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AU SUJET DES CONGRUENCES DE DEGRÉ SUPÉRIEUR

A DEUX

par S. Thouvenot et F. Chatelet

Sommaire

La recherche des conditions pour qu'un polynôme d'une seule variable,
à coefficients entiers rationnels, se décompose, dans le corps des restes des

entiers suivant un module N premier, en produit de facteurs linéaires

(ou pour qu'une congruence de degré n, suivant le module N, ait n solutions
entières et distinctes), est un problème classique. La théorie des restes

quadratiques en donne une solution complète pour les polynômes du second

degré. Mais les solutions, qui ont été proposées jusqu'à présent pour les

polynômes de degrés supérieurs à deux, ne sont pas entièrement satisfaisantes.

Dans une publication antérieure *), l'un des auteurs avait étudié ce

problème pour les polynômes du troisième degré par une méthode
particulièrement élémentaire. Après avoir résumé et complété les résultats ainsi
obtenus, on généralise ici cette méthode aux polynômes de degrés
arbitraires.

I. Congruences du troisième degré sans second terme

On cherche les conditions que doivent vérifier les entiers w et t pour
que la congruence:

cp3(X) X3 - wX - t0,(N). (1)

où N est un entier premier, ait trois solutions entières et distinctes. Dans
une publication antérieure 2), on a exploré ce problème par trois voies
conduisant à des résultats qui se complètent. On résume ici ces résultats en
les présentant sous une forme légèrement différente et en y apportant quelques

additions.

1) Cf. s. Thouvenot: Comptes rendus à l'Académie des Sciences, t. 252 (1961), pp. 1890 et 2060 etPublications scientifiques et techniques du Ministère de l Air n° 388.
2) Loc. cit., pp. 40 à 42, 42 à 44 et 59 à 63.
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On désigne par Sj la somme des puissances, d'exposant j (entier positif),
des racines du polynôme cp3 (X). Il est classique que cette somme vérifie
la relation de récurrence:

Sj+3 wSJ+1 + tSj (2)

pour tous les entiers positifs j.
Le théorème de Fermât montre que, si la congruence (1) a trois solutions

entières, les sommes Sj vérifient la relation:

Si+N.,^Si9 (AO, (3)

duel que soit l'entier positif t On peut exprimer cette relation en fonction
de w et t, au moyen de la relation de récurrence (2) et montrer ensuite que
les conditions obtenues pour les trois indices i 0, 1 et 2 sont suffisantes

pour l'existence de trois solutions entières et distinctes de la congruence (1).
Pour exprimer la relation (3) en fonction de w et t, on peut en effet

poser, pour un entier positif i choisi arbitrairement:

St u Si+1 2x Si+2 3y + uw (4)

La formule de récurrence (2) montre alors que, pour tout entier positif j
supérieur ou égal à 2:

Si+j 3y Kj_2 + Kj_1 + u Kj (5)

où Kj est un polynôme en w et t qui se déduit des trois valeurs initiales :

K0 1 K± 0, K2 w, (6)

par la relation de récurrence:

Ky + 3 W Kv+1 + t Kv. (7)

On peut aussi calculer les coefficients du polynôme Kj (w, t) par la formule :

-rr vp (^2 + ^3) • 22 A3 /0.I (s)

où la somme est étendue aux partitions de l'entier j de la forme:

j 2à2 + 323 (9)

avec X2 et À3 entiers positifs ou nuls.

Exemples : Les partitions de l'entier 14 de la forme (9) sont:

14 2.7 2.4 + 3.2 2.1 + 3.4
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et le polynôme KiA (w, t)est:

Ki4.(w, t)w7 + 15 w4î2 + 5wt4

Les partitions de l'entier 15 de la forme (9) sont:

15 2.6 + 3.1 2.3 + 3.3 3.5

et le polynôme K15 (w, t) est:

Kl5 (w, t) lw6t + 20w3 t3 + t5

En choisissant en particulier j — iV — 1, les relations (3) et (5) montrent

que:
Sj+n-! St 3y Kn_3 + 2x Kn-2 + w Kn-i V-^0

(10)

ou encore:

(^i + 2 — Wi^i) ^i\-3 + $i+ 1 KN-2 + S; -^N— 1 > (N) •

(H)

Et, en utilisant les valeurs classiques des sommes des premières puissances
des racines du polynôme cp3 (X) :

Sq 3 S1 0 S2 2w S3 3t, S4 2w2

(12)

les relations (11), correspondant aux indices f 0, 1 et 2, s'écrivent:

