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ÜBER EINE KLASSE VON FUNKTIONALGLEICHUNGEN
IM HILBERT-RAUM

Von Z. Daröczy

§. 1

Es sei H ein reeller Hilbert-Raum mit Skalarprodukt (x, y) (x, y e H).
Mit [H -> H] bezeichnen wir den Ring der linearen Operatoren von H.

Ein Operator A e [H -> H] wird regulär genannt, wenn die lineare Inverse

A'1 e [H -> H\ existiert. In der vorliegenden Arbeit wollen wir uns mit der

Funktionalgleichung

cp [A (x) + B (y) + c] cccp (x) + ßcp (y) + y (x,yeH) (1)

beschäftigen, wobei cp eine eindeutige Abbildung des Raums H in die

Menge der reellen Zahlen R ist. Dabei sind A und B reguläre Operatoren
aus [H H] und c ist ein Element aus H. Über die Konstanten a, ß, y

setzen wir voraus, dass aß # 0 gilt.
Ziel dieser Arbeit ist es, für die Funktionalgleichung (1) notwendige

und hinreichende Bedingungen für die Existenz nichtkonstanter stetiger
Lösungen zu bestimmen.

Im eindimensionalen Fall geht (1) in die bekannte Funktionalgleichung

cp (ax + by + c) acp (x) + ßcp (p) + y (cp: R R ; x, y e R) (2)

über, wobei keine der Konstanten a, b, a und ß gleich Null ist. Für die

Funktionalgleichung (2) hat J. Aczél in [1] den folgenden Satz bewiesen:
Eine stetige nichtkonstante Lösung der Gleichung (2) existiert dann und nur
dann, falls a — a, b ß ist. Dabei muss y 0 sein, falls a + ß 1 und

c 0 ist (Siehe auch [2]). Wenn cp keine stetige Funktion ist, dann gilt diese

Behauptung nicht mehr, wie es die Untersuchungen der Arbeit [3] (Siehe
auch [4], [5]) zeigen.

In § 2 beweisen wir zwei Lemmata über die Lösungen von (1). In § 3

untersuchen wir die stetigen nichtkonstanten Lösungen der Funktionalgleichung

(1) und wir beweisen eine Verallgemeinerung des Satzes von
J. Aczél.
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§. 2

Es gilt das folgende

Lemma 1. Genügt das Funktional cp (x) der Gleichung (1), so genügt das

Funktional iß (x) cp (x) — cp (0) der Funktionalgleichung

i H*+y)t W + *1* 0) (x, (3)

Beweis. Wir machen die folgenden Substitutionen in der Gleichung (1):

x A~1 (u) y B~1 (v —c) ; x A~1 (u) y B~x — c) ;

x 0 s y B~x (v — c) ; x 0 y B~x — c).

Dann erhalten wir die folgenden Gleichungen:

(p(u+v) acp\_A~1(u)] + ß(p\B~1 (y —c)~\ +y, (4)

(p(u) 0.(p\_A~l(u)]+ (-c)] + (5)

<p(v) cup (0) + ßcp-c)] + (6)

cp(0) aç(0)+/?<p[ß_1(-c)] +7. (7)

Aus (4), (5), (6) und (7) folgt unmittelbar

cp (u +v) » cp (u) + (p (v) — (p (0),

d.h. das Funktional \j/ (x) q> (x) — cp (0) genügt der Gleichung (3).

Bemerkung: Für die Funktionalgleichung (2) wurde dieses Lemma
erstmals in [3] bewiesen. Die hier beschriebene Beweisidee stammt von
L. Losonczi (Siehe [5]).

Lemma 2. Befriedigt das Funktional cp (x) die Gleichung (1), so gelten

für das Funktional iß (x) <p (x) — cp (0) die Relationen

\j/ [A (x)] ociß (x) iß [B (x)] ßiß (x) (x e H) (8)

Beweis. Setzen wir in (1) y B~x (— c), so erhalten wir die Gleichung

cp [A fx)] y.cp(.v)+ ßcp [ß_1 (-c)]. + y. (9)

Mit der Berücksichtigung von (7) und (9) gewinnen wir

[ A(x)] cp[A(x)]— cp(0)acp (x) + ßcp [ -c)] + - cp (0)

acp (x) + cp(0)— acp(0)— cp (0) a (x) — (0)] aiß (x).
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Damit ist unseres Lemma bereits bewiesen, da der Beweis für B und ß

analog verläuft.

§. 3

Es sei X A 0 eine reelle Zahl und A ein Operator aus [H -» H]. Wir
führen die folgenden Bezeichnung ein : Ex (A) { x | x e H, A (x) — Xx 0}.
Mit anderen Worten: Ex (A) ist der zu X gehörige Eigenraum von A. Den

adjungierten Operator von A bezeichnen wir mit A*. Wir können jetzt den

folgenden Satz beweisen:

Satz. Die Funktionalgleichung (1) hat dann und nur dann eine stetige
nichtkonstante Lösung, wenn ein x0 ^ 0 in E Ea (A*) n Eß (B*) und eine

Zahl ô in R existiert, so dass die Gleichung

(c, x0) (a+ß-l)3 +7 (10)
gilt.

In diesem Falle ist die allgemeine stetige und nichtkonstante Lösung der

Gleichung (1)

<p(x) (x,x0) + Ô (11)

wobei x0 i=- 0 aus E und 3 aus R mit der Eigenschaft (10) beliebig wählbar ist.

Beweis. 1) Es sei cp eine stetige nichtkonstante Lösung von (1). Dann
ist iß (x) (p (x) — (p (0) auch stetig und nichtkonstant und nach Lemma 1

genügt es der Gleichung (3). Aus dem Satz von Riesz folgt dann die

Darstellung
\l/(x) (x9x0) (;xgH), (12)

wobei x0 ein von Null verschiedenes Element von H ist (Siehe [6]). Aus (8)
folgen die Gleichungen

(A(x),x0) a(x,x0)
und

(B(x),x0) ß(x,x0),

also ist x0 ^ 0 ein Element aus Ea (A*) n Eß (B*). Aus (1) und (12) ergibt
sich (mit der Substitution x y 0 und ô cp (0))

(c,x0) xß (c) (p(c) - 3 - oc3 + ß3 + y - 3 (a + ß -1) 3 + y

also gilt (10). Dabei haben wir gezeigt, dass cp die Gestalt cp (x)
\Jj (x) + <p (0) (x, x0) + 3 hat.
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2) Wir werden jetzt zeigen, dass (11) eine stetige nichtkonstante Lösung
von (1) ist, falls die Bedingungen des Satzes gelten. In der Tat gilt

(p [ A(x)+ B(y)+ c] A(x)(y) + (c, x0)) + ô

(4(x),x0) + (B(y),x0) + (c,x0) + <5

(x,4*(x0)) + (y,B*(x0))+ (cc+ß-l)S S

(x, ocXq) + (y, ßxo) + oc<5. + ßö + y

« [(x, x0) + <5] + ß[(y,x0) + 5] + acp (x) + ß<p

Damit haben wir den Satz vollständig bewiesen.

Bemerkung. Man kann leicht zeigen, dass unserer Satz eine

Verallgemeinerung des in § 1 erwähnten Satzes von J. AcztL ist.
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