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DIVERS ASPECTS DE LA THÉORIE DES IDÉAUX
D'UN ANNEAU COMMUTATIF

(en liaison avec le radical de Jacobson et le théorème des zéros

de Hilbert) x)

par L. Lesieur

Je présente ici deux théorèmes classiques d'algèbre, assez profonds, liés

à la théorie des idéeaux d'un anneau. Le premier est un théorème de transfert

de l'anneau A à l'anneau A [X] des polynômes à une indéterminée X
et à coefficients dans A ; le deuxième est le célèbre théorème des zéros de

Hilbert. Les démonstrations s'appuient sur la notion de radical de Jacobson

d'un anneau et elles utilisent la théorie des idéaux.

L'intérêt de la théorie des idéaux dans l'enseignement des mathématiques
n'est pas contestable: les propriétés des nombres entiers en arithmétique,
en particulier celles qui font intervenir le plus grand commun diviseur ou
le plus petit commun multiple, ne prennent toute leur valeur qu'en considérant

les idéaux de l'anneau Z des entiers relatifs, qui sont tous principaux.
On gagne ainsi en élégance et en généralité 2). On perd peut-être en

simplicité; il ne faut pas dissimuler, en effet, que certains esprits trouvent en

algèbre des difficultés plus grandes que dans d'autres branches des

mathématiques; cela s'explique car le degré d'abstraction y est souvent plus
grand. Par exemple, l'étude des propriétés des anneaux principaux, c'est-
à-dire des anneaux dans lesquels tout idéal est principal, peut paraître plus
abstraite que celle des propriétés des nombres réels en analyse: c'est que la

structure du corps R des réels est bien déterminée, qu'il en existe par
exemple un modèle canonique construit par extensions successives de

l'anneau Z des entiers relatifs, puis du corps Q des rationnels. Par contre,
il ne peut exister un modèle bien déterminé d'anneau principal, la notion
pouvant s'appliquer aussi bien à Z, qu'à l'anneau k [X] des polynômes à
coefficients dans un corps K, aux anneaux euclidiens... Je me permets de

livrer ces réflexions au passage, parce que j'ai longtemps pensé que l'analyse
pouvait paraître plus difficile que l'algèbre, et que je n'en suis plus aussi sûr
à l'heure actuelle. Mais j'aborde maintenant le principal de mon sujet.

i) Conférence donnée à la Faculté des Sciences de Poitiers en mars 1967.
-) Le mot d'idéal n'est-il pas à lui seul un séduisant programme
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1. Radical de Jacobson d'un anneau

Dans toute la suite, A désigne un anneau commutatif et unitaire. Nous
supposons connues la notion d'idéal dans A, d'idéal premier, d'idéal maximal,

d'anneau quotient, ainsi que les propriétés suivantes : tout idéal propre2)
est contenu dans un idéal maximal (théorème de Krull); pour que l'idéal P
soit premier, il faut et il suffit que l'anneau quotient AjP soit intègre; pour
que l'idéal M soit maximal, il faut et il suffit que l'anneau quotient A)M
soit un corps (pour ces définitions et propriétés, se reporter par exemple
à [1], [3] ou [8]).

Définition L On appelle radical de Jacobson de l'anneau A l'intersection

Rj de tous les idéaux maximaux M de d:

Rj n M,

M décrivant l'ensemble de tous les idéaux maximaux.
Les éléments de Rj sont caractérisés par la propriété suivante.

Théorème 1. Le radical de Jacobson R3 de l 'anneau A est un idéal dont tous
les éléments x vérifient la propriété.

(P): 1 — x est inversible dans A.
Et c 'est le plus grand idéal ayant cette propriété.

En effet, soit x e Rj. Si 1 — x n'était pas inversible, l'idéal A (1 — x)
constitué par les multiples de 1 — x serait propre, donc contenu dans un
idéal maximal M. Mais on aurait alors: x e M; 1 — x e M, d'où 1 e M,
ce qui est impossible. Tous les éléments de Rj vérifient donc la propriété (P).
D'ailleurs Rj est un idéal comme intersection d'idéaux (maximaux).

Réciproquement, soit I un idéal dont les éléments vérifient la
propriété (.P). Supposons I $ Rj. Il existerait un idéal maximal M tel que / $ M,
donc un élément i e /, i M. Mais, M étant maximal, on a: M + Ai A,
d'où: 1 m + ai, m g M, a e A. L'élément ai appartient à I et, d'après
la propriété (P), 1 — ai m serait inversible, ce qui est impossible puisque

M est propre. On a donc I ç Rj.

