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L’ AXONOMETRIE ORTHOGONALE FOURNIT UNE ILLUSTRATION DES NOTIONS
ET PROPRIETES RELATIVES AU CAS D’UN NOYAU NON TRIVIAL.

Une libération devient possible. Prenons une application quelconque
a: R®> > R'? linéaire surjective et appelons-la encore axonométrie.

Installons une base e, e, e; dans R> et une base ¢,, &, dans R’?. L’axono-
métrie se traduit par

’
X A, 0,4
= Ay - . ,1 4 = [H11012 13)
X 2 dzq A5 433,
»
X = X2
X3

x restreint & un supplémentaire du noyau étant un isomorphisme sur R’Z,
ce supplémentaire est un plan et le noyau est une droite.
Considérant « comme une application affine:
a) I'image de toute droite paralléle au noyau est un point;
b) I'image de tout plan parallele au noyau est une droite;
c) I'image réciproque de tout point est une droite parallele au noyau;

d) I'image réciproque de toute droite est un plan parallele au noyau.

L’axonométrie définie ici généralise la notion de projection parallele,
orthogonale ou oblique (fig. 6).

Fig. 6
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5. La méthode du repére mobile.

L’exemple du n° 2 provoque une question: pourquoi axonométrie
(orthogonale)? C’est parce que dans la représentation

a) les axes apparaissent nettement;

b) la construction s’effectue a I'aide de mesures faites sur ces axes.
Cette remarque permet de considérer le couple
— repére orthogonal — 1mage
Oejeye; 0'e e es

comme instrument fondamental de 'axonométrie.

2 C:+ e;+e'3 a0
Fig.7
14 r - 3 2 & 4 N\
Dans le cas général a: R® — R*, la simple donnée du systeme
7 7 . . r _* b * > r . by
0" e," e,’ ey’ (arbitraire) caractérise I'application lin€aire (& supposer que
0 e, e, e; soit donné. La relation

/1] 61' + /'{262/ + 13 83, = 0
(A; non tous nuls) définit le noyau

X1 X2 X3

AL Ay As

dans R

La donnée arbitraire d’un tel systeme sans souci d’une quelconque
réalisation par projection paralléle, considérant je le répéte R> et R?
comme logiquement distincts, permet de réaliser rapidement des esquisses
simples et « parlantes », ces dessins dits « dans I’espace », ou apparaissent
décryptées les énigmes auxquelles se réduisent souvent les projections de
Monge pour les débutants.
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L’axonométrie cavaliére traditionnelle apparait ainsi (fig. 8):

OJr >
&
cl
1
Fig.8
0e /e, ey avec
I 0" e, e;” orthogonal
e, quelconque
I
&
e

Le systeme caractéristique d’une axonométrie orthogonale est posé en
prenant un repere orthonormal 0’ ¢, ¢, désigné par 1, i en notation com-
plexe. Ensuite on écrit 3 nombres complexes.

14 / /
€y,€,¢€3 avee

e + e +e3? =0
2 2 2
ey | + ey | + ey’ | =2

cf [6] p. 50-5i.
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La donnée d’une application linéaire «: R™ — R™ a l'aide du couple
constitué par un repere

Oe,e,...e, de R"™etpar un systtme homologue:
0e e, ..e,de R" '
livre dans le cas m = n, R™ = R"™ la description d’un déplacement affine.
C’est 1a méthode du repére mobile de E. Cartan qui apparait. Elle donne
quasi instantanément la théorie des translations, homothéties, affinités, etc.
dans le plan et dans I’espace [5]. |

La mathématique des applications linéaires surjectives a: R® — R’?

s’étend donc au cas général
o: R - R”

Si o est injective, on obtient le plongement d’un sous-espace « (R™) = R
(immersion).

Si o est surjective, on obtient les submersions o (R™) = R’™. Se restreignant
a m, n <3 on obtient le tableau suivant, qui donne un cadre naturel a
I’axonométrie

R/1 R/2 R/3
Isomorphismes et Droités dans R’? Droites dans R’
R? automorphismes représentation représentation
de R* paramétrique paramétrique
transformations
affines de R!
Formes linéaires Isomorphismes et Plans dans R"3
R? dans R? automorphismes représentation
équations R? paramétrique
de droites transformations
affines de R?
Formes linéaires Axonométries Isomorphismes
R*| dans R® , | automorphismes
de R’
équations transformations
de plans affines de R3

La suppression de la géométrie descriptive ainsi congue crée un trou.
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6. Le point de vue des espaces vectoriels topologiques.

