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DIVERS ASPECTS DE LA THEORIE DES IDEAUX
D’UN ANNEAU COMMUTATIF

(en liaison avec le radical de Jacobson et le théoréme des zéros
de Hilbert) 1)

par L. LESIEUR

Je présente ici deux théorémes classiques d’algébre, assez profonds, liés
3 la théorie des idéeaux d’un anneau. Le premier est un théoréme de trans-
fert de ’anneau 4 a 'anneau A4 [X] des polyndmes a une indéterminée X
et & coefficients dans A4; le deuxiéme est le célebre théoréme des zéros de
Hilbert. Les démonstrations s’appuient sur la notion de radical de Jacobson
d’un anneau et elles utilisent la théorie des idéaux.

L’intérét de la théorie des idéaux dans I'enseignement des mathématiques
n’est pas contestable: les propriétés des nombres entiers en arithmétique,
en particulier celles qui font intervenir le plus grand commun diviseur ou
le plus petit commun multiple, ne prennent toute leur valeur qu’en considé-
rant les idéaux de I'annecau Z des entiers relatifs, qui sont tous principaux.

On gagne ainsi en élégance et en généralité 2). On perd peut-Etre en sim-
plicité; il ne faut pas dissimuler, en effet, que certains esprits trouvent en
algébre des difficultés plus grandes que dans d’autres branches des mathé-
matiques; cela s’explique car le degré d’abstraction y est souvent plus
grand. Par exemple, I’étude des propriétés des anneaux principaux, c’est-
a-dire des anneaux dans lesquels tout idéal est principal, peut paraitre plus
abstraite que celle des propriétés des nombres réels en analyse: c’est que la
structure du corps R des réels est bien déterminée, qu’il en existe par
exemple un modele canonique construit par extensions successives de
I’anneau Z des entiers relatifs, puis du corps O des rationnels. Par contre,
il ne peut exister un modele bien déterminé d’anneau principal, la notion
pouvant s’appliquer aussi bien a Z, qu’a 'anneau k [X] des polyndmes a
coefficients dans un corps K, aux anneaux euclidiens... Je me permets de
livrer ces réflexions au passage, parce que j’ai longtemps pensé que I’analyse
pouvait paraitre plus difficile que I’algebre, et que je n’en suis plus aussi sr
a I’heure actuelle. Mais j’aborde maintenant le principal de mon sujet.

1) Conférence donnée & la Faculté des Sciences de Poitiers en mars 1967.
2) Le mot d’idéal n’est-il pas a lui seul un séduisant programme ?
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1. RADICAL DE JACOBSON D’UN ANNEAU

Dans toute la suite, 4 désigne un anneau commutatif et unitaire. Nous
supposons connues la notion d’idéal dans A4, d’idéal premier, d’idéal maxi-
mal, d’anneau quotient, ainsi que les propriétés suivantes: tout idéal propre!)
est contenu dans un idéal maximal (théoréme de Krull); pour que I'idéal P
soit premier, il faut et il suffit que I’anneau quotient 4/P soit intégre; pour
que I'idéal M soit maximal, il faut et il suffit que I’anneau quotient A/M
soit un corps (pour ces définitions et propriétés, se reporter par exemple

a [1], [3] ou [8]).
Définition 1. On appelle radical de Jacobson de ’anneau A4 I'intersec-
tion R; de tous les idéaux maximaux M de A4:

R[:—‘ﬁM,

M décrivant I’ensemble de tous les idéaux maximaux.
Les éléments de R, sont caractérisés par la propriété suivante.

THEOREME 1. Le radical de Jacobson R de I’anneau A est un idéal dont tous
les éléments X vérifient la propriété.
(P): 1 — x est inversible dans A.

Et c’est le plus grand idéal ayant cette propriété.

