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conditions nécessaires pour que tel problème admette une solution: tel est,

par exemple, le point de départ des travaux de Gârding sur les équations

hyperboliques d'ordre supérieur.
Et d'une façon générale, le point de vue d'Hadamard suivant lequel il

convient de classer les équations en fonction des propriétés de leurs
solutions dilférentiables (plutôt qu'analytiques) a contribué de façon décisive

au progrès de la théorie et garde aujourd'hui toute sa valeur d'orientation,
même si on ne l'exprime plus nécessairement en termes de « problèmes

correctement posés ».

4. Le problème de Cauchy pour les équations hyperboliques d'ordre deux

Il s'agit là de la contribution majeure d'Hadamard à la théorie des

équations aux dérivées partielles. Etant donnée une équation du second

ordre, à partie principale de signature (1, n—1), et une hypersurface (S)
à orientation d'espace, on peut prévoir, pour des raisons physiques notamment,

que le problème de Cauchy sera correctement posé, et que la solution,
en un point a, ne dépendra que des données (conditions initiales, et second

membre), dans la région (F) limitée par (S) et le conoïde caractéristique
issu de a (plus précisément: le demi-conoïde caractéristique dont les

génératrices rencontrent (S)). Telles étaient aussi les conclusions suggérées

par les cas déjà traités: équation des ondes à trois dimensions d'espace
(donc à quatre variables), par Poisson et Kirchhoff, équations hyperboliques
à deux variables, par Riemann (l'existence de la « fonction de Riemann »

ayant été démontrée dans le cas analytique par Darboux); enfin, équation
des ondes à n variables, par Volterra et Tedone. Hadamard donne la
solution pour une équation à coefficients analytiques, d'abord en 1905 [1]

pour trois variables, puis en 1908 [3] dans le cas général. Son idée, comme
celle de Riemann ou de Volterra, dont il discute les méthodes en détail,
consiste en principe à appliquer la formule de Green dans le domaine V;
on est conduit à prendre pour solution de l'équation adjointe ce qu'il
nomme la « solution élémentaire », qui n'est autre que la fonction
construite par le même procédé que la solution élémentaire dans le cas elliptique

(cette fonction avait été construite dans le domaine complexe, et le

type de l'équation n'intervenait donc pas dans son calcul1). On essaie alors

1 Aujourd'hui, à la suite de L. Schwartz, il paraît plus naturel de prendre pour définition d'une solution
élémentaire la formule L (v)= ôa ; mais ceci exige le concept de distribution. Ce que Hadamard appelle solution

élémentaire n'est donc plus, dans le cas hyperbolique, ce que l'on appellerait ainsi aujourd'hui; mais
c'est une fonction, ayant une singularité convenable, et servant d'intermédiaire dans le calcul de la « solution
élémentaire » au sens actuel.
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de copier le calcul usuel que l'on fait dans le cas elliptique; mais ici, même

en isolant le point a, on trouve des intégrales divergentes sur tout le cône

caractéristique; dans le cas de deux variables, la méthode de Riemann

permettait d'éliminer cette difficulté à cause de certaines particularités;
d'un autre côté, Volterra et Tedone la surmontaient par des intégrations
préalables le long de certaines courbes: Hadamard note que ce procédé
pourrait être généralisé, mais qu'il présente un côté artificiel (et notamment,

dans le cas de l'équation des ondes, n'est pas invariant par les

transformations de Lorentz). Il montre que l'on peut surmonter directement
la difficulté au moyen de la notion de « partie finie d'une intégrale divergente

», qu'il introduit et développe à cette occasion.

Avant d'en dire plus sur le problème de Cauchy, il convient de s'arrêter
quelque peu sur cette notion. Commençons, comme Hadamard, par
examiner des fonctions d'une variable; considérons l'intégrale

a f(x)
I(s) J —— dx, a > 0 non entier (cette restriction est essentielle); lorsque

£ x

f est suffisamment dérivable en 0, on peut trouver des constantes
Xp (0<p< a p entier), telles que la quantité I (s) — I Xp 8p~a ait une limite

pour e tendant vers 0 ; il appelle cette limite « partie finie » de l'intégrale

considérée, et la note
a f(x) a

j —— dx (nous écrirons plutôt P.f. J Il montre que
n X n

cette intégrale généralisée possède de remarquables propriétés relativement

au changement de variables, à l'intégration par parties (que l'on fait comme
si la borne inférieure n'existait pas), et à la dérivation par rapport à la

a f (x, b) dx
borne inférieure: la dérivée par rapport à b de P.f. J — se calcule

o by

comme si la borne inférieure était fixe. Il remarque à ce propos: « Il s'ensuit

que toute équation différentielle (linéaire) qui serait vérifiée par l'intégrale
(considérée comme une fonction de b) si elle était prise entre les limites
constantes a, c, l'est aussi quand une des limites est justement b»; idée

dont il fait remonter le principe à Darboux (voir Le problème de Cauchy [6],

1932, pp. 167 et 194).

