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Ce résultat exprime que tout idéal premier propre dans k [Xl9 Xn] est

l'idéal des polynômes qui s'annulent en ses zéros algébriques sur k; un idéal
premier est donc défini par ses zéros algébriques sur k. Un idéal maximal
coïncide avec l'idéal des polynômes qui s'annulent en un point M e kn (ils
peuvent s'annuler en d'autres points, qui sont en nombre fini, et qu'on
appelle les conjugués de M sur k).

Du théorème 7 on déduit d'autres variantes pour le théorème des zéros
de Hilbert, par exemple:

Théorème 8. Si un idéal I dans A k [Xl5 XJ n 'a pas de zéros algé¬

briques sur k, cet idéal est impropre : I A.

En effet, si l'idéal / était propre, il serait contenu dans un idéal maximal

M, donc premier. Il existerait un polynôme F $ M et un zéro de M
donc de /, qui n'annulerait pas F.

Sous une forme plus élémentaire, le théorème 8 exprime le résultat
suivant: si le système d'équations :

MXl9...,XJ 0 ; i 1,2, p,
avec

ftek

n'a pas de solutions dans la clôture algébrique k, il existe des polynômes
A i 6 k [Xu XJ tels que :

t Afti •

i= 1

Signalons encore la conséquence:

Théorème 9. Si un polynôme F e k [X1? XJ 51 'annule pour tous les zéros

algébriques sur k d'un idéal 1 de k [Xl5 XJ, il existe un entier p positif
tel que :

fpel.
(Démonstration élémentaire de Rabinovitch, à partir du théorème 8,

exposée par exemple dans [9], p. 4, ou [10], tome II, p. 102.)

6. Anneaux réguliers

Le problème intervenant dans la définition d'un anneau de Jacobson

est celui de la représentation d'un idéal premier comme intersection des

idéaux maximaux qui le contiennent. On peut exiger davantage:
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Problème 2. Quels sont les anneaux (commutatifs et unitaires) tels que

tout idéal soit l'intersection des idéaux maximaux qui le contiennent?

Dans un tel anneau, on a nécessairement:

(4) Aa2 Aa ya e A

car les idéaux maximaux qui contiennent a sont identiques à ceux qui
contiennent a2; leur intersection est donc la même pour l'idéal engendré

par a et pour l'idéal engendré par a2. La relation (4) s'écrit encore:

(5) ya e A gx e A tel que : a xa2 axa

Définition 5. Un anneau vérifiant la propriété (5) s'appelle un anneau

régulier (au sens de J. Von Neumann).

Les anneaux qui sont solution du problème 2 sont donc réguliers.

Réciproquement, un anneau régulier est solution du problème 2.

Démontrons d'abord que le radical de Jacobson de l'anneau régulier A est

nul. Si a e Rj, l'égalité :

a (1 — xa) 0

entraîne a 0 car 1 — xa est inversible d'après le théorème 1. On démontre
de même que le radical de Jacobson de l'anneau quotient A/I est nul,
/ étant un idéal quelconque. Il en résulte que l'idéal I est l'intersection des

idéaux maximaux qui le contiennent.
On a donc démontré le théorème suivant:

Théorème 10. Pour qu'un anneau soit solution du problème 2, il faut et
il suffit qu'il soit régulier.

Remarquons qu'un anneau régulier intègre est un corps et que, dans un
anneau régulier, tout idéal premier est maximal.

7. Le problème de la synthèse spectrale

Il est remarquable que certains problèmes fondamentaux de l'Analyse
admettent une formulation algébrique empruntée à la théorie des idéeaux
et aux idéaux maximaux. Je citerai le problème de la synthèse spectrale. En
analyse, on fait intervenir, outre la structure d'anneau, une structure
topologique. Les idéaux les plus intéressants sont les idéaux fermés,
d'autant plus que tout idéal maximal est fermé. Le problème de la synthèse
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