La géométrie représentative permet maintenant de faire tomber sous
le sens la notion d’application linéaire bornée.
Considérons R? avec une base ¢, e, e, et posons

x|l = Max {(xil} s
=1,2, 3,
cette norme vérifie:
”‘“> [x+y]- x| +[y] vxyeR
[le'l =0 | ix | =141 |x] 4eR

Appelons boule de centre a de rayon p
B(a,p) = {x] H X—a H <p}

R® muni de d (x, ) = || x— || est un espace métrique. De méme R'? avec
une basc ¢, &, et || X || - Max {| x|}

[ =1,2

devient un espace métrique.

Toute application linéaire x: R> — R'? est uniformément continue.

Preuve: « étant donnée par

, X,
(-\1)_(011011013) .

)= X2
X2 Ay d22 053

X3
v =M rag| s 0 étant donné _
posons v = Max (14| };e > 0étant donné, prenons n = = .
f=1,2
j=1,2,3
Alors
Ix; | <nm=1x;| < lay |- Ix;|+1agl- x| +lax] [x5]
<(lay |+ lan| +lasl)n
<3vnp =c¢

De la résulte

(ve>0) (gn): ||x—x| <n=|ax-%| <e
|a(x) —a(x)| <&
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L’image par a de la boule unité B (0,1) est une figure bornée (hexagone).
Dans le cas de la norme euclidienne

||x[| = \/xf +x§ +x§
'image de la boule unité est un « disque » elliptique. On a

o] = Max | a()]
[ x| =1

C’est le demi-grand axe du contour apparent.

Qu’est-ce que représenter une partie non bornée de R3? C’est choisir
une partie compacte remarquable A; = A et en déduire & (A;) également
compacte.

7. Le point de vue des applications différentiables.

L’exemple-type contemplé une fois encore livre une notion qui agit en
plein ceur d’un vaste secteur de la mathématique vivante, en procédant
toujours de I'algébre linéaire. C’est la notion de variété et d’application
différentiable.

Par exemple (fig. 10) les hémispheres
x3 >0 et x, >0

sont paramétrés par

X X, et XiXj

avece

Fig.10 dans la partie commune.

La sphére ) en effet est un recouvrement de 6 hémisphéres déterminés
par les 3 plans de coordonnées. Chaque hémisphere est en homéomor-
phisme avec la projection orthogonale sur le plan de sa base, projection
qui est un disque ouvert.

Une présentation soignée de la géométrie descriptive requiert ainsi une
présentation correcte de la notion de surface (et de courbe).
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Bien plus. lorsque ¢ subit I'axonométric z, on restreint 2 a4 Y , d'oll une
application différentiable.

1]2 — R'"?
avec
oy X1 dyy Xy + a2 Xa+d - xE =y
(X,, X)) = - 11 =%} 1.2 %2 13N D T2 T
AR . ‘ dyy Xy + das Xy + day o | — X3 - X3
N B S O

(X7 +x3 < 1)

D unce fagon plus générale, s1

(o) = r(u, o) = Ny (u o) e

définit un morceau de surface quadrillé N, ona une application différentiable.

) e (\"\' (. ) ay,
W) e ru, ) = | o
\ N (L v)ds,

)

Supposons le svsteme

libre pour (u. v) dans le rectangle ouvert choisi: les vecteurs images r', et
r'. sont libres en général. Le plan tangent en M, o (OM, . r(uv)
est consenyé dans axonométrie:  est de rang 2en M. . Sir', r' sont ligs,
le plan tangent est détruit; son image est une droite: il est «vu par la

tranche »;

ici I'application est de rang 1 (fig. 11).
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Le contour apparent de ) est le lieu des points pour lesquels le rang de o [ Y
est égal a 1.

La géométrie descriptive fait ainsi apparaltre non seulement les notions
fondamentales de I’algébre linéaire et de la théorie des espaces normés,
mais encore celles de la théorie des variétés différentiables, bien vivante
aujourd’hui.

Le probléme fondamental de la géométrie descriptive : faire saisir la
nature d’une configuration spatiale, recoit dans le cas d’une surface ). la
solution suivante :

1) Lorsque Z n’est pas compacte, on prend une partie caractéristique com-
pacte (notée ici encore )).

2) On prend sur ). des parties remarquables 64, 6, ... exprimant la nature
de ) :
points singuliers, arétes, génératrices, directrices, courbes faciles a
définir ou & représenter, en particulier celles qui limitent éventuel-
lement ) .

3) On détermine le contour apparent y de Y par ses contacts avec 4, 0, ...
(méthode de la surface auxiliaire circonscrite).

/

Dans R’? on a ainsi une partie compacte ¢ structurée par 8y, ,, ... .
La frontiére p’ de ) a une image réciproque ¢ sur ¢ qui doit étre étudiée.
Souvent M e ¢ = M €.