2. Radical de Jacobson de k [X]

Soit A k [X] l'anneau des polynômes à une indéterminée X et à

coefficients dans un corps commutatif quelconque k. Nous allons démontrer

que son radical de Jacobson est nul.

i) J'appelle idéal propre un idéal différent de >4 ; il ne contient pas l'élément unité 1 de A.
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Théorème 2. Le radical de Jacobson de l 'anneau k [X] est nul (ou encore :

l'idéal nul est l'intersection de tous les idéaux maximaux de k [X]).
En effet, supposons Fe Rj, F # 0. On a donc:

F b0Xn + + fcn, fc0 ^ 0, n > 0.

Afin de prendre un polynôme de degré positif, formons: XF A 0,

XF e i£j. Le polynôme 1 — XF serait donc inversible dans k [X] d'après
le théorème 1, ce qui est impossible puisque son degré est supérieur ou

égal à 1.

On démontre exactement de la même façon:

Théorème 2'. Si A est intègre, le radical de Jacobson de l'anneau A [X]
est nul

Application. Soit F e k [X], F A 0. D'après le théorème 2, il existe

donc un idéal maximal M ne contenant pas F. L'anneau k [X] étant à idéaux

principaux, l'idéal M AW (X) est engendré par un polynôme irréductible
sur k :

W(X) Xd + + ad9 à > 0.

L'anneau quotient k [X]/M est un corps K (puisque M est maximal) qui
contient un sous-corps isopmorphe à k et que nous identifions avec k\ la
classe £ de X est un zéro de W dans ce corps K (qui est l'extension algébrique
simple k (£)). De plus, ce zéro £ n'annule pas F puisque: F (fi) =0 <=>

F(X) 6 M. Donc:

Théorème 3. Si F e K [X], F A 0, il existe toujours £, algébrique sur k,
tel que F (£) A 0.

A chaque idéal maximal M de A k [X] est associé le polynôme
irréductible W Xd + ••• + cLd. On peut préciser que ces idéaux maximaux,
comme ces polynômes irréductibles, sont en nombre infini.

Théorème 4.

a) il existe une infinité d'idéaux maximaux dans k [X].

b) il existe une infinité de polynômes irréductibles sur k dans k [X].
c) la clôture algébrique k de k contient une infinité d'éléments.

En effet, a) résulte de b) d'après la correspondance biunivoque existant
entre les idéaux maximaux de k [X] et les polynômes irréductibles sur k.
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Démontrons b). S'il n'y avait qu'un nombre fini de polynômes irréductibles
W2, Fh9 on pourrait former le polynôme produit F Wi F2

Fh ¥" 0. Il existerait un idéal maximal M ne contenant pas F, soit
M AWS, où Ws est irréductible et figure donc dans les facteurs de F.

Il en résulterait Fe M, ce qui est contraire à l'hypothèse.
Quant à la partie c) de l'énoncé, supposant connue la notion de clôture

algébrique k de k (le corps k englobe tous les éléments algébriques sur k),
il suffit de remarquer que les racines des polynômes irréductibles Wt donnent
une infinité d'éléments de k. En effet, deux polynômes irréductibles et W2

différents ne peuvent avoir une racine Ç commune puisque le polynôme XF1

est déterminé par Ç comme base de l'idéal des polynômes de k [X] s'annu-
lant pour £. Il y a donc autant (ou plus) d'éléments Ç e k que de polynômes
irréductibles W. Remarquons par contre que deux valeurs de Ç différentes

peuvent définir le même polynôme W ; c'est le cas de i et — i pour l'anneau
R [X], qui sont deux racines distinctes du polynôme irréductible X2 + 1.

Ainsi, la notion de radical de Jacobson d'un anneau donne une démonstration

simple du théorème 4c, que l'on établit d'habitude par d'autres

moyens. Si le corps k possède une infinité d'éléments, par exemple si sa

caractéristique est nulle, l'existence d'une infinité d'éléments de k est
évidente. Par contre, si le corps k a la caractéristique p9 par exemple si

k {0, 1} est le mini-corps à deux éléments de caractéristique 2, on considère

le champ de Galois des racines de l'équation Xpr — X 0, qui possède

pr éléments. Comme r est aussi grand qu'on veut, on voit bien que k ne peut
avoir un nombre fini d'éléments.

