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AU SUJET DES CONGRUENCES DE DEGRE SUPERIEUR
A DEUX

par S. THOUVENOT et F. CHATELET

SOMMAIRE

La recherche des conditions pour qu’un polyndme d’une seule variable,
a coefficients entiers rationnels, se décompose, dans le corps des restes des
entiers suivant un module N premier, en produit de facteurs linéaires
(ou pour qu'une congruence de degré n, suivant le module ¥, ait » solutions
entieres et distinctes), est un probléme classique. La théorie des restes qua-
dratiques en donne une solution compléte pour les polyndmes du second
degré. Mais les solutions, qui ont €té proposées jusqu’a présent pour les
polyndmes de degrés supérieurs & deux, ne sont pas enticrement satisfai-
santes.

Dans une publication antérieure '), I'un des auteurs avait étudié ce
probléme pour les polyndmes du troisieme degré par une méthode parti-
culicrement élémentaire. Apres avoir résumé et complété les résultats ainsi
obtenus, on généralise ici cette méthode aux polynomes de degrés arbi-
traires.

I. CONGRUENCES DU TROISIEME DEGRE SANS SECOND TERME

On cherche les conditions que doivent vérifier les entiers w et ¢ pour
que la congruence:

0;(X) = X5 — wX —1¢ 0, (N). (D)

ou N est un entier premier, ait trois solutions entiéres et distinctes. Dans
une publication antérieure °), on a exploré ce probléme par trois voies
conduisant a des résultats qui se complétent. On résume ici ces résultats en

les présentant sous une forme légerement différente et en y apportant quel-
ques additions.

_1) Cf. S. THOUVENOT: Comptes rendus a I’ Académie des Sciences, t. 252 (1961), pp. 1890 et 2060 et
Publications scientifiques et techniques du Ministére de | Air n° 388.
2) Loc. cit., pp. 40 2 42, 42 a4 44 et 59 4 63.
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On désigne par S; la somme des puissances, d’exposant j (entier positif),
des racines du polyndme ¢ (X). Il est classique que cette somme vérifie
la relation de récurrence:

Sj+z = WSy + 155, (2)

pour tous les entiers positifs ;.
Le théoréme de FERMAT montre que, si la congruence (1) a trois solutions
enticres, les sommes §; vérifient la relation:

Sirn-1 = 5, (N), (3)

duel que soit I’entier positif i. On peut exprimer cette relation en fonction
de w et ¢, au moyen de la relation de récurrence (2) et montrer ensuite que
les conditions obtenues pour les trois indices i = 0, 1 et 2 sont suffisantes
pour Pexistence de trois solutions entieres et distinctes de la congruence (1).

Pour exprimer la relation (3) en fonction de w et 7, on peut en effet
poser, pour un entier positif i choisi arbitrairement:

Si =u, Si+1 = 2x, Si+2 — 3y + uw. (4)

La formule de récurrence (2) montre alors que, pour tout entier positif j
supérieur ou égal a 2:

Siv; =3y K;_, +2xK;_; +uK; (5)

ou K; est un polynome en w et ¢ qui se déduit des trois valeurs initiales:

KO=1, K1=O, K2=W, (6)
par la relation de récurrence:
Kv-‘r3 =W Kv+1 + 1 Kv . ‘ (7)

On peut aussi calculer les coefficients du polynéme K (w, ) par la formule:

(Jo +2) 1 4y 23

K. (w,t) = , 8
0t =2 Ay U Ag ! ®)

ou la somme est étendue aux partitions de ’entier j de la forme:
j =2, +32;, (9)

avec A, et 15 entiers positifs ou nuls.
Exemples : Les partitions de ’entier 14 de la forme (9) sont:

14 =27=24+32=21+4+34
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et le polyndme K, (w, t) est:

Ki(w, 1) = wl + 15w*® + 5wt

Les partitions de I’entier 15 de la forme (9) sont:
15—=2.6+3.1=23+33=23.5
et le polyndme K5 (W, 1) est:

K,s(w,f) = Twst + 20w> £ + 1°.

