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QU'EST-CE QU'UNE QUADRIQUE

Par Pierre Samuel (Paris)

Il est d'usage de définir une quadrique comme un ensemble de points
d'un espace projectif, réel ou complexe. Mais, sauf dans le cas complexe,

cet ensemble de points ne détermine pas /'équation de la quadrique (à un
facteur près, bien entendu) : par exemple cet ensemble peut être vide, ou ne

comporter que des points singuliers (équations x2 + y2 0 et x2 + 3y2 0

dans l'espace projectif réel). Il est donc incorrect de parler alors de /'équation
de la quadrique; même N. Bourbaki, dans les exercices de son chapitre IX
d'Algèbre, a commis cette erreur.

Cependant, dès que l'ensemble des points d'une quadrique contient un
point simple, cet ensemble de points détermine l'équation à un facteur près.

Pour plus de commodité nous remonterons à un espace vectoriel; nous
allons démontrer le théorème suivant:

Théorème. Soient K un corps de caractéristique ^ 2, E un espace vectoriel

sur K, B et B' deux formes bilinéaires symétriques sur E, Q et Q' les formes
quadratiques associées (i.e Q (x) B (x, x)). On suppose que les
relations Q (x) 0 et Q' (x) — 0 sont équivalentes, et qu 'on dispose d'un
point x0 de E tel que Q (x0) — 0 et qu 'il existe y e E avec B (x0, y) ^ 0

(autement dit x0 n 'est pas dans le noyau de B). Alors les formes B et B'
sont proportionnelles, de même que Q et Q'.

En effet soit x un point quelconque de E, et soit aeK. Comme Q (x0)
Q' (*o) 0» tes équations (en a) Q (ax0 + x) 0 et Q' (axo + x) 0

s'écrivent

2aB(x0,x) + Q(x) 0 et 2aBf(x0,x) +ô'(x) 0.

et sont équivalentes par hypothèse. En traduisant les propriétés « avoir une
solution et une seule » pour les équations (1), on en déduit que les relations
B (x0, x) 0 et Br (x0, x) =£ 0 sont équivalentes, donc aussi les
relations B (x0, x) 0 et B' (x0, x) 0. Ainsi les formes linéaires x /-> B (x0, x)
et x | -» B' (x0, x) ont même noyau H; par hypothèse ce noyau H est un hyper-
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plan. Il existe donc, par l'algèbre linéaire, un élément non-nul c deiTtel que

B' (x0, x) cB (x0, x) (2)

D'autre part l'équivalence des équations (1) montre qu'on a

B (x0, x) Q' (x) B' (x0, x) Q (x) pour tout xeE. Il résulte alors de (2)

que, pour x $ H, on a

Q'(x)=cQ(x) (xi H). (3)

Or la formule bien connue 2B (x, y) Q (x + y) — Q (x) — Q (y) montre

que, pour x, y et x + y $ H, on a

B' (x, y) cB (x, y) (4)

En changeant y en — y, on voit que cette relation est encore vraie pour x, y
et x — y $ H. Or, comme K n'est pas de caractéristique 2, si on a x, y $ H,
les éléments x + y et x — y ne peuvent être tous deux dans H\ donc (4) est

vraie pour x9y $ H. Fixons alors x e H, et considérons la forme linéaire

y | B' (x, y) — cB (x, y) ; on vient de voir qu'elle est nulle en dehors de H\
elle est donc partout nulle car tout élément de l'hyperplan H est différence
de deux éléments de son complémentaire. Ainsi (4) est vraie pour x $ H
et y quelconque. En intervertissant les rôles de x et de y, le même raisonnement

montre que (4) est vraie pour x et y quelconques. Or, c'est ce qu'on
voulait démontrer.
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Boulevard Jourdan, 48 (Paris, 14e)

(Reçu le 21 avril 1967)
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