

|                     |                                                                                             |
|---------------------|---------------------------------------------------------------------------------------------|
| <b>Zeitschrift:</b> | L'Enseignement Mathématique                                                                 |
| <b>Herausgeber:</b> | Commission Internationale de l'Enseignement Mathématique                                    |
| <b>Band:</b>        | 13 (1967)                                                                                   |
| <b>Heft:</b>        | 1: L'ENSEIGNEMENT MATHÉMATIQUE                                                              |
| <br><b>Artikel:</b> | <br>NATURAL SETTING FOR THE EXTENSIONS OF A GROUP WITH TRIVIAL CENTRE BY AN ARBITRARY GROUP |
| <b>Autor:</b>       | Rose, John S.                                                                               |
| <b>DOI:</b>         | <a href="https://doi.org/10.5169/seals-41540">https://doi.org/10.5169/seals-41540</a>       |

#### **Nutzungsbedingungen**

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

#### **Terms of use**

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

**Download PDF:** 23.02.2026

**ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>**

A NATURAL SETTING FOR THE EXTENSIONS  
OF A GROUP WITH TRIVIAL CENTRE  
BY AN ARBITRARY GROUP

by John S. ROSE

Let  $A$  and  $H$  be groups. The intention of the present note is to point out that if  $A$  has trivial centre, then any extension of  $A$  by  $H$  is equivalent (in the sense of extension theory) to one determined in a natural way by a suitable subgroup of  $\text{Aut } A \times H$ . This fact is already implicit in an early paper of R. BAER [1]<sup>1</sup>, but the aim here is to provide a more explicit formulation; and to deduce that the non-equivalent extensions of a group  $A$  with trivial centre by an arbitrary group  $H$  stand in one-to-one correspondence with the distinct homomorphisms of  $H$  into the group  $\text{Aut } A/\text{Inn } A$  of automorphism classes of  $A$ . This latter result is obtained in the treatment of KUROSH [5, p. 148] as a corollary of some cohomological theorems of S. EILENBERG and S. MACLANE [3]. The proof offered here is an entirely elementary application of the fact that it is possible to work within  $\text{Aut } A \times H$ .

The notation and terminology used are largely standard. For an arbitrary group  $A$ ,  $\text{Aut } A$  denotes the group of all automorphisms of  $A$  and  $\text{Inn } A$  the group of all inner automorphisms of  $A$ . We shall denote by  $\mathfrak{U}(A)$  the group  $\text{Aut } A/\text{Inn } A$  of automorphism classes of  $A$ . If  $B$  is a subgroup of  $A$ ,  $C_A(B)$  denotes the centralizer of  $B$  in  $A$ . Then  $C_A(A) = Z(A)$ , the centre of  $A$ . For an arbitrary element  $a$  of  $A$ , the inner automorphism of  $A$  induced by  $a$  is denoted by  $\tau_a$ ; this notation is relative to the group  $A$ , which is here presumed to be fixed. The groups  $A/Z(A)$  and  $\text{Inn } A$  may be identified in the natural way by identifying, for each  $a$  in  $A$ , the elements  $aZ(A)$  and  $\tau_a$ : this identification will be made. An automorphism  $\alpha$  of  $A$  is called a central automorphism if, for every  $a$  in  $A$ ,  $(a\alpha)a^{-1} \in Z(A)$ . It is easy to show that the set of all central automorphisms of  $A$  forms a subgroup of  $\text{Aut } A$  which is in fact precisely  $C_{\text{Aut } A}(\text{Inn } A)$ : see ZASSENHAUS [6, p. 52].

<sup>1)</sup> See also H. FITTING [4, § 21].

Let  $A$  and  $H$  be arbitrary groups. An *extension* of  $A$  by  $H$  is a pair  $(G, \varphi)$  consisting of a group  $G$ , containing  $A$  as a normal subgroup, and a homomorphism  $\varphi$  of  $G$  onto  $H$  such that  $\text{Ker } \varphi = A$ . (Reference to the particular homomorphism  $\varphi$  involved in an extension is often omitted, for instance in KUROSH [5, Chapter XII], but  $\varphi$  is tacitly assumed to be specified in the development of the theory.) Two extensions  $(G, \varphi)$  and  $(G^*, \varphi^*)$  of  $A$  by  $H$  are said to be *equivalent* if there is an isomorphism  $\Theta$  of  $G$  onto  $G^*$  mapping  $A$  identically onto itself and such that  $\Theta\varphi^* = \varphi$ .