En effet, soit x € R;. Si 1 — x n’était pas inversible, I'idéal 4 (1 — x)
constitué par les multiples de 1 — x serait propre, donc contenu dans un
idéal maximal M. Mais on aurait alors: xe M; 1 —xe M, dou 1 e M,
ce qui est impossible. Tous les éléments de R, vérifient donc la propriété (P).
D’ailleurs R, est un idéal comme intersection d’idéaux (maximaux).

Réciproquement, soit I un idéal dont les éléments vérifient la pro-
priété (P). Supposons I & R;. Il existerait un idéal maximal M tel que I & M,
donc un élément i € I, i ¢ M. Mais, M étant maximal, on a: M + Ai = A,
dou: 1 = m-+tai, meM, ae A. L’élément ai appartient a I et, d’apres
la propriété (P), 1 — ai = m serait inversible, ce qui est impossible puisque
M est propre. On a donc I < R;.

2. RADICAL DE JACOBSON DE k [ X]

Soit A = k [X] I'anneau des polyndmes a une indéterminée X et a
coeflicients dans un corps commutatif quelconque k. Nous allons démontrer
que son radical de Jacobson est nul.

1) Yappelle idéal propre un idéal différent de A4; il ne contient pas I’élément unité 1 de 4.
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THEOREME 2. Le radical de Jacobson de 1’anneau k [X] est nul (ou encore:
I’idéal nul est Pintersection de tous les idéaux maximaux de k [X]).
En effet, supposons Fe R;, F # 0. On a donc:

F=b,X"+..+b, by#0, n>0.

Afin de prendre un polyndme de degré positif, formons: XF # O,
XF e R;. Le polyndme 1 — XF serait donc inversible dans k [X] d’apres
le théoréme 1, ce qui est impossible puisque son degré est supérieur ou
¢gal a 1.

On démontre exactement de la méme fagon:

THEOREME 2'. Si A est intégre, le radical de Jacobson de [’anneau A [X]
est nul.

Application. Soit Fek [X], F # 0. D’aprés le théoréme 2, il existe
donc un idéal maximal M ne contenant pas F. L’anneau k [X] étant & idéaux
principaux, I'idéal M = AY (X) est engendré par un polyndme irréductible
sur k:

Y(X) =X+ ..4+a,, d>0.

L’anneau quotient k [X]/M est un corps K (puisque M est maximal) qui
contient un sous-corps isopmorphe & k et que nous identifions avec k; la
classe £ de X est un zéro de ¥ dans ce corps K (qui est ’extension algébrique
simple k& (&)). De plus, ce zéro & n’annule pas F puisque: F (&) = 0 <
F(X)e M. Donc:

THEOREME 3. Si FeK [X], F # 0, il existe toujours &, algébrique sur k,
tel que F (&) # O.
A chaque idéal maximal M de 4 = k [X] est associé le polyndme irré-
ductible ¥ = X? 4+ ... + a;. On peut préciser que ces idéaux maximaux,
comme ces polyndmes irréductibles, sont en nombre infini.

THEOREME 4.
a) il existe une infinité d’idéaux maximaux dans k [X].
b) il existe une infinité de polynémes irréductibles sur k dans k [X].

¢) la cloture algébrique k de k contient une infinité d’éléments.

En effet, a) résulte de b) d’aprés la correspondance biunivoque existant
entre les idéaux maximaux de k [X] et les polyndmes irréductibles sur k.
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Démontrons b). S’il n’y avait qu’un nombre fini de polynémes irréductibles
Y, ¥,,.., ¥, on pourrait former le polyndme produit F = ¥, ¥, ...
¥, # 0. Il existerait un idéal maximal M ne contenant pas F, soit
M = AY,, ou Y, est irréductible et figure donc dans les facteurs de F.
Il en résulterait Fe M, ce qui est contraire & ’hypothése.

