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QU’EST-CE QU’UNE QUADRIQUE ?

Par Pierre SAMUEL (Paris)

Il est d’usage de définir une quadrique comme un ensemble de points
d’un espace projectif, réel ou complexe. Mais, sauf dans le cas complexe,
cet ensemble de points ne détermine pas [’équation de la quadrique (a un
facteur pres, bien entendu): par exemple cet ensemble peut €tre vide, ou ne
comporter que des points singuliers (équations x* + y* = 0et x> + 3y* =0
dans I’espace projectif réel). Il est donc incorrect de parler alors de /’équation
de la quadrique; méme N. Bourbaki, dans les exercices de son chapitre IX
d’Algébre, a commis cette erreur.

Cependant, dés que 1’ensemble des points d’une quadrique contient un
point simple, cet ensemble de points détermine 1’équation a un facteur pres.
Pour plus de commodité nous remonterons a un espace vectoriel; nous
allons démontrer le théoréme suivant:

THEOREME. Soient K un corps de caractéristique # 2, E un espace vectoriel
sur K, B et B’ deux formes bilinéaires symétriques sur E, Q et Q' les formes
quadratiques associées (i.e Q (X) = B (X, X)). On suppose que les rela-
tions Q (x) = 0 et Q' (x) = 0 sont équivalentes, et qu’on dispose d’un
point X, de E tel que Q (xo) = 0 et qu’il existe y € E avec B (X, y) # 0
(autement dit X, n’est pas dans le noyau de B). Alors les formes B et B’
sont proportionnelles, de méme que Q et Q'.

En effet soit x un point quelconque de E, et soit @ € K. Comme Q (x,) =
= 0’ (xo) = 0, les équations (en a) Q (ax, + x) = 0et Q' (ax, + x) =0
s’écrivent

2a B(xp,x) + Q(x) =0 e 2aB (x9,x) +0'(x) =0.

et sont équivalentes par hypothese. En traduisant les propriétés «avoir une
solution et une seule » pour les équations (1), on en déduit que les relations
B (x9,x) # 0 et B'(xy, x) # 0 sont équivalentes, donc aussi les rela-
tions B (xp, x) = 0 et B’ (x4, x) = 0. Ainsi les formes linéaires x /— B (x,, x)
et x |-+ B’ (x, x) ont méme noyau H; par hypothése ce noyau H est un hyper-




— 130 —

plan. Il existe donc, par I’algébre linéaire, un élément non-nul ¢ de K tel que
Bl (x0>x> = CB(XO,X). (2)

D’autre part [’équivalence des équations (1) montre qu’oﬁ a
B (x4, x) Q" (x) = B’ (x4, X) Q' (x) pour tout x € E. Il résulte alors de (2)
que, pour x ¢ H, on a

Q'(x) =cQ(x) (x¢H). (3)

Or la formule bien connue 2B (x, y) = Q (x + ) — O (x) — Q (y) montre
que, pour x,y et x + y¢ H, on a

B,(X, y) = cB ()C, y) | (4)

En changeant y en — y, on voit que cette relation est encore vraie pour x, y
et x — y ¢ H. Or, comme K n’est pas de caractéristique 2, siona x, y ¢ H,
les éléments x + y et x — y ne peuvent €tre tous deux dans H; donc (4) est
vraie pour x, y ¢ H. Fixons alors x € H, et considérons la forme linéaire
¥ |—> B’ (x,y) — ¢B(x, y); on vient de voir qu’elle est nulle en dehors de H;
elle est donc partout nulle car tout élément de ’hyperplan H est différence
de deux éléments de son complémentaire. Ainsi (4) est vraie pour x ¢ H
et y quelconque. En intervertissant les roles de x et de y, le méme raisonne-
ment montre que (4) est vraie pour x et y quelconques. Or, c’est ce qu’on
voulait démontrer.
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