Suppose that  $(G, \varphi)$  is an extension of  $A$  by  $H$ , and that  $B$  is a characteristic subgroup of  $A$ . Then  $B$  is a normal subgroup of  $G$ , and  $(G, \varphi)$  induces naturally an extension  $(G/B, \bar{\varphi})$  of  $A/B$  by  $H$ :  $\bar{\varphi}$  is defined by

$$(gB)\bar{\varphi} = g\varphi, \quad \text{for any } g \text{ in } G;$$

this is well defined since  $B \leq A = \text{Ker } \varphi$ . We shall be concerned with the special case in which  $B = Z(A)$ .

Let  $\bar{A} = A/Z(A)$ . It is possible, for arbitrary groups  $A$  and  $H$ , to construct extensions of  $\bar{A}$  by  $H$  rather transparently by means of suitable subgroups of  $\text{Aut } A \times H$  (the external direct product).  $\text{Aut } A$  is identified with a subgroup of this direct product in the obvious way by identification of  $\alpha$  with  $(\alpha, 1)$ , for each  $\alpha$  in  $\text{Aut } A$ . Then  $\bar{A}$ , which is identified with  $\text{Inn } A$ , is also identified with a subgroup of  $\text{Aut } A \times H$ . Let  $\pi$  denote the projection homomorphism of  $\text{Aut } A \times H$  onto  $H$ :

$$(\alpha, h)\pi = h, \quad \text{for any } \alpha \text{ in } \text{Aut } A \text{ and } h \text{ in } H.$$

Then any subgroup  $Q$  of  $\text{Aut } A \times H$  such that  $Q \cap \text{Aut } A = \bar{A}$  and  $Q\pi = H$  determines an extension  $(Q, \pi_0)$  of  $\bar{A}$  by  $H$ , where  $\pi_0$  is simply the restriction of  $\pi$  to  $Q$ : for  $\pi_0$  is a homomorphism of  $Q$  onto  $H$ , since  $Q\pi = H$ , and  $\text{Ker } \pi_0 = Q \cap \text{Ker } \pi = Q \cap \text{Aut } A = \bar{A}$ . For convenience, we introduce a term for such an extension: we shall call it a *sited extension* of  $\bar{A}$  by  $H$ .

We shall prove the

**THEOREM.** *Let  $A$  and  $H$  be arbitrary groups. Suppose that  $(G, \varphi)$  is an extension of  $A$  by  $H$ , and let  $(\bar{G}, \bar{\varphi})$  be the induced extension of  $\bar{A}$  by  $H$ , where  $\bar{G} = G/Z(A)$ ,  $\bar{A} = A/Z(A)$ . Then  $(\bar{G}, \bar{\varphi})$  is equivalent to a sited extension of  $\bar{A}$  by  $H$ . Moreover, if the only central automorphisms of  $A$  are*

inner automorphism, then sited extensions of  $\bar{A}$  by  $H$  corresponding to distinct subgroups of  $\text{Aut } A \times H$  are non-equivalent.

*Proof.* For any element  $g$  of  $G$ , let  $\sigma_g$  denote the restriction to  $A$  of the inner automorphism of  $G$  induced by  $g$ . (Thus  $\sigma_a = \tau_a$ , for each  $a$  in  $A$ .) We define a map  $\psi: G \rightarrow \text{Aut } A \times H$  by

$$g\psi = (\sigma_g, g\varphi), \quad \text{for every } g \text{ in } G.$$

Clearly  $\psi$  is a homomorphism, and

$$\begin{aligned} \text{Ker } \psi &= \{ g \in G \mid g^{-1}ag = a \text{ for all } a \text{ in } A \} \cap \text{Ker } \varphi \\ &= C_G(A) \cap A \\ &= Z(A). \end{aligned}$$

