’annulant pas tous pour x = 0. En remplagant c;
par x™ ¢; et choisissant convenablement m;, on pourra obtenir aussi que
ceux d’'une méme colonne ne s’annulent pas tous pour x = O.

Dans le cas ot G est le groupe d’un nceeud défini comme plus haut, cette
matrice P = || p;; || n’est pas autre chose que la matrice M, comme on le
vérifie facilement. Soit m—1 I’ordre maximum des mineurs de P non iden-
tiquement nuls, J, I'idéal engendré par les mineurs d’ordre m—k et 4, (x)
leur plus grand commun diviseur. Dans le cas de la matrice M, on a
m = n et 4, (x) est bien le k-iéme polyndme d’Alexander. Or nous allons
voir que, dans le cas général, les polyndmes 4, (x) et aussi les idéaux J,
sont des invariants du A-module I".

4. Considérons plus généralement un anneau commutatif quelconque 4
avec élément unité et un 4-module de type fini .#. Nous allons définir une

suite d’idéaux de A associée a ., appelée la chaine des idéaux élémentaires
de M)

1) Comme me signale D. Amiguet, cette question fait I'objet d’un exercice de Bourbaki (4lgébre com-
mutative, chap. 7, p. 106) qui nomme ces idéaux déterminantiels. ‘
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Soit S = (ay, a,, ..., a,) un systéme de générateurs de .#, % un A-module
libre de rang n de base [y, u,, ..., 4,], # ’homomorphisme de % sur ./ tel
que 2 (yw;)) = a; (i=1,2,..,n) et Vle noyau de A, en sorte que .# =~ %U[V.

Les composantes des éléments v de V relativement & la base [u,, u,, ..., #,],
c’est-a-dire les coefficients x; des u; dans lexpression v = ) x;u,
engendrent un idéal qui ne dépend pas du choix de la base de %, car il
est engendré par les valeurs sur les éléments de V des formes linéaires
sur % ; désignons-le par a (%, V).

La puissance extérieure p-icme de % est un A-module libre %, de rang
(’;,), ayant pour base les (Z) produits extérieurs u;; A Uy A ... A U, 1= il' <,
< ... < I, < n). Les produits extérieurs de p éléments de V" engendrent un
sous-module V, de %, et leurs composantes engendrent I'idéal a (%, V).
Il est clair que a (%,, V,) = a (U, 11, V,11), car si ve Vet wel, les
composantes de v A w sont des combinaisons linéaires de celles de w.

Ces idéaux étant déterminés a partir du systéme S, posons a, (S)
=a(W, Vy,)pourl < p < n,etdeplusa,(S)=(1)sip <O0eta,(S)=(0)
si p > n.

Considérons maintenant le systéme de générateurs S’ = (aq, a,, ..., a,,

a,,,) obtenu en adjoignant a S 1’élément a,,, = Y y;a;(y; € 4) et mon-
1 .

trons que I'on a a,.; (8") = a, (3).

Soit %’ le A-module libre de rang n-}1, ayant pour base [uy, ..., U,, U,+1];
en sorte que % < %'. L’homomorphisme #/ s’étend, en posant
h(u,.,) = a,., en un homomorphisme de % sur .#. En remplagant u,, , par

n

U=, — Y y;U, on aune autre base [uy, ..., u,, u] de %' et h (u) = 0,
1

d’ou résulte que le noyau V' de 'homomorphisme 4 de %’ est engendré
par u et V.

Soit encote %, la puissance extérieure p-iéme de %’ et VI; Ie sous-module
de %, engendré par les produits extérieurs de p éléments de V. Tout élé-
ment & de %,,, peut se mettre d’'une maniére unique sous la forme

E=aAnu+f ou ae¥U, et PeU,y .

Les composantes de & sont donc les composantes de « et celles de . Et
chaque couple € %,, f€%,,, définit un ée%l',ﬂ. Pour que € VI',H,
il faut et il suffit que ae ¥V, et BeV,,,. Par suite, 'idéal a (%, 41, Vpr1)
engendré par les composantes des & € V,,; est identique & I'idéal a (%, V)
engendré par les composantes des a €V, (les composantes des feV,
appartenant aussi a cet idéal puisque a (%,+1, V,+1) € a (%, V})) .
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Nous avons ainsi prouvé que a,.q (S") = a, (S). Cela vaut aussi pour
p = 0, car ue V' ayant une composante égale a 1, a; (8") = (1) = a, (5).