3. Anneau de Jacobson

Dans le cas de l'anneau k [X], tout idéal premier P non nul est maximal.
Cette propriété tient au fait que l'anneau k [X] est intègre et principal (voir
par exemple [10], page 71). Donc, l'idéal premier P # 0 est égal à

l'intersection des idéaux maximaux M qui le contiennent, un tel idéal M étant
nécessairement P lui-même. L'idéal nul, qui est premier aussi, est encore
l'intersection des idéaux maximaux qui le contiennent d'après le théorème 2.

Il en résulte que l'anneau k [X] est un anneau de Jacobson, conformément
à la définition suivante:

Définition 2. On appelle anneau de Jacobson un anneau intègre A dans

lequel tout idéal premier P est égal à l'intersection des idéaux maximaux

qui le contiennent.
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Nous allons voir que la propriété pour un anneau A d'être un anneau
de Jacobson se transfère à l'anneau des polynômes A [X]. On connaît
d'autres propriétés simples de transfert de A à A [X], par exemple le caractère

« intègre », ou « factoriel ». Par contre, le caractère « principal » ne

passe pas: k [X] est principal, mais k [X, 7] ne l'est pas. Nous allons
démontrer cette propriété de transfert pour les anneaux de Jacobson.

4. Théorème de transfert
Si A est un anneau de Jacobson, il en est de même de l'anneau A [X]

des polynômes à coefficients dans A.

Il faut donc démontrer que, si SP est un idéal premier de A [X], SP est

l'intersection des idéaux maximaux qui le contiennent, ou encore:

Théorème 5. Si SP est un idéal premier propre et si F SP, il existe un idéal
maximal M tel que : SP ç M, F $ M.
Pour étudier les idéaux premiers SP de A [X], nous considérons les idéaux

suivants :

p SP n A: idéal projection (ou restriction); c'est un idéal premier
propre de A;

II A [X] p : idéal projetant (ou extension de p) engendré par l'idéal p
dans A [X]. C'est un idéal premier dans A (X) formé
par les polynômes dont les coefficients sont des éléments
de p.

On a les inclusions suivantes:

pclîç^.
Premier cas : SP 77.

L'idéal SP est alors formé des polynômes:

a0 Xn + + an, at g p

Nous allons voir que le théorème 5 est vrai dans ce cas, sans autre
hypothèse sur A.

Soit:

F(X) b0Xm + + bm*n.
On a donc au moins un coefficient b} qui n'appartient pas à p et on

peut supposer que c'est le premier b0.

Considérons l'anneau quotient A/p, qui est intègre puisque p est
premier, et l'homomorphisme canonique <p : A -> X/p.Appelons cp (a) â la classe
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de a modulo p. L'homomorphisme cp peut être étendu à unhomomorphisme
<P de l'anneau des polynômes A [X] sur l'anneau des polynômes A/p [X].
Le noyau de ¥ est précisément l'idéal 77. L'image F de F est un polynôme
non nul de A/y [X]. On peut donc lui appliquer le théorème 2', et il existe

un polynôme maximal M de A/]) [X] qui ne contient pas F. Son image
inverse M par <£> est un polynôme maximal de A [X] qui contient il et qui
ne contient pas F.

Deuxième cas : il cz FP.

Soit k le corps des fractions de l'anneau intègre A/p et i l'injection
canonique de l'anneau A/p dans le corps k. On peut étendre cette injection à

une injection / de Afp [X] dans k [X]. On aura donc, avec l'homorphisme $
déjà considéré, le diagramme suivant:

# I
A [X] Alp [*] - fc [X]

L'idéal premier 0* de A [X] est alors envoyé par # sur un idéal premier
non nul de A/p [X], qui engendre dans k [X] un idéal premier non nul, donc

engendré par un polynôme irréductible sur k que l'on peut prendre sous
la forme:

¥ ä0Xd + + äd a0£p d > 0

Tout polynôme P e & donne dans Alp [X] un polynôme P dont la

division dans k [X] par W conduit à la relation:

al P BW (Be Ajp [X], p entier).

Cette relation entraîne dans A [X]:

(1) ap0P B¥ (mod H), a0$p.

