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1. RADICAL DE JACOBSON D’UN ANNEAU

Dans toute la suite, 4 désigne un anneau commutatif et unitaire. Nous
supposons connues la notion d’idéal dans A4, d’idéal premier, d’idéal maxi-
mal, d’anneau quotient, ainsi que les propriétés suivantes: tout idéal propre!)
est contenu dans un idéal maximal (théoréme de Krull); pour que I'idéal P
soit premier, il faut et il suffit que I’anneau quotient 4/P soit intégre; pour
que I'idéal M soit maximal, il faut et il suffit que I’anneau quotient A/M
soit un corps (pour ces définitions et propriétés, se reporter par exemple

a [1], [3] ou [8]).
Définition 1. On appelle radical de Jacobson de ’anneau A4 I'intersec-
tion R; de tous les idéaux maximaux M de A4:

R[:—‘ﬁM,

M décrivant I’ensemble de tous les idéaux maximaux.
Les éléments de R, sont caractérisés par la propriété suivante.

THEOREME 1. Le radical de Jacobson R de I’anneau A est un idéal dont tous
les éléments X vérifient la propriété.
(P): 1 — x est inversible dans A.

Et c’est le plus grand idéal ayant cette propriété.

En effet, soit x € R;. Si 1 — x n’était pas inversible, I'idéal 4 (1 — x)
constitué par les multiples de 1 — x serait propre, donc contenu dans un
idéal maximal M. Mais on aurait alors: xe M; 1 —xe M, dou 1 e M,
ce qui est impossible. Tous les éléments de R, vérifient donc la propriété (P).
D’ailleurs R, est un idéal comme intersection d’idéaux (maximaux).

Réciproquement, soit I un idéal dont les éléments vérifient la pro-
priété (P). Supposons I & R;. Il existerait un idéal maximal M tel que I & M,
donc un élément i € I, i ¢ M. Mais, M étant maximal, on a: M + Ai = A,
dou: 1 = m-+tai, meM, ae A. L’élément ai appartient a I et, d’apres
la propriété (P), 1 — ai = m serait inversible, ce qui est impossible puisque
M est propre. On a donc I < R;.

2. RADICAL DE JACOBSON DE k [ X]

Soit A = k [X] I'anneau des polyndmes a une indéterminée X et a
coeflicients dans un corps commutatif quelconque k. Nous allons démontrer
que son radical de Jacobson est nul.

1) Yappelle idéal propre un idéal différent de A4; il ne contient pas I’élément unité 1 de 4.
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