Soit alors S un autre systéme quelconque de générateurs, en nombre .
La proposition établie entraine a,., (S U S) = a,(S) et a,.,(S U S)
= a, (S), Aol a, (S) = @, 4+m-n (5). Nous voyons qu’en changeant le sys-
téme de générateurs, on obtient la méme suite d’idéaux qui est simplement
décalée si les nombres de générateurs ne sont pas €gaux.

Soit ¢ I'indice du premier idéal a,, (S) égal a (0), de sorte que &, (S) = (0)
et a,_, (S) # 0. Posons, pour k = 1, J, = a,_,(S). La suite croissante
d’idéaux de 4

Jicl,c..cJ,ctiyy ... (1)

qui se termine par (1) pour un k < n ne dépend que du 4-module ./
c’est la chaine des idéaux élémentaires de M.

Pour déterminer ces idéaux, on prend un ensemble de générateurs v;
(j=1,2,...,m)de V, on les représente a I’aide de la base [uy, ..., u,] de %,

u
v; = Z Vijr Uy
k=1

et ’on considére la matrice des coefficients || y; [|- I résulte alors des régles
de la multiplication extérieure que a, (%, V') est engendré par les mineurs
d’ordre p de cette matrice.

5. 1l résulte de 1a que les idéaux J, définis a la fin du n° 4 sont précisé-
ment les idéaux élémentaires du 4-module I = G'/G"’, A étant P’anneau
Z[G/G'l = Z [x,x™']. Ainsi, a tout groupe G tel que G/G’ est cyclique
infini, est associée une chaine d’idéaux élémentaires de cet anneau A.

Les unités de 4 sont les mondmes +x* et tout élément #0 de A4 est
associé & un polyndme en x qui ne s’annule pas pour x = 0, bien déterminé
au signe pres. On sait que ces polyndmes se décomposent d’une maniére
unique en facteurs irréductibles, déterminés au signe prés; les polyndmes
irréductibles de degré zéro étant les nombres premiers. Par suite, tout
ensemble d’éléments de A4, en particulier tout idéal, a un plus grand commun
diviseur. Ainsi, & la chaine des idéaux élémentaires J, est associée une suite
de polynémes 4,, 4, étant le p.g.c.d. des éléments de J,.

Dans le cas du groupe G d’un nceud, J; est 1'idéal principal engendré
par le déterminant 4; de la matrice M définie au n° 2, et les 4, sont les
polyndmes d’Alexander dont l'invariance est ainsi complétement établie.
Mais nous avons aussi prouvé que I'idéal J, engendré par les mineurs
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d’ordre n—k de M sont des invariants. Et cela est important: il existe en
effet des nceuds dont les groupes ont les mémes polyndmes 4, mais pas
les mémes idéaux J,. Voir un exemple dans [1], pp. 128-130.

Il faut remarquer que la chaine des idéaux élémentaires associée & un
groupe G n’est bien déterminée que si ’on a choisi un générateur x de G/G’.
En remplagant x par 'autre générateur x~ ', ces idéaux sont changés en
leurs conjugués par I'automorphisme x—x~* de 4, et chaque polyndme 4,
est changé en le polyndme réciproque. Dans le cas du groupe d’un nceud,
nous avons lié un générateur x a des orientations de C et de R>. Mais il
faut ici mentionner un théoréme profond de Seifert: les idéaux assoc¢iés au
groupe d’un neeud sont invariants par la conjugaison x—x~ ", les polyndmes
4, sont réciproques [2]. Une démonstration particuliérement remarquable
de ce théoréme est celle de Milnor [3] (voir aussi [4]). Seifert a donné[2]
un exemple d’un nceud dont le groupe G est tel que G' = G'/, pour lequel I'
est donc trivial, sans que G’ le soit. La considération du 4-module I'" ne
permet pas de distinguer un tel groupe du groupe cyclique infini. Seifert
a alors recours a des représentations dans le groupe des déplacements du
plan non-euclidien.
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