T
1

- 8] T

N O
_T - ' T Fig.12

L’exemple du n® 2 est un trésor difficile a épuiser. Soit en effet, la sphére ¢

Jxl = cos | cos L L = longitude
cos [ sin L [ = latitude
[x3 = sin [

=
IN)
I
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Considérons les applications

o o
R? >R3> 5R’?
coslcos L . .
(L,]) > {coslsin L ayycoslcos L + ajpcoslsin L + ay;sinl
’ sin | a,,coslcos L + a,,coslsin L + a,5sinl

L’application w: R?> > o (R?) = ) est surjective: les 0™ (x), y x € ),
forment une partition de R% L’image réciproque d’un pdle contient des
paralléles au premier axe; I'image réciproque d’un autre point de ¢ est
constituée de points isolés. La partition de R? ainsi envisagée représente )
a un point de vue tout différent, beaucoup moins « visuel ».

Dans ce sens, on peut étudier des courbes de R* 2 I'aide de triptyques:

w o
R 1 R3 R 12
application axonométrie

différentiable

t— 7(t) - p (1)

ldr
Si FEZ—? # 0 V¢, on a une immersion de R' dans R?

&

Les immersions suivantes sont classiques:
| droite
t—1{0 3
. <R
0 e 2

Cos t

t — |sin ¢ cercle

e
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t
t— | t? cubique
t3
cos t B
t—{sin t hélice
At d
Pareillement:
0) o
RZ R3 R/Z
différentiable  axonométrie
U COSv
. -
(u,v) » |usinv | - p(u,v)
AV
\4

Fig.14

L’hélicoide droit résulte d’'une immersion injective de R? dans R>.
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Encore
RZ — R3 s R/Z

w,v) > | v | > pu,v)
uv '

Ce paraboloide hyperbolique résulte aussi d’une immersion injective.

8. La perspective et la théorie des espaces projectifs.

De méme que ’axonométrie peut €tre considérée comme source de
I’algebre linéaire, la perspective peut étre regardée comme génératrice des
notions projectives.

Dans R*—{0}, les droites issues de O forment une partition; par
passage au quotient, on obtient I'espace projectif P°. R*—{0} donne
de méme le plan projectif P2.

Toute application linéaire «: R* — R’? induit alors une application
projective de P> privé d’un point K — correspondant au noyau de o —
sur P’2.

a*: P® — {K} > P"?

Toute la théorie de la perspective peut €tre refaite dans cette optique,
ce qui donne des constructions pratiques, rapides et efficaces [4] [5].

9. Quel but vise-t-on?

Quel est le but de I’enseignement des mathématiques aux niveaux
délimités (secondaire et premier cycle universitaire)? J’ai proposé [3] de
regarder tout fait ou étre de raison mathématique sous deux aspects:

1) L’aspect algorithmique : maniement discursif rectiligne du signe gra-
phique — typographique — qui conduit a l’efficacité numérique ou
logique:

régles algébriques opératoires, analyse, logique formelle, analyse
numérique, recherche opérationnelle, ordinateurs...

2) L’aspect ontologique: saisie conceptuelle globale ou synthétique, et
maniement direct des &tres de raison mathématiques spatialisés ou
hyperspatialisés. La tendance se porterait ici plutdt vers Iesthétique,
vers la philosophie...

Ces deux aspects sont toujours présents, et complémentaires, I’accent
pouvant &tre mis sur 'un plutét que sur lautre. Supprimer 'un d’eux au
profit de I’autre, c’est mutiler le savoir.
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La géométrie descriptive telle qu’elle est précisée ici, consiste en la saisie,
la création, la représentation des configurations de [’espace sous leur aspect
ontologique, avec un minimum de moyens algorithmiques.

Oui, notre droite, notre plan et notre espace sont saturés de figures et
de mouvements d’une extréme beauté: c’est cela que nos €leves doivent
percevoir dans les heures de géométrie — sans oublier la précision algo-
rithmique et logique —.

Dans I’enseignement de la géométrie descriptive, faisons émerger les
belles configurations harmonieuses, celles qui sont régies par un groupe
ou qui satisfont un quelconque besoin d’ordre et de beauté, et présentons-les
avec respect, soin et précision. Demandons méme a nos €leves d’en créer.
Usons des possibilités techniques de projection de ce temps: rétroprojec-
teurs, anaglyphes, films.

Le monde des configurations peut étre étudié selon diverses perspectives.

1) En vue de l'usage pratique par l'ingénieur, le technicien, I’industriel,
I’architecte;

2) En vue de caractéres esthétiques propres, sans usage nécessairement
envisagé;

3) Au seul point de vue logique et mathématique, comme germe de théories
plus vastes.