Then  $\psi$  induces naturally an isomorphism  $\bar{\psi}$  of  $\bar{G}$  onto a subgroup  $Q$  of  $\text{Aut } A \times H$ ; and

$$\begin{aligned} Q \cap \text{Aut } A &= \{ (\sigma_g, g\varphi) \mid g \in G, g\varphi = 1 \} \\ &= \{ (\sigma_g, 1) \mid g \in \text{Ker } \varphi \} \\ &= \bar{A}, \\ Q\pi &= \{ g\varphi \mid g \in G \} \\ &= \text{Im } \varphi \\ &= H. \end{aligned}$$

Hence  $Q$  determines a sited extension  $(Q, \pi_0)$  of  $\bar{A}$  by  $H$ , where  $\pi_0$  is the restriction of  $\pi$  to  $Q$ .

We show that  $(\bar{G}, \bar{\varphi})$  is equivalent to  $(Q, \pi_0)$ . For this purpose we can use  $\bar{\psi}$ , which is an isomorphism of  $\bar{G}$  onto  $Q$ . For any element  $g$  of  $G$ , let  $\bar{g} = g Z(A)$ . Then

$$\bar{g}(\bar{\psi}\pi_0) = (g\psi)\pi_0 = (\sigma_g, g\varphi)\pi = g\varphi = \bar{g}\bar{\varphi},$$

so that

$$\bar{\psi}\pi_0 = \bar{\varphi}.$$

Also, for any  $a$  in  $A$ ,

$$\bar{a}\bar{\psi} = a\psi = (\sigma_a, a\varphi) = (\tau_a, 1) = \bar{a},$$

by identification, so that  $\bar{\psi}$  maps  $\bar{A}$  identically onto itself. This establishes the equivalence of  $(\bar{G}, \bar{\varphi})$  and  $(Q, \pi_0)$ .

Now assume that the only central automorphisms of  $A$  are inner, that is that  $C_{\text{Aut } A}(\bar{A}) \leq \bar{A}$ . Suppose that  $Q, Q^*$  are subgroups of  $\text{Aut } A \times H$  such that  $Q \cap \text{Aut } A = \bar{A} = Q^* \cap \text{Aut } A$  and  $Q\pi = H = Q^*\pi$ , so that  $Q, Q^*$  determine sited extensions  $(Q, \pi_0), (Q^*, \pi_0^*)$  of  $\bar{A}$  by  $H$ . Suppose that these extensions are equivalent. Then there is an isomorphism  $\Theta$  of  $Q$  onto  $Q^*$  mapping  $\bar{A}$  identically onto itself and such that  $\Theta\pi_0^* = \pi_0$ .

For each  $h$  in  $H$ , we choose  $\alpha_h$  in  $\text{Aut } A$  such that  $(\alpha_h, h) \in Q$ : this is possible since  $Q\pi = H$ . (In general  $h$  does not determine a unique such element  $\alpha_h$ , but we make a choice of one element for each  $h$ .) Let

$$(\alpha_h, h)\Theta = (\alpha_h^*, h^*), \quad \text{with } \alpha_h^* \text{ in } \text{Aut } A \text{ and } h^* \text{ in } H.$$

Since  $\bar{A}$  is a normal subgroup of  $\text{Aut } A$ ,

$$\alpha_h^{-1}\bar{a} \alpha_h \in \bar{A} \quad \text{for any } \bar{a} \text{ in } \bar{A},$$

and therefore

$$(\alpha_h^{-1}\bar{a} \alpha_h)\Theta = \alpha_h^{-1}\bar{a} \alpha_h. \quad (1)$$

Now (by identification)

$$\alpha_h^{-1}\bar{a} \alpha_h = (\alpha_h, h)^{-1}\bar{a}(\alpha_h, h). \quad (2)$$

Since  $(\alpha_h, h)$  and  $\bar{a}$  both belong to  $Q$ , (1) and (2) give

$$\begin{aligned} \alpha_h^{-1}\bar{a} \alpha_h &= ((\alpha_h, h)\Theta)^{-1}(\bar{a}\Theta)((\alpha_h, h)\Theta) \\ &= (\alpha_h^*, h^*)^{-1}\bar{a}(\alpha_h^*, h^*), \end{aligned}$$

that is

$$\alpha_h^{-1}\bar{a} \alpha_h = (\alpha_h^*)^{-1}\bar{a} \alpha_h^*. \quad (3)$$

