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(b) [la(s)|s*ds < oo,
(¢c) 0<g( <K forallv;
then the derivative of any solution of (1.1) has a limit.

Proof. Proceeding as in the above proof, we obtain instead of (3.2) the
following estimate:

lu (0|
t

< (lu (o) | + |u'<t0>|)+Is“KM|a<s)|h('”§S)')ds

from which we conclude from a result of Bihari [14] that

|u(?) |

t

SH ' (H(ulo) | + [u'(t)]) + KMtjla(s)ls“ds)

which is bounded for 7 on account of assumption (a). The remaining proof
follows verbatim that of Theorem 3.
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Theorem 5. Suppose that assumptions 4, A,, A; and A, hold and in
addition that |

() a(@t)>0, d@t)=0, for t=T,

.. d/(b b P
(i1) —(—)§/3(t)<1+;), with  [B(s)ds < o0

dt\a
b
<1+~>gs>0;
a

then every solution of (1.1) with (a (¢) + b (¢)) replacing a (¢) is bounded.

and

Proof. Make the following substitution for the independent variable,

t
x = | Ja(s)ds which tends to infinity as ¢z — 0o, and obtain instead of
(1.1) its transformed equation:

d*u 1/ a \du b ,
-+ E(W)d_x + (1 + ;)f(u)g(u) = 0 (3.1)
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where “ dot ” denotes differentiation with respect to . Now write equation
in its system form, letting y, = u:

[ d y,
—d“;—J’z
< 1 b B
f22==__(;;9y2—<1+->f@ogc¢by». (3.2
| dx 2\a a

Define for (3.2) the following function:

sds
V(x,yl,y2)=< )jf(s)ds—*'jg / S)

and observe:

v B ta
x gJ()( )jf“) 2,327
Y ION

Ja®

Hence we have
V(x,¥1,¥2) £ V(x(T), y (x(T)), y, (X(T))eXpiﬁ(S)ds h

which is finite. From (ii) we note that ' — o0 as y;, » o0 and V' > 0 if
3 + y5> # 0. Thus, every solution of (1.1) is bounded.

Corollary. Suppose in addition to the hypothesis of Theorem 5 that
assumption A5 also holds and that lim a (¢) = a, < oo, then every solution '

t— o0

of (1.1) and its derivative are bounded.
From the above result we may conclude for example that all solutions
of the following equation:

u" (1) + (e * + ¢y Y ut (1) (1 + expu’ (1) sinu’ (£)) = 0

are bounded for all ¢;, ¢, >0, « > f =0, and 1 > 0.
We now consider the following inhomogeneous equation:

u" () +a@®f(wygWw') = h(t,u,u’) (3.3)

and assume that |u' h(t,u,u')| < y(t) g (') where [y (s)ds < oo.
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Theorem 6. Suppose that assumptions A,, 4,, A, and 4, hold and in
addition that a(t) > 0 and a' (f) 2 0 for ¢t = T; then all solutions of
(3.3) are bounded.

Proof. Integrate (3.3) in the following manner:

G(u' (1) — G(u'(to)) + a(OF (u(®) — a(to) F (u(ty))

_ [a'(5) F (u (9)ds + [ b )W (s)ds (3.4)
t, ty g(u)

Y d u [}
where G (v) = j—{(—%and F(u) = | f(s)ds. Taking absolute values and
/] g S (/]
noting that G (v) = 0 and F(u) = 0, we obtain
t
a()F(u()) S co +cy + [a’ (s)F(u(s))ds (3.5)
Yo

where ¢, = G (U (¢,)) + a(t)) Fu(t, O) and ¢; = | y(s)ds are non-
Io

negative constants. From (3.5) and A, it is now clear that every solution

of (3.3) are bounded (cf. [1]).

Corollary. 1In addition to the hypothesis of Theorem 6, suppose that
assumption 45 also holds and that lim a (¢) = k > 0; then all solutions of

t— o0
(3.3) and their derivatives are bounded.

We note that by setting A (¢, u, u’) = 0, the above result again reduces
to Theorem 1 and its corollary. Other comparison theorems may be for-
mulated in a similar way as Theorem 6 by extending the corresponding
result for the homogeneous equation. Since the procedure is clear, the
statements and proofs of these results will be omitted.
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