En choisissant en particulier j = N — 1, les relations (3) et (5) montrent
que: |
Sitn-1 =8 =3y Ky 3+ 2x Ky, +uKy_y, {(N),
(10)
ou encore:

(Sit2 — wS) Ky—3 + Siv1 Ky2y +S; Ky_1 = S, (N).
(11)

Et, en utilisant les valeurs classiques des sommes des premieres puissances
des racines du polyndme ¢5 (X):

Sy =3, S, =0, S,=2w, S;=3, S, =2w,
(12)

les relations (11), correspondant aux indices i = 0, 1 et 2, s’écrivent:

_WKN—3+3KN—1 E3
3tKy_3 +2wKy_, =0, (N). (13)
3tKy_, + 2w Ky_y = 2w

L’ensemble de ces trois Congruenceé forme un systéme linéaire, dans le
corps des restes suivant le module premier N, en Ky_5, Ky_,, Ky_;, dont le
déterminant est égal a 27 t*> — 4w>. Si ce déterminant n’est pas divisible

par N, donc si la congruence (1) n’a pas de racine double, le systéme (13)
a pour seule solution:

Ky_3 =0, Ky, =0, Ky =1, (N). (14)

L’une quelconque de ces conditions entraine d’ailleurs les autres, sauf peut-
étre si w ou ¢ est nul — cf. (13).
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D’autre part, la relation de récurrence (7) montre que, si N — 5 est
divisible par 6, les quotients Ky_, (w, t)/t et Ky_5 (w, t)/w sont des poly-
ndmes homogenes en w> et ¢ de degrés (N — 5)/6. Si N — 7 est divisible
par 6, les quotients Ky_, (w, t)/wt et Ky_5 (w, t)/w* sont des polyndmes
homogenes en w? et t? de degrés (N — 7)/6.

L’étude directe des congruences (1) conduit a grouper celles de ces
congruences pour lesquelles le rapport « = w?/t? est le méme. En parti-
culier, les congruences (1) qui ont trois solutions entiéres, non nulles et
distinctes se répartissent en (N — 5)/6, ou (N — 7)/6 groupes de cette
espece, suivant le reste de N pour le module 6 1). Il en résulte que les quo-
tients Ky_5 (w, 1)/w et Ky_, (w, t)/t, ou Ky_5 (W, 1)/w* et Ky_, (w, 1)/w?, se
décomposent en produits de (N — 5)/6, ou de (N — 7)/6, facteurs de la
forme:

w3 — a; t?
correspondants aux groupes précédents.
Ainsi, si w et ¢ ne sont pas divisibles par N, I'une des trois congruences

équivalentes:

KN—3(W9I)/W =3 09 KN—Z(W’t)/t = 03 KN—-I(wst) = 13 (N)

si N—-5=0, (6 (15)
ou

Ky_s(w,)/w? =0, Ky_,(w,)/wt =0, Ky_(w,) =1, (N)
si N—7=0, (6, (15 bis)

est une condition nécessaire et suffisante pour que la congruence (1) ait
trois solutions entiéres, non nulles et distinctes.

Exemples : Pour Ientier premier N = 17, les conditions

Kia(w,)fw = wé + 15w + 5t* =0, (17)
Kis(w, )t = Twe + 20wt +1* =0, (17)

sont équivalentes et leurs premiers membres se décomposent, dans le corps
des restes des entiers suivant le module 17, a un facteur constant prés en

le produit:
(w + 7t)(w> + 8¢t%).

1) Loc. cit., p. 45.
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L’une ou l'autre des deux congruences:
w2 +7t2 =0 ou wd + 8t =0, (17)
entraine que:
Kig(w, ) = wE + 21w 2 + 15w?t* =1, (17)
Pour l’entier premier N = 31, le quotieat:
Kys(w, 0w = w'? 4+ 3.26 w12 + 5.99 w®t* + 7.66 w*1® 4+ 9.5¢°

se décompose, dans le corps des restes d’entiers suivant le module 31 en
le produit: ' ‘

(w® + 122 (W + 162 (W + 183 (w* + 25¢7).

II. SOMMES DES PUISSANCES DES RACINES D’UNE EQUATION ALGEBRIQUE

Pour généraliser facilement les résultats précédents, il est commode
d’utiliser les sommes S; des puissances des racines d’une équation algébrique:

Xn+1 —len —szn—l T e -—’0,,+1 = O, (16)

pour les exposants entiers j, tant positifs que négatifs ou nuls, et les com-
binaisons linéaires de ces sommes S.