Ou encore: tout étre mathématique

a) peut étre directement utile;

b) peut avoir une beauté logique interne;

c) peut étre racine d’une théorie plus puissante.

Le maitre ou professeur qui a conscience de ce dernier fait ne se croira
pas nécessairement obligé d’enseigner la dite théorie !

10. Les raisons de [’opposition faite parfois a la géométrie descriptive.

La géométrie de Monge est le type de la science congue surtout en vue
de I'utilité technique, sans aucun souci d’esthétique, et sans préoccupation
de portée théorique. C’est une technique froide, qui masque I’attrait éven-
tuel de toute configuration, et dont le but est uniquement de donner les
aspects les plus propres au découpage industriel: ¢ ’est [’outil insurpassable
du réalisateur : technicien ou contremaitre.

Il arrive parfois méme que la simplicité technique absorbe Iaspect
intuitif au point de compliquer la réalisation ! Le probléme posé aux éleves
se reduit souvent & un rébus dépourvu d’intérét visuel, apte 2 éloigner
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définitivement de la géométrie I’étudiant le mieux disposé. La géométrie de
Monge ne saurait constituer une initiation a [’espace.

La perspective traditionnelle a bien pour but la présentation esthétique
de figures de I’espace, mais on doit avouer que les techniques employées
n’ont aucune portée théorique. On peut comprendre un peu la réaction qui
s’est produite dans certains milieux, ot ’on a brusquement constaté que la
géométrie représentative (projections de Monge et perspective) s’était bel
et bien fossilisée en un chaos de techniques.

Cet exposé aura prouvé, je I’espére, la vigueur et I’actualité de la géo-
métrie représentative axée sur l'algebre linéaire. '

Comparons 15a) et 15b):

[ /S

11. Les grandes lignes d’un programme de géométrie de l’espace.

I. Etude intuitive et logique de la droite, du plan, de ’espace, des vec-
teurs, des figures simples, avec les notions suivantes: incidence, parallélisme,
perpendicularité, translation, rotation, symétries, homothétie.
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Le raisonnement logique serait accompagné d’esquisses propres et
précises, la main de 1’éléve devenant apte a exprimer le fait ontologique
pergu. Ces esquisses seraient exécutées sans aucune théorie représentative
autre que celle utilisée dans les croquis perspectifs.

II. Une deuxiéme étape consisterait a saisir I’espace & ’aide d’un repére
orthonormal Oe, e, e; et 3 Pexprimer sur un plan par un systéme O’e; e, es,
avec Y x;e; — » x;e;. La représentation correcte de polyédres, de cercles,
de coOnes, de cylindres, de sphéres devient possible. Quelques groupes de
similitudes seraient présentés: certains groupes finis de déplacements par
exemple. Ce serait une transition vers 'algébre linéaire, avec la simple
observation des axiomes des espaces vectoriels.

ITI. Dans une troisieme étape apparaitraient toutes les figures-types,
et tous les groupes importants de similitudes, présentés dans le cadre de
Palgebre linéaire des applications a: R™ — R* m, n < 3, avec toutes les
notions usuelles: produits scalaire, extérieur, vectoriel..., calcul matriciel, etc.
Le caractere esthétique et l'utilité physique de divers réseaux plans ou
spatiaux apparaitraient. L’axonométrie perspective issue de 1’algébre
linéaire aurait sa place.

Les parties I et II pourraient constituer un tronc commun pour la géo-
métrie dans 1’espace au niveau secondaire, au programme de la maturité
pour tous les types. Pour le type C, le programme II, plus étoffé, englobant
la connaissance de la méthode de Monge serait I’objet d’un examen spécial.
Quant a la partie 111, ce serait le tronc commun universitaire propédeutique
pour les étudiants ingénieurs, architectes, physiciens, mathématiciens,
dans Pesprit du présent exposé.

12. Conclusions.

La géométrie représentative ne saurait étre considérée comme une
branche fossile, a rayer simplement des programmes. Sa premiére fonction
propre est de présenter clairement le phénoméne fondamental de I’algébre
lin€aire: Papplication linéaire & noyau non trivial. Sa deuxiéme fonction
propre est de permettre la saisie ontologique précise du trésor des configu-
rations de I'espace, tout en faisant apparaitre une certaine régulation
logique de I'esthétique. Enfin, sa troisi¢me fonction propre est de permettre
'acces aux germes des théories les plus hautes.

Je ne connais pas de théorie mathématique qui ne soit en quelque maniére
enracinée dans N, Z, Q, R, R? ou R?; il s’agissait ici de R3.
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