Quant a la partie ¢) de ’énoncé, supposant connue la notion de cloture
algébrique k de k (le corps k englobe tous les éléments algébriques sur k),
il suffit de remarquer que les racines des polyndmes irréductibles ¥; donnent
une infinité d’éléments de k. En effet, deux polyndmes irréductibles ¥, et ¥,
différents ne peuvent avoir une racine ¢ commune puisque le polynéme ¥,
est déterminé par ¢ comme base de I'idéal des polyndmes de k& [X] s’annu-
lant pour &. Il y a donc autant (ou plus) d’éléments & € k que de polyndmes
irréductibles ¥. Remarquons par contre que deux valeurs de ¢ différentes
peuvent définir le méme polyndme ¥; c’est le cas de i et — i pour ’anneau
R[X], qui sont deux racines distinctes du polyndme irréductible X - 1.

Ainsi, la notion de radical de Jacobson d’un anneau donne une démons-
tration simple du théoréeme 4c, que I'on établit d’habitude par d’autres
moyens. Si le corps k possede une infinité d’éléments, par exemple si sa
caractéristique est nulle, I’existence d’une infinité d’éléments de k est évi-
dente. Par contre, si le corps k a la caractéristique p, par exemple si
k = {O, 1} est le mini-corps a deux éléments de caractéristique 2, on consi-
dére le champ de Galois des racines de ’équation X?" — X = 0, qui posséde
p" éléments. Comme r est aussi grand qu’on veut, on voit bien que k ne peut
avoir un nombre fini d’éléments.

3. ANNEAU DE JACOBSON

Dans le cas de I'anneau k [X], tout idéal premier P non nul est maximal.
Cette propriété tient au fait que ’anneau k [X] est intégre et principal (voir
par exemple [10], page 71). Donc, I'idéal premier P # O est égal a 'inter-
section des idéaux maximaux M qui le contiennent, un tel idéal M étant
nécessairement P lui-méme. L’idéal nul, qui est premier aussi, est encore
I'intersection des idéaux maximaux qui le contiennent d’apres le théoreme 2.
Il en résulte que ’anneau k [X] est un anneau de Jacobson, conformément
a la définition suivante:

Définition 2. On appelle anneau de Jacobson un anneau integre A dans
lequel tout idéal premier P est égal a l'intersection des idéaux maximaux
qui le contiennent.
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Nous allons voir que la propriété pour un anneau 4 d’étre un anneau
de Jacobson se transfére a I’anneau des polyndomes A [X]. On connait
d’autres propriétés simples de transfert de 4 & 4 [X], par exemple le carac-
tére « intégre », ou « factoriel ». Par contre, le caractére « principal » ne
passe pas: k [X] est principal, mais k [X, Y] ne l'est pas. Nous allons
démontrer cette propriété de transfert pour les anneaux de Jacobson.

4, THEOREME DE TRANSFERT

Si A est un anneau de Jacobson, il en est de méme de I'anneau A [X]
des polynomes a coefficients dans A.

Il faut donc démontrer que, si £ est un idéal premier de A [X], & est
I'intersection des idéaux maximaux qui le contiennent, ou encore:

THEOREME 5. Si P est un idéal premier propre et si F ¢ P, il existe un idéal

maximal M tel que: ? = M, F ¢ M.

Pour étudier les idéaux premiers 2 de 4 [X], nous considérons les idéaux

sulvants:
p=Pn A: idéal projection (ou restriction); c’est un idéal premier
propre de A4;

II = A [X]yp: idéal projetant (ou extension de p) engendré par I'idéal p
dans 4 [X]. Cest un idéal premier dans 4 (X) formé
par les polyndmes dont les coefficients sont des éléments
de p.

On a les inclusions suivantes:

pcll 2.

Premier cas: ? = II.
L’idéal £ est alors formé des polyndmes:

ag X"+ ... +a,, a,€p.

Nous allons voir que le théoréme 5 est vrai dans ce cas, sans autre
hypothese sur A.
Soit:
F(X) =by X" 4 ... +b,¢1II.

On a donc au moins un coefficient b ; qui n’appartient pas & p et on
peut supposer que c’est le premier b,.