— w KN-3 + 3 KN_t 3

3* + 2WKN_2 =0, (JV). (13)

3t i£jv_2 + 2w 2w

L'ensemble de ces trois congruences forme un système linéaire, dans le

corps des restes suivant le module premier N, en KN_3,KN_2,KN_1, dont le
déterminant est égal à 27 t2 — 4w3. Si ce déterminant n'est pas divisible

par N, donc si la congruence (1) n'a pas de racine double, le système (13)
a pour seule solution:

Kn-3 0, KN—2 0, KN_l 1, (IV). (14)

L'une quelconque de ces conditions entraîne d'ailleurs les autres, sauf peut-
être si w ou t est nul — cf. (13).
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D'autre part, la relation de récurrence (7) montre que, si N — 5 est

divisible par 6, les quotients KN_2 (w, t)/t et KN_3 (w, t)/w sont des

polynômes homogènes en w3 et t2 de degrés (N — 5)/6. Si N — 1 est divisible

par 6, les quotients KN_2 (w, t)/wt et KN_3 (w, t)/w2 sont des polynômes
homogènes en w3 et t2 de degrés (N — 7)/6.

L'étude directe des congruences (1) conduit à grouper celles de ces

congruences pour lesquelles le rapport a w3/t2 est le même. En
particulier, les congruences (1) qui ont trois solutions entières, non nulles et
distinctes se répartissent en (N — 5)/6, ou (N — 7)/6 groupes de cette
espèce, suivant le reste de N pour le module 6 *). Il en résulte que les
quotients Kn_ 3 (w, t)/w et Kjy __ 2 (w, t)/t, ou Kn_ 3 (w, t)jw2 et Kh_2 (w, t)/w2, se

décomposent en produits de (N — 5)/6, ou de (N — 7)/6, facteurs de la
forme :

correspondants aux groupes précédents.

Ainsi, si w et t ne sont pas divisibles par N, l'une des trois congruences
équivalentes :

Kn-3 (w, 0/w ^ 0 Kn_2 (w, t)lt o Kn„1 (w, 0^1, (N)

si JV - 5=0, (6) (15)

ou

KN_3(w,t)/w2 0, Kn .2(w,t)/wt0, KN_l{w,t) 1, (Af)

si JV - 7=0, (6), (15 Ais)

est une condition nécessaire et suffisante pour que la congruence (1) ait
trois solutions entières, non nulles et distinctes.

Exemples : Pour l'entier premier N 17, les conditions

K14.(w, t)/w— w6 + 15 w3 f2 + 5 l4 0 (17)

K15(w,t)/t7 w6 + 20 w2!2 + f0, (17)

sont équivalentes et leurs premiers membres se décomposent, dans le corps
des restes des entiers suivant le module 17, à un facteur constant près en

le produit:
(w3 + 7 t2) (w3 + 8 t2).

l) Loc. cit., p. 45.
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L'une ou l'autre des deux congruences :

w3 + 7 t20 ou w3 + 8 0, (17)

entraîne que:

K16 (w, t) w8 + 21 w5 t2+ 15 w214 1, (17)

Pour l'entier premier N 31, le quotient:

K28 (w, t)/ww12 + 3.26 w9t2 + w614 + 7.66 w3 t6 + 9.5 t8

se décompose, dans le corps des restes d'entiers suivant le module 31 en

le produit :

(w3 + 12 t2) (w3 + 16 t2) (w3 + 18 t2) (w3 + 25 t2)

II. Sommes des puissances des racines d'une equation algébrique

Pour généraliser facilement les résultats précédents, il est commode

d'utiliser les sommes Sj des puissances des racines d'une équation algébrique :

Xn+1 -^r -v2Xn~1 - -vn+x 0, (16)

pour les exposants entiers j, tant positifs que négatifs ou nuls, et les

combinaisons linéaires de ces sommes Sj.
Si on considère la puissance 6J d'une racine 0 de l'équation (16), d'exposant

j entier positif, négatif ou nul, comme une fonction /(j) de l'exposant j,
cette fonction vérifie la relation de récurrence:

/(j) Z(ytf(j- 0), (17)

où la somme est étendue aux valeurs entières de / de 1 à n + 1. Toute
combinaison linéaire de plusieurs solutions de la relation de récurrence (17)
vérifie aussi cette relation; en particulier, les sommes Sj des puissances
d'exposant j des racines de l'équation (16) vérifie la relation:

Sj Z (vt Sj_t).