Hence  $\alpha_h^* \alpha_h^{-1} \in C_{\text{Aut } A}(\bar{A}) \leq \bar{A}$ , by hypothesis. Thus for each  $h$  in  $H$ , there is an element  $\eta_h$  in  $\bar{A}$  such that

$$\alpha_h^* = \eta_h \alpha_h. \quad (4)$$

Also

$$h^* = (\alpha_h, h)\Theta\pi_0^* = (\alpha_h, h)\pi_0 = h,$$

so that

$$(\alpha_h, h)\Theta = (\alpha_h^*, h),$$

that is

$$(\alpha_h, h)\Theta = \eta_h(\alpha_h, h). \quad (5)$$

Now we consider an arbitrary element of  $Q$ , say  $(\alpha, h)$  with  $\alpha$  in  $\text{Aut } A$  and  $h$  in  $H$ . Since also  $(\alpha_h, h) \in Q$  and  $Q \cap \text{Aut } A = \bar{A}$ , there is an element  $\bar{a}$  in  $\bar{A}$  such that

$$(\alpha, h) = \bar{a}(\alpha_h, h).$$

Then

$$\begin{aligned} (\alpha, h)\Theta &= (\bar{a}\Theta)((\alpha_h, h)\Theta) \\ &= \bar{a}\eta_h(\alpha_h, h), \quad \text{by (5).} \end{aligned}$$

Since  $\bar{A} \leq Q$ , this shows that  $(\alpha, h)\Theta \in Q$ . Hence  $Q^* = Q\Theta \leq Q$ . Similarly  $Q \leq Q^*$ . Therefore  $Q = Q^*$ . This complete the proof.

We observe now that the distinct subgroups of  $\text{Aut } A \times H$  determining sited extensions of  $\bar{A}$  by  $H$  stand in one-to-one correspondence with the distinct homomorphisms of  $H$  into  $\mathfrak{A}(A)$ . To see this, suppose first that  $Q$  is a subgroup of  $\text{Aut } A \times H$  determining a sited extension of  $\bar{A}$  by  $H$ , that is such that  $Q \cap \text{Aut } A = \bar{A}$  and  $Q\pi = H$ . Then  $Q$  determines a homomorphism  $\lambda_Q: H \rightarrow \mathfrak{A}(A)$  as follows:

$$\text{for any } h \text{ in } H, h\lambda_Q = \alpha\bar{A} \text{ if and only if } (\alpha, h) \in Q,$$

where  $\alpha \in \text{Aut } A$ .

Since  $Q \cap \text{Aut } A = \bar{A}$ ,  $\lambda_Q$  is well defined by this rule, and is defined on the whole of  $H$  since  $Q\pi = H$ . Conversely, suppose that  $\lambda$  is a homomorphism of  $H$  into  $\mathfrak{A}(A)$ . Then  $\lambda$  determines a subgroup  $Q$  of  $\text{Aut } A \times H$ , defined as

$$Q = \{ (\alpha, h) \mid \alpha \in \text{Aut } A, h \in H \text{ and } h\lambda = \alpha\bar{A} \},$$

and it is clear that then  $Q \cap \text{Aut } A = \bar{A}$  and  $Q\pi = H$ , so that  $Q$  determines a sited extension of  $\bar{A}$  by  $H$ . Furthermore,  $\lambda_Q = \lambda$ . Finally, distinct homomorphisms of  $H$  into  $\mathfrak{A}(A)$  evidently determine distinct subgroups of  $\text{Aut } A \times H$ , and so the correspondence between homomorphisms and subgroups is one-to-one.

If  $A$  is a group with trivial centre, then  $A$  is naturally identified with  $\bar{A}$  and the Theorem shows that any extension of  $A$  by  $H$  is equivalent to a sited extension of  $A$  by  $H$ . Moreover, the only central automorphism of  $A$  is the identity automorphism, so that we obtain

**COROLLARY 1.** *Let  $A$  be a group with trivial centre and  $H$  an arbitrary group. Then every extension of  $A$  by  $H$  is equivalent to a sited extension*

of  $A$  by  $H$ . The non-equivalent extensions of  $A$  by  $H$  stand in one-to-one correspondence with the distinct homomorphisms of  $H$  into  $\mathfrak{A}(A)$ .