Considérons 'anneau quotient A/p, qui est intdgre puisque p est pre-
mier, et ’homomorphisme canonique ¢ : 4 — A/ p.Appelons ¢ (a) = dlaclasse
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de a modulo p. L’homomorphisme ¢ peut étre étendu & un homomorphisme
@ de 'anneau des polyndmes A4 [X] sur ’anneau des polyndmes A/p [X].
Le noyau de @ est précisément I’idéal IT. L’image F de F est un polyndme
non nul de 4/p [X]. On peut donc lui appliquer le théoréme 2’, et il existe
un polyndme maximal M de A4/p [X] qui ne contient pas F. Son image
inverse M par @ est un polyndme maximal de 4 [X] qui contient IT et qui
ne contient pas F.

Deuxieme cas: Il < 2.

Soit k le corps des fractions de I’anneau intégre 4/p et i 'injection cano-
nique de 'anneau A/p dans le corps k. On peut étendre cette injection a
une injection I de 4/p [X] dans k£ [ X]. On aura donc, avec ’homorphisme &
déja considéré, le diagramme suivant:

@ 1
A[X] > Afp[X] - k[X].

L’idéal premier 2 de A [X] est alors envoyé par @ sur un idéal premier
non nul de 4/p [X], qui engendre dans k [X] un idéal premier non nul, donc
engendré par un polynome irréductible sur k que Ion peut prendre sous
la forme:

?=50Xd+...+5d, a0¢p, d>0.

Tout polynéme P e # donne dans A4/p [X] un polyndme P dont la

division dans k [X] par ¥ conduit a la relation:
asP = BY (Be A/p[X], p entier).

Cette relation entraine dans A4 [X]:
(1) ab P = BY (modIl), ay,¢p.

Réciproquement, tout polyndome P vérifiant cette relation appartient a
2 puisque le second membre est contenu dans 2, que Z est premier, et
que a, ¢ 2. Les polyndmes de I'idéal premier & sont donc caractérisés par
la relation (1).

Considérons maintenant le polyndme F¢ 2. On aura donc F ¢ P et,

dans k [X], les polynOmes ¥ et F seront premiers entre eux. Ils vérifient
donc I'égalité de Bezout dans k [X], qui donne dans 4/p [X] en chassant
le dénominateur:

UF + V¥ =i, uecd, u¢p
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d’ou, dans A4 [X]:
(2) UF + V¥ =u (modIl), u¢p

Prenons alors, avec I’hypothése faite sur ’anneau 4, un idéal maximal m
de A contenant p et ne contenant pas ua, ¢ p.

On vérifie aisément que I'idéal I engendré par m et ¥ dans 4 [X] a pour
projection m dans A. En effet: ¥ = a, X + ... + a” est tel que ap ¢m
puisque ua, ¢ m. Soit alors une égalité de la forme:

v = LY (mod A[X]m), wveA.

En prenant les coefficients modulo m, c’est-a-dire en opérant dans le
corps A/m et I'anneau A4/m [X], on remarque que le deuxi¢me membre,
s’il n’est pas nul, a un degré positif, tandis que le premier aurait un degre
nul. On a donc v = 0 (mod m), ou v e M.

Considérons un idéal maximal M contenant /. Sa projection M N A
contient I’idéal maximal m et elle est donc égale m. Il en résulte que ua, ¢ M.
Par suite, M contient ’idéal premier 2 d’aprés (1) et ne peut contenir le
polyndme F d’apres (2).

Le théoréme est établi. Le résultat est di a W. KruLL [6]. La démons-
tration donnée ici est inspirée de [7].

A propos de cette démonstration, on peut se poser le probléme suivant:

Probléme : La projection d’un idéal maximal M de A [X] est-elle un
idéal maximal m de 4 ?

La réponse n’est pas évidente pour un anneau de Jacobson quelconque.