De façon plus précise, on peut déterminer de manière unique une solution
de la relation (17) qui prend des valeurs données pour n valeurs de la
variable j; elle peut être exprimée comme combinaison linéaire de n solutions

particulières de la relation (17), pourvu que ces solutions soient
linéairement indépendantes.
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En particulier, on peut déterminer une combinaison linéaire:

Kj(vi,v2, ...9vn+i) — a1d{ + a202 + + ar]+1 0nh

des puissances d'exposant y des racines de l'équation (16) telle que:

*0 1, X-! o K„2 0 K_n 0 (18)

La fonction Kj est déterminée de manière unique, pourvu que l'équation (16)
n'ait pas de racine multiple. Inversement, les fonctions /(y) 6j, pour
chaque racine 6 de l'équation (16), peuvent être exprimées comme
combinaisons linéaires de n + 1 fonctions Ki+j, par exemple pour les valeurs

0, 1, n de l'indice i.

Les fonctions Kj (v1? v2, vn+1) peuvent être calculées, à partir des

valeurs initiales (18), au moyen de la formule de récurrence (17). Elles

peuvent aussi, pour les valeurs positives des indices y, être exprimées en

fonction de v1? v2, vn + 1 par la formule:

où la somme est étendue à toutes les décompositions de l'entier y en sommes
de la forme:

avec j\,j29 —>jn +1 entiers positifs ou nuls.

Les sommes Sj, ou plus généralement les fonctions Si+j de l'indice /,

pour i fixe, peuvent être exprimées comme combinaisons linéaires des

fonctions Kj par la formule:

où les coefficients u0, uu un sont déterminés par les relations:

Si Uq Si+1 Uq K1 + Si+2 uo K2 + + u2

••• * Si+n u0 Kn + ux Kn_x + + un

Elles peuvent aussi être calculées, pour les entiers positifs y, en fonction
de vl5 v2, vn+i Par la formule:

Kj(v19v29 ...,vn+1) I
(19)

j — îi + y2 + 3j3 + + (n + l)y„+1 (20)

Si+j u0 Kj + ux KJ-1 + + un Kj„n

(il + h + + Jn+1 ~ y »

il y2 i ...jn+ 1
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où la somme est étendue aux décompositions de l'entier j de la forme (20) x).

Exemples : Pour n 4, les fonctions K4, K5 et Ke sont :

K4 v\ + 3v\v2 + 2vtv3 + v\ + v4

K5 vf + 4v\v2 + 3v\v3 + 3v± v22 + 2vpo4 + 2v{v4 + 2v2v3

K6 v\ + 5v\v2 + 4v\v3 + 6v\v\ + 3v\v4 + 6v1v2v3 + v\

+ 2v2 V4 v3

Pour n 5, la fonction K12 (avec v± 0) est:

K12 ^4 + 12v2vlv4 + Gvlvl + 5V2V4 + Vt + V2 + 10^2^3

+ 3vj v2 + 6v5 v3 v4 + 12v5 v3 v22

III. Congruences de degré arbitraire

On cherche les conditions que doivent vérifier les entiers v1? v2, vn+i

pour que la congruence:

X" + 1 -v,Xn — v2 Xn~1 - -vn+1 0 (N), (22)

où N est un entier premier, ait n + 1 solutions entières et distinctes.

Le théorème de Fermât montre que, si les racines 9 de cette congruence
sont entières, elles vérifient la congruence:

eN~1 9, (IV). 23)

Les fonctions Kj vérifient alors, pour toutes les valeurs entières positives,
négatives ou nulles de y, les congruences:

KJ+N^=Kj9 (IV). (24)

Inversement, si n + 1 fonctions Ki+J vérifient la congruence (24), les

racines 9 de la congruence (22), vérifient toutes la congruence de Fermât (23)
et par suite sont entières. Les fonctions Kj ont d'ailleurs été choisies de

manière que les conditions les plus simples correspondent aux valeurs
entières de / de — n à 0.

Ainsi, les congruences:

Kn-h 0 KN_n_l 0 Kn-2 0, Kn_x (IV),
(25)

i) Loc. cit., p. 135, où la formule est établie seulement pour vl 0, mais peut être généralisée facilement.

Voir aussi Glenisson et Derdvidue, Mathesis (1960).
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sont des conditions nécessaires et suffisantes pour que la congruence (22)
ait n + 1 solutions entières et distinctes.