Si on considére la puissance 0/ d’une racine § de 1’équation (16), d’expo-
sant j entier positif, négatif ou nul, comme une fonction f(j) de ’exposant j,
cette fonction vérifie la relation de récurrence:

SO = 2@ f(-1), (17)

ou la somme est étendue aux valeurs entieres de ide 1 a n + 1. Toute com-
binaison linéaire de plusieurs solutions de la relation de récurrence (17)
verifie aussi cette relation; en particulier, les sommes S; des puissances
d’exposant j des racines de I’équation (16) vérifie la relation:

S_] = Z(‘UL Sj—‘i)'

De fagon plus précise, on peut déterminer de maniére unique une solution
de la relation (17) qui prend des valeurs données pour n valeurs de la
variable j; elle peut €tre exprimée comme combinaison linéaire de »n solu-

tions particulieres de la relation (17), pourvu que ces solutions soient
linéairement indépendantes.
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En particulier, on peut déterminer une combinaison linéaire:
— j j j
K; (1,02, s Vp1q) = a1 0{ +a,05 + ... +a,.,0,{,

des puissances d’exposant j des racines de I’équation (16) telle que:

Kg=1, K., =0, K_,=0,.., K_, =0. (18)

-n

La fonction K est déterminée de maniere unique, pourvu que I’équation (16)
n’ait pas de racine multiple. Inversement, les fonctions f(j) = 67, pour
chaque racine 0 de I’équation (16), peuvent €tre exprimées comme com-
binaisons linéaires de n + 1 fonctions K ;, par exemple pour les valeurs
0, 1, ..., n de I'indice i.

Les fonctions K; (v, v,, ..., v,+1) peuvent &tre calculées, a partir des
valeurs initiales (18), au moyen de la formule de récurrence (17). Elles
peuvent aussi, pour les valeurs positives des indices j, étre exprimées en
fonction de v,, v,, ..., v,4+, par la formule:

P A A | I _
Kj<v1=v2, “'5vn+1) = 2<(]1 J2 J +1) '0]17}]2 ]n+1>

T 5 , 1 92 . Up4g
J1:J2 e idnt+1 ¢
(19)

ou la somme est étendue a toutes les décompositions de ’entier j en sommes
de la forme:

J=J1+ 2+ 33+ ... +m+1)j,4s (20)

avecC Ji, Ja, ---» Ju4+1 ENtiers positifs ou nuls.

Les sommes S;, ou plus généralement les fonctions S;, ; de l'indice j,
pour i fixe, peuvent étre exprimées comme combinaisons linéaires des
fonctions K; par la formule:

Si+j == uo K} + ul K_]-'l + ... —+ un Kj—-n

ou les coefficients u,, uy, ..., u, sont déterminés par les relations:

S.

i

= Up, Siv1 = Up Ky +uy, Sivz = Ug Ky +uy Ky + uy,
PN Si+n == uO Kn + ul Kn—l + .ne + Un.

Elles peuvent aussi &étre calculées, pour les entiers positifs j, en fonction
de v, v,, ..., v,41 par la formule:

ity e ey — DI
S—'Z(Ul J2 Jn+1 )

I JitiaVeednes !

j1_.j2 Jn+1
V] U3 ...vn+1> 21
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ol la somme est étendue aux décompositions de ’entier j de la forme (20) .

Exemples : Pour n = 4, les fonctions K, K5 et K¢ sont:

K, = v + 3v}0, + 20,05 + 97 + 0,
Ky =05 + 4030, + 3viv; + 3v,05 + 20,9, + 20,0, + 20,75
= 1% + 5viv, + 4vivs + 673%7)% + 3viv, + 6v,0,0;5 + 5

+ 20,0, + 035,

e
|

Pour n = 5, la fonction K, (avec v; = 0) est:

K, = 03 + 120,020, + 60202 + 5050, + 05 + 05 + 100303

+ 3v2v, + 6usv5v, + 12050507 .

IIT. CONGRUENCES DE DEGRE ARBITRAIRE

On cherche les conditions que doivent vérifier les entiers vy, vy, ..., Vy41
pour que la congruence:

X"t X" =0, X" - —0,,, =0, (N), (22

ol N est un entier premier, ait n + 1 solutions entieres et distinctes.
Le théoréme de FERMAT montre que, si les racines 6 de cette congruence
sont entieres, elles vérifient la congruence:

o1 =0, (N). 23)

Les fonctions K vérifient alors, pour toutes les valeurs enti€res positives,
négatives ou nulles de j, les congruences:

Kiin-1 = Kj, (N). (24)

Inversement, si n + 1 fonctions K;,; vérifient la congruence (24), les
racines 0 de la congruence (22), vérifient toutes la congruence de FERMAT (23)
et par suite sont entieres. Les fonctions K; ont d’ailleurs été choisies de
maniére que les conditions les plus simples correspondent aux valeurs
enticres de i de — n a 0.

Ainsi, les congruences:

Ky-n =0, Ky-w-1 =0, cee Ky-» =0, Ky-1, (N),

1) Loc. cit., p. 135, ou la formule est établie seulement pour vl = 0, mais peut étre généralisée facile-
ment. Voir aussi GLENISSON et DERDVIDUE, Mathesis (1960).
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sont des conditions nécessaires et suffisantes pour que la congruence (22)
ait n + 1 solutions entiéres et distinctes.