On peut démontrer au moyen de la théorie de la dimension qu’elle est
affirmative dans le cas d’un anneau de polynomes 4 = k [X, ..., X,] a n
indéterminées sur un corps k. Cet anneau est un anneau de Jacobson
particulier: en effet, k£ [X;] étant un anneau de Jacobson, ainsi qu’on I’a
remarqué au début du paragraphe 3, le théoréme de transfert peut s’appli-
quer. On peut donc énoncer le résultat suivant:

THEOREME 6. k étant un corps commutatif quelconque, [’anneau de poly-
nomes k [Xy, ..., X,]| est un anneau de Jacobson.
5. LE THEOREME DES ZEROS DE HILBERT

Considérons un idéal premier propre & de I'anneau de polyndmes
k [Xy, ..., X,], k étant un corps quelconque. Soit k la cldture algébrique
de k; nous prendrons les zéros des polyndmes f € k [X, ..., X,] dans I’espace
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affine k”. Un zéro de f est donc un point M = (x, ..., x,); x; € k, tel que
fM) = f(xy, ..., x,) = 0. Par exemple, si k = R est le corps des réels, on
a k = C et les zéros des polyndmes (2 coefficients réels) sont pris dans
I'espace affine C" des points a coordonnées complexes.

Définition 3. On appelle zéro de l’idéal P, algébrique sur k, un point
de k" qui annule tous les polynémes de I'idéal 2.

Définition 4. On appelle variété algébrique V (2) de I'idéal premier 2
I’ensemble des zéros de 2; on a donc:

V(2) = (Mek'|f(M) =0 vyfe?}.

Le théoréme des zéros de Hilbert (Hilbertscher Nullstellensatz) s’énonce
alors:

THEOREME 7. 2 étant un idéal premier propre de [’anneau k [X{, X,, ..., X,],
et F un polynéme n’appartenant pas a P, il existe un zéro de P, algébrique
sur k, qui n’annule pas F.

La démonstration se fait comme pour le théoréme de transfert, avec
en plus un support géométrique utile donné par la notion de variété
algébrique.

Raisonnons par récurrence sur .

Si n = 1, on considere I'idéal premier 2 dans k [X], et le polyndme
F¢ 2. Dans le cas 2 = 0, 'existence d’un zéro de £ algébrique que k,
qui n’annule pas F, est assurée par le théoréme 3. Dans le cas & # 0, on
a? = (¥), ou ¥ est un polyndome irréductible sur k et on applique la
démonstration donnée pour le théoreme 3.

Supposons le théoréme établi pour n — 1 et démontrons le pour z.
En posant 4 = k[X;, .., X,_;] et X, = X, on étudie I'idéal premier 2
dans A4 [X] comme dans le théoréme de transfert (§ 4). L’idéal premier £
a pour variété algébrique V' (2) dans 'espace affine k", et I'idéal projection
P A = p a pour variété V(p) dans I'espace affine k"~ '. L’idéal proje-
tant IT engendré par p dans A4 [X] a pour variété un cylindre qui contient
V() et V(p)Y.

Premier cas: P = II.

Soit:
F=by X"+ ...+ b, ¢ ,by¢p.

1) ¥ (p) contient la projection ensembliste de ¥ (%) mais peut la contenir strictement. Exemple:
¢ = (XY —1) dans k [X, Y]a pour variété une hyperbole qui se projette sur O X suivant’axe X’ OX —{0¢,
alors que p = 0 a pour variété ¥V (p) = X' OX.
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D’aprés I'hypothése de récurrence, il existe un z€ro (xy, ..., x,_1)dep,
donc de I, algébrique sur k, qui n’annule pas b,.
Les racines de I’équation:

(3) bo(xl, [P xn_l)Xm + ... + bm(xl, ey Xn__l) = 0,

sont en nombre fini et on peut donc choisir dans k, qui est infini d’apres
le théordme 4c, un élément x, qui n’est pas une racine de I’équation (3).
Le point M = (xy, ..., X,_1, X,) sera donc un zéro algébrique sur k de &
qui n’annule pas F.

