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1. RADICAL DE JACOBSON D’UN ANNEAU

Dans toute la suite, 4 désigne un anneau commutatif et unitaire. Nous
supposons connues la notion d’idéal dans A4, d’idéal premier, d’idéal maxi-
mal, d’anneau quotient, ainsi que les propriétés suivantes: tout idéal propre!)
est contenu dans un idéal maximal (théoréme de Krull); pour que I'idéal P
soit premier, il faut et il suffit que I’anneau quotient 4/P soit intégre; pour
que I'idéal M soit maximal, il faut et il suffit que I’anneau quotient A/M
soit un corps (pour ces définitions et propriétés, se reporter par exemple

a [1], [3] ou [8]).
Définition 1. On appelle radical de Jacobson de ’anneau A4 I'intersec-
tion R; de tous les idéaux maximaux M de A4:

R[:—‘ﬁM,

M décrivant I’ensemble de tous les idéaux maximaux.
Les éléments de R, sont caractérisés par la propriété suivante.

THEOREME 1. Le radical de Jacobson R de I’anneau A est un idéal dont tous
les éléments X vérifient la propriété.
(P): 1 — x est inversible dans A.

Et c’est le plus grand idéal ayant cette propriété.

En effet, soit x € R;. Si 1 — x n’était pas inversible, I'idéal 4 (1 — x)
constitué par les multiples de 1 — x serait propre, donc contenu dans un
idéal maximal M. Mais on aurait alors: xe M; 1 —xe M, dou 1 e M,
ce qui est impossible. Tous les éléments de R, vérifient donc la propriété (P).
D’ailleurs R, est un idéal comme intersection d’idéaux (maximaux).

Réciproquement, soit I un idéal dont les éléments vérifient la pro-
priété (P). Supposons I & R;. Il existerait un idéal maximal M tel que I & M,
donc un élément i € I, i ¢ M. Mais, M étant maximal, on a: M + Ai = A,
dou: 1 = m-+tai, meM, ae A. L’élément ai appartient a I et, d’apres
la propriété (P), 1 — ai = m serait inversible, ce qui est impossible puisque
M est propre. On a donc I < R;.

2. RADICAL DE JACOBSON DE k [ X]

Soit A = k [X] I'anneau des polyndmes a une indéterminée X et a
coeflicients dans un corps commutatif quelconque k. Nous allons démontrer
que son radical de Jacobson est nul.

1) Yappelle idéal propre un idéal différent de A4; il ne contient pas I’élément unité 1 de 4.
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THEOREME 2. Le radical de Jacobson de 1’anneau k [X] est nul (ou encore:
I’idéal nul est Pintersection de tous les idéaux maximaux de k [X]).
En effet, supposons Fe R;, F # 0. On a donc:

F=b,X"+..+b, by#0, n>0.

Afin de prendre un polyndme de degré positif, formons: XF # O,
XF e R;. Le polyndme 1 — XF serait donc inversible dans k [X] d’apres
le théoréme 1, ce qui est impossible puisque son degré est supérieur ou
¢gal a 1.

On démontre exactement de la méme fagon:

THEOREME 2'. Si A est intégre, le radical de Jacobson de [’anneau A [X]
est nul.

Application. Soit Fek [X], F # 0. D’aprés le théoréme 2, il existe
donc un idéal maximal M ne contenant pas F. L’anneau k [X] étant & idéaux
principaux, I'idéal M = AY (X) est engendré par un polyndme irréductible
sur k:

Y(X) =X+ ..4+a,, d>0.

L’anneau quotient k [X]/M est un corps K (puisque M est maximal) qui
contient un sous-corps isopmorphe & k et que nous identifions avec k; la
classe £ de X est un zéro de ¥ dans ce corps K (qui est ’extension algébrique
simple k& (&)). De plus, ce zéro & n’annule pas F puisque: F (&) = 0 <
F(X)e M. Donc:

THEOREME 3. Si FeK [X], F # 0, il existe toujours &, algébrique sur k,
tel que F (&) # O.
A chaque idéal maximal M de 4 = k [X] est associé le polyndme irré-
ductible ¥ = X? 4+ ... + a;. On peut préciser que ces idéaux maximaux,
comme ces polyndmes irréductibles, sont en nombre infini.

THEOREME 4.
a) il existe une infinité d’idéaux maximaux dans k [X].
b) il existe une infinité de polynémes irréductibles sur k dans k [X].

¢) la cloture algébrique k de k contient une infinité d’éléments.

En effet, a) résulte de b) d’aprés la correspondance biunivoque existant
entre les idéaux maximaux de k [X] et les polyndmes irréductibles sur k.
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Démontrons b). S’il n’y avait qu’un nombre fini de polynémes irréductibles
Y, ¥,,.., ¥, on pourrait former le polyndme produit F = ¥, ¥, ...
¥, # 0. Il existerait un idéal maximal M ne contenant pas F, soit
M = AY,, ou Y, est irréductible et figure donc dans les facteurs de F.
Il en résulterait Fe M, ce qui est contraire & ’hypothése.

Quant a la partie ¢) de ’énoncé, supposant connue la notion de cloture
algébrique k de k (le corps k englobe tous les éléments algébriques sur k),
il suffit de remarquer que les racines des polyndmes irréductibles ¥; donnent
une infinité d’éléments de k. En effet, deux polyndmes irréductibles ¥, et ¥,
différents ne peuvent avoir une racine ¢ commune puisque le polynéme ¥,
est déterminé par ¢ comme base de I'idéal des polyndmes de k& [X] s’annu-
lant pour &. Il y a donc autant (ou plus) d’éléments & € k que de polyndmes
irréductibles ¥. Remarquons par contre que deux valeurs de ¢ différentes
peuvent définir le méme polyndme ¥; c’est le cas de i et — i pour ’anneau
R[X], qui sont deux racines distinctes du polyndme irréductible X - 1.

Ainsi, la notion de radical de Jacobson d’un anneau donne une démons-
tration simple du théoréeme 4c, que I'on établit d’habitude par d’autres
moyens. Si le corps k possede une infinité d’éléments, par exemple si sa
caractéristique est nulle, I’existence d’une infinité d’éléments de k est évi-
dente. Par contre, si le corps k a la caractéristique p, par exemple si
k = {O, 1} est le mini-corps a deux éléments de caractéristique 2, on consi-
dére le champ de Galois des racines de ’équation X?" — X = 0, qui posséde
p" éléments. Comme r est aussi grand qu’on veut, on voit bien que k ne peut
avoir un nombre fini d’éléments.

3. ANNEAU DE JACOBSON

Dans le cas de I'anneau k [X], tout idéal premier P non nul est maximal.
Cette propriété tient au fait que ’anneau k [X] est intégre et principal (voir
par exemple [10], page 71). Donc, I'idéal premier P # O est égal a 'inter-
section des idéaux maximaux M qui le contiennent, un tel idéal M étant
nécessairement P lui-méme. L’idéal nul, qui est premier aussi, est encore
I'intersection des idéaux maximaux qui le contiennent d’apres le théoreme 2.
Il en résulte que ’anneau k [X] est un anneau de Jacobson, conformément
a la définition suivante:

Définition 2. On appelle anneau de Jacobson un anneau integre A dans
lequel tout idéal premier P est égal a l'intersection des idéaux maximaux
qui le contiennent.
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