Réciproquement, tout polynôme P vérifiant cette relation appartient à

FP puisque le second membre est contenu dans FP, que FP est premier, et

que a0 £ FP. Les polynômes de l'idéal premier FP sont donc caractérisés par
la relation (1).

Considérons maintenant le polynôme F^FP. On aura donc F $ FP et,

dans k [X], les polynômes W et F seront premiers entre eux. Ils vérifient
donc l'égalité de Bezout dans k [X], qui donne dans Ajp [X] en chassant

le dénominateur:

ÜF + VF ü u e A u$p
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d'où, dans A [X]:

(2) UF + VW u (mod II), u£p

Prenons alors, avec l'hypothèse faite sur l'anneau A, un idéal maximal m

de A contenant p et ne contenant pas ua0 <£ p.
On vérifie aisément que l'idéal I engendré par m et W dans A [X] a pour

projection m dans A. En effet: W a0 Xd + + ad est tel que a0£ m

puisque ua0 §Ém. Soit alors une égalité de la forme:

v LW (mod A [X] m), veA.

En prenant les coefficients modulo m, c'est-à-dire en opérant dans le

corps A/m et l'anneau A/m [X], on remarque que le deuxième membre,

s'il n'est pas nul, a un degré positif, tandis que le premier aurait un degré

nul. On a donc v ~ 0 (mod m), ou v e m.
Considérons un idéal maximal M contenant I. Sa projection M n A

contient l'idéal maximal m et elle est donc égale m. Il en résulte que ua0 $ M.
Par suite, M contient l'idéal premier JP d'après (1) et ne peut contenir le

polynôme F d'après (2).

Le théorème est établi. Le résultat est dû à W. Krull [6]. La démonstration

donnée ici est inspirée de [7].

A propos de cette démonstration, on peut se poser le problème suivant:

Problème : La projection d'un idéal maximal M de A [X] est-elle un
idéal maximal ru de A

La réponse n'est pas évidente pour un anneau de Jacobson quelconque.
On peut démontrer au moyen de la théorie de la dimension qu'elle est

affirmative dans le cas d'un anneau de polynômes A k [Xu Xn] à n
indéterminées sur un corps k. Cet anneau est un anneau de Jacobson

particulier: en effet, k [X±] étant un anneau de Jacobson, ainsi qu'on l'a
remarqué au début du paragraphe 3, le théorème de transfert peut s'appliquer.

On peut donc énoncer le résultat suivant:

Théorème 6. k étant un corps commutatif quelconque, l'anneau de poly¬
nômes k [X1? XJ est un anneau de Jacobson.

5. Le théorème des zéros de Hilbert

Considérons un idéal premier propre de l'anneau de polynômes
k [X1?..., XJ, k étant un corps quelconque. Soit k la clôture algébrique
de k; nous prendrons les zéros des polynômesf e k [X, Xn\ dans l'espace
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affine kn. Un zéro de / est donc un point M (x, xn); xt e k, tel que
/(M) /(xl5 xn) 0. Par exemple, si k R est le corps des réels, on
a /c C et les zéros des polynômes (à coefficients réels) sont pris dans

l'espace affine Cn des points à coordonnées complexes.

Définition 3. On appelle zéro de l 'idéal algébrique sur k, un point
de kn qui annule tous les polynômes de l'idéal

Définition 4. On appelle variété algébrique V (fiP) de l'idéal premier
l'ensemble des zéros de on a donc:

V(0>) {Mekn\f (M) 0 v/e^} •

Le théorème des zéros de Hilbert (Hilbertscher Nullstellensatz) s'énonce
alors :

Théorème 7. 0 étant un idéal premier propre de l'anneau k [Xl5 X2, XJ,
et F un polynôme n 'appartenant pas à #, il existe un zéro de 0, algébrique

sur k, qui n 'annule pas F.

La démonstration se fait comme pour le théorème de transfert, avec

en plus un support géométrique utile donné par la notion de variété

algébrique.
Raisonnons par récurrence sur n.

Si n 1, on considère l'idéal premier 3P dans k [X], et le polynôme
Dans le cas 0, l'existence d'un zéro de algébrique que k,

qui n'annule pas F, est assurée par le théorème 3. Dans le cas 0* # 0, on
a 0 (F), où W est un polynôme irréductible sur k et on applique la
démonstration donnée pour le théorème 3.