If the only homomorphism of  $H$  into  $\mathfrak{A}(A)$  is the trivial homomorphism, then the only sited extension of  $\bar{A}$  by  $H$  is  $(\bar{A} \times H, \pi)$ , where  $\pi$  denotes the projection map of  $\bar{A} \times H$  onto  $H$ . Thus in particular we have

**COROLLARY 2.** *Let  $A$  be a group with trivial centre and  $H$  a group. Then (up to equivalence) the only extension of  $A$  by  $H$  is  $(A \times H, \pi)$ , where  $\pi$  denotes the projection map of  $A \times H$  onto  $H$ , in any of the following cases :*

- (i)  $\mathfrak{A}(A)$  is trivial.
- (ii)  $\mathfrak{A}(A)$  is soluble and  $H$  is perfect.
- (iii)  $\mathfrak{A}(A)$  is a  $\varpi$ -group and  $H$  is a  $\varpi'$  group, where  $\varpi$  is a set of prime numbers and  $\varpi'$  the set of all prime numbers not belonging to  $\varpi$ .
- (iv)  $H$  is simple and cannot be embedded in  $\mathfrak{A}(A)$ .

Here (i) is the well known case of a *complete* group  $A$ .

According to a celebrated conjecture of O. SCHREIER,  $\mathfrak{A}(E)$  ought to be soluble for any finite non-abelian simple group  $E$ . SCHREIER's Conjecture is valid for every known finite non-abelian simple group. Thus (ii) applies if  $A$  is any known finite non-abelian simple group.

Another result can be derived from (ii) and a Lemma due to H. FITTING [4, Satz 12], which may be expressed as follows.

**LEMMA.** *Let  $E$  be a finite non-abelian simple group. Then, if  $n$  is a positive integer and  $D$  is the direct product of  $n$  copies of  $E$ ,  $\text{Aut } D$  is isomorphic to the wreath product of  $\text{Aut } E$  by the symmetric group of degree  $n$ , formed according to the natural representation.*

A group is called *completely reducible* if it can be decomposed as a direct product of a finite number of simple groups (KUROSH [5, p. 203]). An easy inductive proof, using (ii) and the Lemma, establishes

**COROLLARY 3.** *Let  $G$  be a non-trivial finite group. Associated with  $G$  there is a set of non-isomorphic simple groups  $E_1, \dots, E_k$  and a set of positive integers  $n_1, \dots, n_k$  such that every composition series of  $G$  has precisely  $n_i$  composition factors isomorphic to  $E_i$  ( $i = 1, \dots, k$ ) and no others. If every  $E_i$  is non-abelian and satisfies SCHREIER's Conjecture, and if every  $n_i < 5$ , then  $G$  is completely reducible.*

This is a particular case of a recent result of R. BERCOV [2].

BIBLIOGRAPHY

- [1] BAER, R., Erweiterung von Gruppen und ihren Isomorphismen. *Math. Zeitschr.*, 38 (1934), 375-416.
- [2] BERCOV, R., On groups which are characterized by their composition factors. *University of Alberta Research Papers*, Series A, Vol. 3, No. 4 (1967).
- [3] EILENBERG, S. and S. MACLANE, Cohomology theory in abstract groups, II. *Annals of Math.*, 48 (1947), 326-341.
- [4] FITTING, H., Beiträge zur Theorie der Gruppen endlicher Ordnung. *Jahresber. Deutsch. Math. Ver.*, 48 (1938), 77-141.
- [5] KUROSH, A. G., *The Theory of Groups*, Vol. II. Chelsea 1956, New York.
- [6] ZASSENHAUS, H. J., *The Theory of Groups*, 2nd Ed. Chelsea 1958, New York.

University  
of Newcastle upon Tyne,  
England.

(Received August 18, 1967.)

**Vide-leer-emptiness**