Deuxieme cas : Il < 2.
Reprenons les relations du paragraphe 4:

(1) abP = BY (mod II), ap¢p,
(2) UF + V¥ =u (modIl), wuep,
avec

W:aon‘*—...—l“‘ad, aoép, d>0.

Prenons, d’aprés hypotheése de récurrence, un zéro (xy, ..., x,_1)dep,
algébrique sur k, qui n’annule pas ua, ¢ p. Choisissons pour x, une racine
de I’équation:

Yj(xla *"axn—laX) = aO('xl) '“9xn—1)Xd + ...t ad(xD "'axn—-l) = 0.

Le point M = (x,, ..., X,_1, X,) est alors un zéro de tout polynome
Pe P dapres (1), et ce zéro ne peut annuler F d’aprés (2). Le théoréme
est donc établi.

Pour comprendre la signification du théoréme des zéros de Hilbert en
géométrie algébrique, considérons I'idéal J (V(£)) qui est ’ensemble des
polyndmes de 'anneau k [X|, ..., X,] s’annulant en tous les points de V (£):

JV(?) ={fek[Xs, ...X, ]I (M) =0 yMeV(2)}.
D’apres la définition 4 de V (2), on a évidemment:
JV(P)=22.

Supposons que I'inclusion soit stricte; il existerait donc Fe J et F¢ 2.
Mais le théoreme des zéros de Hilbert entrainerait 1’existence d’un point
Me V(2) tel que F(M) # 0, ce qui contredit la propriété FeJ. On a
donc:

J(V(P) = 2.
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Ce résultat exprime que tout idéal premier propre dans k [X,, ..., X,] est
[’idéal des polynémes qui s annulent en ses zéros algébriques sur k; un idéal
premier est donc défini par ses zéros algébriques sur k. Un idéal maximal
coincide avec 'idéal des polyndmes qui s’annulent en un point M e k" (ils
peuvent s’annuler en d’autres points, qui sont en nombre fini, et qu’on
appelle les conjugués de M sur k).

Du théoréme 7 on déduit d’autres variantes pour le théoréme des zéros
de Hilbert, par exemple:

THEOREME 8. Si un idéal 1 dans A = k [X,, ..., X,] n’a pas de zéros algé-
briques sur k, cet idéal est impropre: 1 = A.

En effet, si I’idéal I était propre, il serait contenu dans un idéal maxi-
mal M, donc premier. Il existerait un polynéome F¢ M et un zéro de M
donc de J, qui n’annulerait pas F.

Sous une forme plus élémentaire, le théoréme 8 exprime le résultat
suivant: si le systeme d’équations :

fi(X{,...,X,) = 0; i=1,2,....p,
avec
fiek[X¢, ... X,],

n’a pas de solutions dans la cloture algébrique k, il existe des polynémes
A;ek[Xy, ..., X,] tels que :

p
Z A fi = 1.
i=1

Signalons encore la conséquence:

THEOREME 9. Siun polynéme F € k [X,, ..., X,] s ‘annule pour tous les zéros
algébriques sur k d’un idéal 1 de k [X4, ..., X,), il existe un entier p positif

tel que :
fPel.

(Démonstration élémentaire de RABINOVITCH, & partir du théoréme 8,
exposée par exemple dans [9], p. 4, ou [10], tome II, p. 102.)
6. ANNEAUX REGULIERS

Le probléeme intervenant dans la définition d’un anneau de Jacobson
est celui de la représentation d’un idéal premier comme intersection des
idéaux maximaux qui le contiennent. On peut exiger davantage:



__ 85 —

Probleme 2. Quels sont les anneaux (commutatifs et unitaires) tels que
tout idéal soit [’intersection des idéaux maximaux qui le contiennent?
Dans un tel anneau, on a nécessairement:

(4) Aa* = Aa, vyaed,

car les idéaux maximaux qui contiennent a sont identiques a ceux qui
contiennent a”; leur intersection est donc la méme pour I'idéal engendré
par a et pour I'idéal engendré par a®. La relation (4) s’écrit encore:

(5) vaeA, gxeA telque: a = xa° = axa.

