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1. Radical de Jacobson d'un anneau

Dans toute la suite, A désigne un anneau commutatif et unitaire. Nous
supposons connues la notion d'idéal dans A, d'idéal premier, d'idéal maximal,

d'anneau quotient, ainsi que les propriétés suivantes : tout idéal propre2)
est contenu dans un idéal maximal (théorème de Krull); pour que l'idéal P
soit premier, il faut et il suffit que l'anneau quotient AjP soit intègre; pour
que l'idéal M soit maximal, il faut et il suffit que l'anneau quotient A)M
soit un corps (pour ces définitions et propriétés, se reporter par exemple
à [1], [3] ou [8]).

Définition L On appelle radical de Jacobson de l'anneau A l'intersection

Rj de tous les idéaux maximaux M de d:

Rj n M,

M décrivant l'ensemble de tous les idéaux maximaux.
Les éléments de Rj sont caractérisés par la propriété suivante.

Théorème 1. Le radical de Jacobson R3 de l 'anneau A est un idéal dont tous
les éléments x vérifient la propriété.

(P): 1 — x est inversible dans A.
Et c 'est le plus grand idéal ayant cette propriété.

En effet, soit x e Rj. Si 1 — x n'était pas inversible, l'idéal A (1 — x)
constitué par les multiples de 1 — x serait propre, donc contenu dans un
idéal maximal M. Mais on aurait alors: x e M; 1 — x e M, d'où 1 e M,
ce qui est impossible. Tous les éléments de Rj vérifient donc la propriété (P).
D'ailleurs Rj est un idéal comme intersection d'idéaux (maximaux).

Réciproquement, soit I un idéal dont les éléments vérifient la
propriété (.P). Supposons I $ Rj. Il existerait un idéal maximal M tel que / $ M,
donc un élément i e /, i M. Mais, M étant maximal, on a: M + Ai A,
d'où: 1 m + ai, m g M, a e A. L'élément ai appartient à I et, d'après
la propriété (P), 1 — ai m serait inversible, ce qui est impossible puisque

M est propre. On a donc I ç Rj.

2. Radical de Jacobson de k [X]

Soit A k [X] l'anneau des polynômes à une indéterminée X et à

coefficients dans un corps commutatif quelconque k. Nous allons démontrer

que son radical de Jacobson est nul.

i) J'appelle idéal propre un idéal différent de >4 ; il ne contient pas l'élément unité 1 de A.
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