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A CONDITION FOR EXISTENCE
OF A SMALLEST BOREL ALGEBRA CONTAINING A GIVEN
COLLECTION OF SETS

by Arthur B. BRowN and Gerald FREILICH

The origin of this note lies in an oversight appearing in [I] ard [2], a
difficulty that was already realized by the translators of [1]. (See Translators’
Note in [1], page 16. Since situations arise in which B-algebras with different
units are used, Theorem 4 on page 19 of [1] and on page 25 of [2] requires
an additional hypothesis. See the theorem below.) It is hoped that the
present note will be of independent interest.

DEFINITIONS. A o-ring (of sets) is a non-empty collection of sets closed
under the operations of difference (of a pair of sets) and countable union.
A Borel algebra, or B-algebra, is a o-ring which has an element that
contains every other element of the a-ring. The (unique) maximal element
is called the unit of the B-algebra.
A member of a collection of sets is called the smallest member if it is
contained in every other member of the collection.

LEMMA.  If'S is a non-empty collection of sets each contained in a set X, then
there exists « smallest B-algebra B (S) with unit X containing S.

Proof. Take B (S) to be the intersection of all B-algebras with unit X
that contain S.

If we want now to generalize the lemma by omitting the requirement
that the B-algebras under consideration have the same unit X, an additional
hypothesis is necessary.

THEOREM. Let S be a non-emipty collection of sets whose union is X. Then
there is a smallest B-algebra containing S if and only if X is the union of
some countable collection of sets of S. If there is a smallest B-algebra
containing S, then that algebra has unit X and is the algebra B (S) of the
Lemma.

Proof.  Suppose that X is the union of a countable collection of sets
of S. Let W be any B-algebra containing S, where sets of W are not restricted
to be subsets of X, and let D = W B(S), where B (S) is the smallest
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B-algebra with unit X and containing S. (See Lemma.) Since W is a o-ring,
Xe W; hence Xe D. Since D = B(S), the sets in D are subsets of X.
Since W and B (S) are o-rings, so is D. Hence D is a B-algebra with unit X.
Since B (S) is the smallest B-algebra with unit X, we infer that B (S) < D,
and hence B(S) = D. Thus B(S) = D = W, so B(S) is the smallest
B-algebra containing S, as was to be proved.

Now suppose X is not the union of any countable collection of sets of S.
Choose a¢ X and let ¥ = XU {a}. Let " = {A: 4= u;” S, S5},
S"={A:4e€S or (Y—A)e S"}. Then any subset of a member of S’
is a member of S’, and S’ is clearly a g-ring. It is obvious that S”’ contains .S.
We now prove that S’ is a B-algebra.

Since @ € S, Ye S”, so Y will be the unit. Let Ay, A,, ... be members
of §”. If each A4;eS’, with 4; < U, 2, S;;, S;;€8, then U;Z; 4, < U2,
U;Z1 Sijy s0 U2 S;eS = S, If some A4,¢S’, then Y—A,eS'. Hence
Y—u;214; = 02, (Y—4;) € Y—A4,eS, so that Y—u;%, 4;€5 and
consequently U;”; 4;e S”. Thus it is proved that S” is closed under count-
able unions. We now consider differences.

Suppcse { A, B} = 8. If 4eS" then A—B < A€S’, so A—Be S’
and hence A—BeS". If 4¢S" then Y—A4e S, and if Be S" we have
Y—(A—B)< (Y—A)uBeS', so Y—(4—B)eS’; hence A—BeS". If
A¢S and B¢S, then A—B = (Y—-B) —(Y—-A)eS' < §”. This
completes the proof that S”' is a B-algebra.

Since X is not the union of any countable collection of sets of S, it is
clear that X ¢ S’. Consequently X ¢ S, for if X = Y—A4 with 4 S’, we
would have o € X, contrary to the choice of «. We are now in a positicn to
complete the proof.

If there were a smallest B-algebra V containing S, then by the definition
of unit, the unit £ of VV would contain X. Furthermore, V would be contained
in the set of all subsets of X (the latter being a B-algebra containing S), so
E = X. Hence X would be the unit £ of V. Then, from X eV and X ¢ S”,
it would follow that V' & S”, contrary to the fact that S”' is a B-algebra con-
taining S. Hence there is no smallest B-algebra containing S.

ExampPLES. Let X be an uncountable set and let S be the set of all
countable subsets of X. By the Theorem, there is no smallest B-algebra
containing S.

Note that the Theorem implies that if .S is a non-empty collection of
sets such that there is no smallest B-algebra containing S, then the union
of the members of § must be uncountable.
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