Il est facile de constater, d'un côté que n des relations (25) entraînent
la {n + l)me, de l'autre que l'éventualité vx 0 apporte de notables
simplifications dans ces relations 1).

Le cas de n + 1 2 présente un intérêt particulier. Dans le cas général,
les relations (25) se réduisent alors à deux expressions identiques. C'est
ainsi que, pour N 7, ces deux relations sont:

4? + 4v?w2 + 3vj0, (7).

D'autre part, si v1 0, (IV), la relation KN_2 0? (^0> est toujours vérifiée,

parce qu'elle contient v± en facteur, tandis que la relation KN_X 1, (IV),
se réduit à:

V2(n~DI2 s 1?

Ce qui est la relation classique de Gauss, pour les restes quadratiques
suivant le module IV, dont les formules (25) apparaissent ainsi comme une

généralisation aux congruences d'une variable de degré quelconque.

Exemples : Pour n 3 et N 7, la congruence (22) a pour solutions 1,

2 et 3 si ses coefficients sont égaux à:

vt 1, v23, V3 3, (7).

Ces coefficients vérifient les congruences:

0, £5 0, K6 m 1, (7).

Pour « 3 et IV 11, la congruence (22) a pour solutions 1, 2 et 3 si:

V± 5 0 ^3 5, 11

Ces coefficients vérifient les congruences :

K8 v\ + 7^v2 + + 15^1^2 + 20vlv2v3 + lQv\v\ + 6vf ï;|

+ 12^2 î>3 +^2 + 3^2 ^3 0, (11)

X9 ï;® + 8viV2+ lv\v3 + 2\v{ v\+ 30v*v2v3 + + lChy^ vf

+ 30^1v\v3+ v2+ 12 uxv2v3 + 4^2 v3 + vl 0 (11)

l) Si n + 1 3 et vl 0, il n'y a plus dans le cas général qu'une seule relation pour en entraîner les
deux autres, cf. (13) et (14).
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K10 + 9»iî72 + 8^3 + 28vf v\+ 42vlv2v3 + 35^ + 15^ v\

+ 60v\vlv3 + 15vlv2 + 20Vivlv3 +

+ 30vfv2v3 + v\ + 6v\v\ 1 (11)

Pour n4 et N17, la congruence:

X5 — v2x3 — v3 X2 — v4X — v50, (17),

a 5 solutions entières et distinctes dans les deux seuls cas suivants:

v2 1422 v3 1113, v4 0, v5 225 (17),

ou

v2 12A2, v3 m 16A3 v4 12Ä4 ^ - 7À5, (17),

où À est un entier arbitraire. Ces systèmes de coefficients vérifient notamment

la relation donnée au paragraphe II ci-dessus (exemples).

VI. Remarques sur les partitions de l'indice j
Il peut être utile de contrôler le nombre total de termes dans l'expression

de la fonction Kj (yl9 v2, p„ + i), lorsqu'on la calcule par la formule (19).
Ce nombre est égal au nombre de partitions de l'indice j de la forme (20).

On peut pour celà construire un tableau triangulaire T, défini de la
façon suivante:

On fait correspondre à la colonne de rang i le coefficient vf de l'équation

(16) d'indice i. A la ligne de rangj, on fait correspondre l'indice j de

la fonction Kj considérée.

A l'intersection de la ligne de rang j et de la colonne de rang z, on porte
le nombre de termes de l'expression de Kj ayant vt comme facteur d'indice
maximum.

Le nombre de termes de la fonction Kj, d'indice y, correspondant à une
équation (16) de degré n + 1, est alors la somme des n + 1 premiers termes
de la ligne de rang j.

On peut construire le tableau T par récurrence, ligne par ligne: l'élément
appartenant à la ligne de rang j et à la colonne de rang i est égal à la somme
des i premiers termes de la ligne de rang j — i.
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Tableau T

1 2 3 4 5 6 7 8 9

1 1

2 1 1

3 1 1 1

4 1 2 1 1

5 1 2 2 1 1

6 1 3 3 2 1 1

7 1 3 4 3 2 1 1

8 1 4 5 5 3 2 1 1

9 1 4 7 6 5 3 2 1 1

10 1 5 8 9 7 5 3 2 1

(Reçu le 15 mars 1967)
S. Thouvenot
17, rue Raynouard
Paris (16)

Prof. F. Châtelet
11, rue Jules Haag
Besançon
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