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Helfenstein [4] a montré qu’il n’existe pas d’ovale & deux points isocordes,
si une certaine fonction qui le définit est six fois dérivable aux sommets.
Comme d’autre part E. Wirsing [6] a démontré que le bord de I'ovale
hypothétique est une courbe analytique (« reguldr-analytisch »), sa non-
existence serait donc démontrée. Mais Wirsing pense que la preuve
d’Helfenstein, qui s’appuie sur une dérivabilité locale, doit contenir une
erreur ([6], p. 304). A son avis, I'inexistence de I’ovale doublement isocorde
ne peut résulter que d’une considération globale. Le probleme est encore
cité en 1966 par Stanley Ogilvy parmi les questions ouvertes [7].

Je me propose de ramener le probléme géométrique a une question de
suite récurrente, d’en déduire I’inexistence de I’ovale doublement isocorde
pour une excentricité supérieure ou égale a 4, ainsi que pour une liste de
valeurs inférieures a 1, et de montrer de cette maniere que I’existence de cet
ovale est trés improbable, quelle que soit I’excentricité.

I

Pour montrer qu’il n’existe pas d’ovale a deux points isocordes, il suffirait
d’établir qu’une suite récurrente x,, que nous allons voir, n’est pas
monotone.

Prenons comme unité la longueur commune des isocordes, et donnons
nous la distance OO’ = a. Le milieu / de OO’ étant centre de symétrie de
lovale Q, les points A, A" de la droite OO’ tels que /4 = I4A" = % appar-
tiennent & Q. Nous les plagons dans I’ordre 4’, O, O’, A. L’ovale étant symé-
trique par rapport a la droite OO’, un point B, situé sur sa perpendiculaire

en O a la distance 1, fait également partie de 2. Rapportons le plan aux
— —_

axes Ox, Oy, orientés respectivement par les vecteurs OA4 et OB.
Soit M, un point de Q d’affixe

_ ion __ .
Z, = r,e" =X, +1),.

L’extrémité M, de la corde M, M, = 1 menée par O a pour affixe z, — ™"

et le symétrique de M, par rapport & I est un point M, , de Q ) d’affixe
i

Z,., = a + %" —z,, avec z, =5

si on prend B pour point M.

1) On démontre facilement que le point My, 4 2 coincide avec ’extrémité P de la corde M',, P = 1 passant
par O’.
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On en déduit sans peine deux systemes de récurrence:

( 1
D 0y =a+x,|—7/—5—-—-1]), Xo =0,
. ) e (\/““xmz ) :
1 1
| 2)  Yns1 =yn<‘\7‘;?f;;2‘—1>, Yo =3
sin 6 i
3) tg 0n+1 = : ’ 90 =T
0, +— | 2
(1D ST,
4 2y =a*+2a(dl-r)cos, +(1—r)*, 71y = 5

Comme r, < 1 pour 2, on voit par 3) que 0,,., < 8, et par 2) que y, > 0,
quel que soit ».

Soit M, le symétrique de M, par rapport a Ox.

On sait que Q n’existe pas si pour un n, r,., < r,, car on a vu que 0M
croit quand M parcourt le bord de A" vers A. Il en est de méme si pour un
n, X,+, < X,, car I'angle M, M,,, M,, inscrit dans 1’ovale, serait alors
rentrant.

Remarque. La suite x, a un comportement intéressant. Les suites x,,
et x,,4 ¢ sont toutes les deux croissantes, car x, < X, ,, puisque 1) permet
d’écrire

Xp + X401 =a +cosl, <a+cosl,,y = X,01 + X592 -

Or le calcul €lectronique montre (du moins pour tous les a traités) qu’a

a+ 1 a+ 1
. Donc x, >

un certain rang n’, x, > pour tous les indices de

a+1

meéme parité que n’ et supérieurs a lui, et x, < pour tous les indices

supérieurs a n" et de parité contraire. Les premiers convergent donc vers

a+ 1

a—+ 1 ’
et les seconds vers une valeur x” < o avec

une valeur x’ >

x' 4+ x" = a + 1. Mais le calcul électronique montre que x’ et x” sont tres
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a+1

voisins de lorsque a est petit. Ainsi, pour a = 0,03,
1 +a \
5 X463 = 14:1072%

II

Il n’existe pas d’ovale doublement isocorde d’excentricité supérieure ou
égale a 5.

Nous distinguerons deux cas:

1) a = 0,6. 11 suffira de montrer que r5 < ri. Puisque
r; = a* + 1/4, et ry = 5/4 —1/2r,,
cette inégalité se réduit a

4a* —Ta* +2 <0, soit (T—/17)[8 <a® < (T+./17)8.
: 1

Comme 0 < a < 1, il faut donca > [(7 — \/ﬁ)/S] 2, \/6:3598, valeur
légérement inférieure a 0,6.

2) 0,5 £ a £ 0,6. Il suffit de montrer que pour ces valeurs

a+ 1

X3 >

Or,
x, = 2a(1+4a*)~1/%, X3 = a + x,((1/ry) — 1)),

et I'inégalité & démontrer prend donc la forme
1 —a
fla)=(5/4—(4a®+ 71272 =1 — — — (4a® + )'/* > 0.
a
La fonction f(a) est la différence de

1 —

a

a
(4a*> +1)1/? |

u(a) = (5/4—(4az—l—1)"1/2)"1/2 -1, v(a) =

qui sont décroissantes pour a > 0. Dans un intervalle fermé [«, ], de
bornes positives, f(a) est donc minorée par F («, f) = u (f) — v ().
Nous avons alors partagé 'intervalle [0,5; 0,6] en 25 intervalles égaux
et déterminé pour chacun F(«, f) a I’aide d’un calculateur électronique.
Toutes les valeurs obtenues étant positives, f(a) > 0 dans [0,5; 0,6].
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