Supposons le théorème établi pour n — 1 et démontrons le pour n.

En posant A k [Xu Xn_^] et Xn X, on étudie l'idéal premier SP

dans A [X] comme dans le théorème de transfert (§ 4). L'idéal premier 3P

a pour variété algébrique V(0) dans l'espace affine P, et l'idéal projection
n A p a pour variété F(p) dans l'espace affine P_1. L'idéal projetant

II engendré par p dans A [X] a pour variété un cylindre qui contient

V(0>) et F(p)1).

Premier cas : 0 =77.
Soit:

F b0 Xm + + bm $ 77 ,b0 £ p.

1) V(p) contient la projection ensembliste de V (ï) mais peut la contenir strictement. Exemple:
cC (XY— 1) dans k [X, Y] a pour variété une hyperbole qui se projette sur OX suivant l'axe X' OX — 0 [•,

alors que p 0 a pour variété K (p) X' OX.
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D'après l'hypothèse de récurrence, il existe un zéro(x1? xn-.x) de p,

donc de 77, algébrique sur k, qui n'annule pas b0.

Les racines de l'équation:

(3) b0 (xls x„_i) Xm + + bm (x1? 0

sont en nombre fini et on peut donc choisir dans k, qui est infini d'après

le théorème 4c, un élément xn qui n'est pas une racine de l'équation (3).

Le point M (xu xn-x, xn) sera donc un zéro algébrique sur k de &
qui n'annule pas F.

Deuxième cas : 77 c= 0>.

Reprenons les relations du paragraphe 4:

(1) ap0P BW (mod 77) a0£y

(2) UF + VF u (mod 77), uep,
avec

W — üq X^ + öq^p, d > 0

Prenons, d'après l'hypothèse de récurrence, un zéro {x1?..., xn_x) de p,

algébrique sur k, qui n'annule pas ua0 p. Choisissons pour xn une racine

de l'équation:

W(xu ...,xn-UX) a0(xu + + ad(xu 0

Le point M — (x1? xn_l5 xn) est alors un zéro de tout polynôme
F e 0* d'après (1), et ce zéro ne peut annuler F d'après (2). Le théorème

est donc établi.
Pour comprendre la signification du théorème des zéros de Hilbert en

géométrie algébrique, considérons l'idéal J (V(&*)) qui est l'ensemble des

polynômes de l'anneau k [Xu Xn] s'annulant en tous les points de V(0)):

{fek[Xu...,X„]\/(M)0 yM e F(0>)}

D'après la définition 4 de V(&>), on a évidemment:

J(F(^)) 3

Supposons que l'inclusion soit stricte; il existerait donc Fe J et F $
Mais le théorème des zéros de Hilbert entraînerait l'existence d'un point
Me V(é?) tel que F {M) ^ 0, ce qui contredit la propriété Fe J. On a

donc:
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Ce résultat exprime que tout idéal premier propre dans k [Xl9 Xn] est

l'idéal des polynômes qui s'annulent en ses zéros algébriques sur k; un idéal
premier est donc défini par ses zéros algébriques sur k. Un idéal maximal
coïncide avec l'idéal des polynômes qui s'annulent en un point M e kn (ils
peuvent s'annuler en d'autres points, qui sont en nombre fini, et qu'on
appelle les conjugués de M sur k).

Du théorème 7 on déduit d'autres variantes pour le théorème des zéros
de Hilbert, par exemple:

Théorème 8. Si un idéal I dans A k [Xl5 XJ n 'a pas de zéros algé¬

briques sur k, cet idéal est impropre : I A.

En effet, si l'idéal / était propre, il serait contenu dans un idéal maximal

M, donc premier. Il existerait un polynôme F $ M et un zéro de M
donc de /, qui n'annulerait pas F.

Sous une forme plus élémentaire, le théorème 8 exprime le résultat
suivant: si le système d'équations :

MXl9...,XJ 0 ; i 1,2, p,
avec

ftek

n'a pas de solutions dans la clôture algébrique k, il existe des polynômes
A i 6 k [Xu XJ tels que :

t Afti •

i= 1

Signalons encore la conséquence:

Théorème 9. Si un polynôme F e k [X1? XJ 51 'annule pour tous les zéros

algébriques sur k d'un idéal 1 de k [Xl5 XJ, il existe un entier p positif
tel que :

fpel.
(Démonstration élémentaire de Rabinovitch, à partir du théorème 8,

exposée par exemple dans [9], p. 4, ou [10], tome II, p. 102.)