Définition 5. Un anneau vérifiant la propriété (5) s’appelle un anneau
régulier (au sens de J. Von NEUMANN).

Les anneaux qui sont solution du probleme 2 sont donc réguliers.

Réciproquement, un anneau régulier est solution du probleme 2.
Démontrons d’abord que le radical de Jacobson de I’anneau régulier 4 est
nul. Si a e R, I’égalité:

a(l—xa) =0,

entraine @ = 0 car 1 — xa est inversible d’apres le théoréme 1. On démontre
de méme que le radical de Jacobson de I'anneau quotient A/I est nul,
I étant un idéal quelconque. Il en résulte que I'idéal I est I'intersection des
idéaux maximaux qui le contiennent.

On a donc démontré le théoréme suivant:

THEOREME 10. Pour qu’un anneau soit solution du probléeme 2, il faut et
il suffit qu’il soit régulier.

Remarquons qu’un anneau régulier intégre est un corps et que, dans un
anneau régulier, tout idéal premier est maximal.

7. LE PROBLEME DE LA SYNTHESE SPECTRALE

Il est remarquable que certains problémes fondamentaux de I’Analyse
admettent une formulation algébrique empruntée 3 la théorie des idéeaux
et aux idéaux maximaux. Je citerai le probléme de la synthése spectrale. En
analyse, on fait intervenir, outre la structure d’anneau, une structure
topologique. Les idéaux les plus intéressants sont les idéaux fermés,
d’autant plus que tout idéal maximal est fermé. Le probléme de la synthése
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spectrale dans une algébre de Banach ') commutative s’énonce alors sous
la forme suivante:

tout idéal 1 fermé est-il l’intersection des idéaux maximaux qui le con-
tiennent?

La réponse est affirmative dans certains cas généraux, par exemple pour
Ialgebre C (X) des fonctions continues a valeurs complexes définies sur
un espace compact ([4], page 51). En d’autres termes, a tout idéal fermé 7
dans C (X) correspond un sous-ensemble fermé S de X tel que [ coincide
avec les fonctions continues sur X qui s’annulent sur S. Nous avons donc
une situation analogue a celle qui découle du théoréme des zéros de Hilbert
pour les idéaux premiers de K [X, ..., X,].

Par contre, la réponse est négative pour ’algebre L, (R) des fonctions
a valeurs complexes intégrables au sens de Lebesgue sur toute la droite
réelle, deux fonctions égales presque partout étant identifiées, la multiplica-
tion étant définie par le produit de convolution:

(fx9)(x) = [ZZ f(x=1)g(Ddt,

et la norme étant la L; — norme définie par:

A1 = J22 100 [ dx.

Un contre-exemple au probleme de la synthese spectrale a été¢ donné
par MALLIAVIN, qui a donné aussi un contre-exemple montrant que la
réponse est encore négative pour 'algebre 4 des séries de Fourier absolu-
ment convergentes:

f)= Y ae™, ) la,| <o,

n=—oo n=—o

le produit étant défini par:
(f9) (x) = f(x)g(x)

et la norme || /|| par la deuxi¢éme somme écrite plus haut.

En conclusion, nous voyons par tous les exemples abordés ici, que la
théorie des idéaux d’un anneau, et en particulier la représentation de cer-
tains idéaux comme l'intersection des idéaux maximaux qui les contiennent,
est d’une grande importance en algebre et dans d’autres branches des
Mathématiques.

1) Algébre A sur le corps des réels ou des complexes, norm:e de fagon que || xy || = || x[] || ¥|], quel
gue soient x, y € A, et compléte pour la topologie d’espace vectoriel normeé.
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