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Es gilt das folgende

LEMMA 1. Geniigt das Funktional ¢ (x) der Gleichung (1), so geniigt das
Funktional y (x) = ¢ (x) — ¢ (0) der Funktionalgleichung

Yx+y) =y +y») (x,yeH). (3)
Beweis. Wir machen die folgenden Substitutionen in der Gleichung (1):

x=A""w, y=B"'wv—-¢; x=A4""w), y=B"(-0;
x=0, y=B1'@wv—¢); x=0, y=B1(-c).

Dann erhalten wir die folgenden Gleichungen:

o+v) = ap[A W] + Po[B ' 0—0] +7, (4
o) = ap[A™ W] + fo[B (=] +7, (5)
() = ap(0) + pp[B™ (v —0)] + 7, (6)
@®(0) = ap(0) + fo[B™ ' (—=o)] + 7. (7)

Aus (4), (5), (6) und (7) folgt unmittelbar
pu+v) = @) + @ —¢0),
d.h. das Funktional ¥ (x) = ¢ (x) — ¢ (0) genligt der Gleichung (3).

Bemerkung : Fiir die Funktionalgleichung (2) wurde dieses Lemma
erstmals in [3] bewiesen. Die hier beschriebene Beweisidee stammt von
L. Losonczr (Siehe [5]).

LEMMA 2. Befriedigt das Funktional ¢ (x) die Gleichung (1), so gelten
fiir das Funktional  (x) = ¢ (x) — ¢ (0) die Relationen

Y[A)] = ap(x), Y[BX)] =py(x) (xeH). (8)
Beweis. Setzen wir in (1) y = B~! (= c), so erhalten wir die Gleichung
p[A(X)] = ap(x) + B [B~' (—0)] + 7. 9)

Mit der Beriicksichtigung von (7) und (9) gewinnen wir

Y[A@)]=¢[AXx)] —00) = apx) + e [B™' (=] +7 — ¢ (0)
=ap(x) + @(0) —ap(0) —@(0) = a[p(x) — @ (0)] = o (x).
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Damit ist unseres Lemma bereits bewiesen, da der Beweis fiir B und f
analog verliuft.

§. 3

Es sei 1 # 0 eine reelle Zahl und A4 ein Operator aus [H — H]. Wir
fiihren die folgenden Bezeichnungein: E, (4) = { x [ xe H, A(x) — Ax = 0}.
Mit anderen Worten: E; (4) ist der zu 1 gehorige Eigenraum von 4. Den
adjungierten Operator von A4 bezeichnen wir mit 4*. Wir konnen jetzt den
folgenden Satz beweisen:

SATZ. Die Funktionalgleichung (1) hat dann und nur dann eine stetige
nichtkonstante Losung, wenn ein x, # 0 in E = E, (A*) 0 E; (B*) und eine
Zahl 6 in R existiert, so dass die Gleichung

(¢, x0) = (x+f—1)0 + v (10)
gilt.

In diesem Falle ist die allgemeine stetige und nichtkonstante Losung der
Gleichung (1)

(P(X) = (X, xO) + 5 ’ (11)
wobei x, # 0 aus E und 6 aus R mit der Eigenschaft (10) beliebig wdihlbar ist.

Beweis. 1) Es set ¢ eine stetige nichtkonstante Losung von (1). Dann
st Y (x) = ¢ (x) — ¢ (0) auch stetig und nichtkonstant und nach Lemma 1
gentigt es der Gleichung (3). Aus dem Satz von Riesz folgt dann die
Darstellung

Yy(x) = (x,x) (xeH), (12)

wobei x, ein von Null verschiedenes Element von H ist (Siehe [6]). Aus (8)
folgen die Gleichungen

(A (x),x0) = a(x,x0)
und

(B(x),x0) = B(x,%0),

also st xo # O ein Element aus E, (4*) N E; (B*). Aus (1) und (12) ergibt
sich (mit der Substitution x = y = 0 und § = ¢ (0))

(c,xq) =Y(c) =) =0 =ad + B +y =6 = (a+p—-1)0 + v,

also gilt (10). Dabei haben wir gezeigt, dass ¢ die Gestalt ¢ (x) =
=Y (x) + ¢ (0) = (x, xo) + & hat.




	§. 2