6. Anneaux réguliers

Le problème intervenant dans la définition d'un anneau de Jacobson

est celui de la représentation d'un idéal premier comme intersection des

idéaux maximaux qui le contiennent. On peut exiger davantage:
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Problème 2. Quels sont les anneaux (commutatifs et unitaires) tels que

tout idéal soit l'intersection des idéaux maximaux qui le contiennent?

Dans un tel anneau, on a nécessairement:

(4) Aa2 Aa ya e A

car les idéaux maximaux qui contiennent a sont identiques à ceux qui
contiennent a2; leur intersection est donc la même pour l'idéal engendré

par a et pour l'idéal engendré par a2. La relation (4) s'écrit encore:

(5) ya e A gx e A tel que : a xa2 axa

Définition 5. Un anneau vérifiant la propriété (5) s'appelle un anneau

régulier (au sens de J. Von Neumann).

Les anneaux qui sont solution du problème 2 sont donc réguliers.

Réciproquement, un anneau régulier est solution du problème 2.

Démontrons d'abord que le radical de Jacobson de l'anneau régulier A est

nul. Si a e Rj, l'égalité :

a (1 — xa) 0

entraîne a 0 car 1 — xa est inversible d'après le théorème 1. On démontre
de même que le radical de Jacobson de l'anneau quotient A/I est nul,
/ étant un idéal quelconque. Il en résulte que l'idéal I est l'intersection des

idéaux maximaux qui le contiennent.
On a donc démontré le théorème suivant:

Théorème 10. Pour qu'un anneau soit solution du problème 2, il faut et
il suffit qu'il soit régulier.

Remarquons qu'un anneau régulier intègre est un corps et que, dans un
anneau régulier, tout idéal premier est maximal.

7. Le problème de la synthèse spectrale

Il est remarquable que certains problèmes fondamentaux de l'Analyse
admettent une formulation algébrique empruntée à la théorie des idéeaux
et aux idéaux maximaux. Je citerai le problème de la synthèse spectrale. En
analyse, on fait intervenir, outre la structure d'anneau, une structure
topologique. Les idéaux les plus intéressants sont les idéaux fermés,
d'autant plus que tout idéal maximal est fermé. Le problème de la synthèse
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spectrale dans une algèbre de Banach x) commutative s'énonce alors sous

la forme suivante:

tout idéal I fermé est-il l'intersection des idéaux maximaux qui le
contiennent

La réponse est affirmative dans certains cas généraux, par exemple pour
l'algèbre C (X) des fonctions continues à valeurs complexes définies sur

un espace compact ([4], page 51). En d'autres termes, à tout idéal fermé /
dans C (X) correspond un sous-ensemble fermé S de X tel que / coïncide

avec les fonctions continues sur X qui s'annulent sur S. Nous avons donc

une situation analogue à celle qui découle du théorème des zéros de Hilbert
pour les idéaux premiers de K[XU Xn].

Par contre, la réponse est négative pour l'algèbre (R) des fonctions
à valeurs complexes intégrables au sens de Lebesgue sur toute la droite
réelle, deux fonctions égales presque partout étant identifiées, la multiplication

étant définie par le produit de convolution:

(f*9)(X>J-œ / (x

et la norme étant la L± — norme définie par:

il/111 r~Z\f(x)\dx.
Un contre-exemple au problème de la synthèse spectrale a été donné

par Malliàvin, qui a donné aussi un contre-exemple montrant que la

réponse est encore négative pour l'algèbre A des séries de Fourier absolument

convergentes:
00 00fix)-y anein\y|flB|<oo,

n— — oo n oo

le produit étant défini par:

ifg)(x)=f(x)g(x)
et la norme ||/|| par la deuxième somme écrite plus haut.

En conclusion, nous voyons par tous les exemples abordés ici, que la
théorie des idéaux d'un anneau, et en particulier la représentation de

certains idéaux comme l'intersection des idéaux maximaux qui les contiennent,
est d'une grande importance en algèbre et dans d'autres branches des

Mathématiques.

Algèbre A sur le corps des réels ou des complexes, normte de façon que JJ xy \ \ 11 if| | | [ y j|, quel
que soient x, y A, et complète pour la topologie d'espace vectoriel normé.
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