Il est facile de constater, d’un c6té que » des relations (25) entrainent
la (n + 1)me, de l'autre que I’éventualité v, = 0 apporte de notables sim-
plifications dans ces relations ).

Le casden + 1 = 2 présente un intérét particulier. Dans le cas général,
les relations (25) se réduisent alors a deux expressions identiques. C’est
ainsi que, pour N = 7, ces deux relations sont:

41 + 4020, + 3 =0, (7).

D’autre part, si v; = 0, (N), la relation Ky_, = 0, (N), est toujours vérifiée,
parce qu’elle contient v, en facteur, tandis que la relation Ky_; = 1, (N),
se réduit a:

p, N"DI2 = 1, (N).
Ce qui est la relation classique de GAUss, pour les restes quadratiques

suivant le module N, dont les formules (25) apparaissent ainsi comme une
généralisation aux congruences d’une variable de degré quelconque.

Exemples : Pour n = 3 et N = 7, la congruence (22) a pour solutions 1,
2 et 3 si ses coefficients sont égaux a:

v, =1, v, =3, vy = 3, (7).

Ces coefficients vérifient les congruences:

K, =0, Ks =0, Ke =1, (7).

Pour n = 3 et N = 11, la congruence (22) a pour solutions 1, 2 et 3 si:

7)155, 1)250, 713_—'?5, (11).

Ces coefficients vérifient les congruences:

Kg =98 + Tv§v, 4+ 6v]v; + 150705 + 20viv,v5 + 1003 v3 + 6v7v3

+ 120, v3v, + v5 + 30,03 = 0, (11)
02 + 8viv, + TvSv, + 2103035 + 300 v,v; + 2003 v5 + 10v] v5
+ 300203 v, + Sv,v5 + 120, 0,05 + dvs0; +03 =0, (11)

s
u

1) Sin+ 1=3etvl = 0,il n’y a plus dans le cas général qu’une seule relation pour en entrainer les
deux autres, cf. (13) et (14).
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Ko =00 + 9%, + 80]v; + 28050} + 42070,v; + 350703 + 1501 v3

+ 6003020, + 1503 0% + 200, v} 05 + 4v, V3

+ 300%v,v% + 05 + 6v30; = 1. (11)

Pour n = 4 et N = 17, la congruence:

X5—7)2x3—U3X2—‘U4X-—7)SEO, (17),

a 5 solutions enticres et distinctes dans les deux seuls cas suivants:

v, = 14)%, v, = 1147, v, =0, vy = 24°, (17,

ou

v, = 1202, vy = 1623, v, = 122%, vy = TA°, (17),

ol A est un entier arbitraire. Ces systemes de coefficients vérifient notam-
ment la relation donnée au paragraphe II ci-dessus (exemples).

VI. REMARQUES SUR LES PARTITIONS DE L’INDICE j

Il peut étre utile de contrdler le nombre total de termes dans ’expression
de la fonction K (vy, v,, ..., ¥,41), lorsqu’on la calcule par la formule (19).
Ce nombre est égal au nombre de partitions de I'indice j de la forme (20).

On peut pour cela construire un tableau triangulaire T, défini de la
facon suivante:

On fait correspondre a la colonne de rang i le coefficient v; de I’équa-
tion (16) d’indice i. A la ligne de rang j, on fait correspondre I'indice j de
la fonction K; considérée.

A Pintersection de la ligne de rang j et de la colonne de rang i, on porte
le nombre de termes de 'expression de K; ayant v; comme facteur d’indice
maximum.

Le nombre de termes de la fonction K, d’indice j, correspondant a une
équation (16) de degré n + 1, est alors la somme des n + 1 premiers termes
de la ligne de rang j.

On peut construire le tableau T par récurrence, ligne par ligne: ’élément
appartenant a la ligne de rang j et & la colonne de rang i est égal 4 la somme
des i premiers termes de la ligne de rang j — i.
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TABLEAU T

1 2 3 4 5 6 7 8 9 10

1 1

2 1 1

3 1 1 1

4 1 2 1 1

5 1 2 2 1 1

6 1 3 3 2 1 1

7 1 3 4 3 2 1 1

8 1 4 5 5 3 2 1 1

9 1 4 7 6 5 3 2 1 1
10 1 5 8 9 7 5 3 1 1

(Regu le 15 mars 1967)
S. Thouvenot
17, rue Raynouard

Paris (16)
Prof. F. Chatelet

11, rue Jules Haag
Besangon
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