Passant ensuite aux intégrales multiples, il définit et étudie de même

l'expression

D r f fto AP.f. —dxike«]"
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lorsqu'une partie de la frontière de V est constituée par l'hypersurface
G 0, supposée régulière.

Il convient de noter ici combien cette notion pouvait sembler inattendue

et paradoxale à l'époque, et à Hadamard lui-même, comme il l'a dit
souvent; certes, on connaissait déjà les intégrales convergeant en «valeur
principale, au sens de Cauchy », et qui exigeaient pour exister des conditions
de dérivabilité sur /; mais, là, il n'était pas nécessaire de retrancher des

infiniment grands, et, pour cette raison, la « partie finie » semblait à Hadamard

de nature fort différente. Il faut noter aussi, avec L. Schwartz toute
son importance pour le développement de la théorie des distributions, dont
les parties finies fournissent naturellement les premiers exemples non
triviaux, et où elles conduisent naturellement au « problème de la division ».

Muni de cette théorie, Hadamard peut alors résoudre le problème de

Cauchy, en commençant par le cas d'un nombre impair de variables; la
méthode indiquée plus haut peut alors s'appliquer, en commençant par
isoler le point a en retranchant du domaine d'intégration (F) la portion
(W) située entre le conoïde caractéristique et une hypersurface d'espace (F)
proche de a\ il applique alors la formule de Green au sens des parties
finies; avec des notations que nous avons déjà employées, et en prenant
pour v la « solution élémentaire » décrite plus haut on trouve

P/J vL(u)dV P/J M (u,v)d S -P/J M (u 9v)d S
V-W S' 1'

Sf (resp. X") désignant la portion de S (resp. 1) contenue à l'intérieur du
conoïde caractéristique ; le fait important est qu'ici, il n'y a pas d'intégrale
sur le conoïde caractéristique (son équation est F 0, et v est de la forme

U \
—^2 > et Par consequent, tout est connu en fonction des données à l'excep-fT/
tion du dernier terme; or il montre précisément que (comme dans le cas
elliptique), ce dernier terme tend vers k u (a), k étant une constante numérique

aisée à calculer, lorsque 1 s'approche de a. On obtient ainsi une
formule que doit nécessairement vérifier la solution du problème de Cauchy;
reste à montrer que l'on a effectivement obtenu la solution.

Le cas d'un nombre pair de variables est plus délicat. Hadamard en
donne d'abord la solution par la « méthode de descente », i.e. en rajoutant
une variable d'espace, prenant des données qui n'en dépendent pas, et
éliminant cette variable dans les formules définitives; si le principe est fort
simple, les calculs sont assez compliqués dans le détail. Plus tard, en 1924
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[1], il donnera également une méthode directe dont on pourrait dire, en

deux mots, qu'elle consiste à faire le même type de calculs, en substituant
à la notion de « partie finie » d'une intégrale divergente celle de « partie
logarithmique » (notion qu'il n'introduit pas explicitement). Cependant
ici, la solution s'exprime par des intégrales ordinaires, mais de deux types :

d'une part des intégrales dans V et S'; d'autre part des intégrales « de

surface » sur le conoïde caractéristique, et son intersection avec S. Dans
le cas de l'équation des ondes à un nombre pair de variables, en particulier
dans le « potentiel retardé » de Poisson-Kirchhoff, les termes du premier
type ne se présentent pas : Hadamard se livre à cette occasion à une discussion,

aujourd'hui classique, du « principe de Huygens », distinguant entre
la « mineure », qui exprime la propriété précédente, et la « majeure »,

propriété générale des équations d'évolution; il montre que, pour les équations

d'ordre deux, la « mineure » ne peut être satisfaite que pour un nombre

pair de variables, et qu'elle équivaut au fait que la « solution élémentaire »

de l'équation adjointe n'a pas de terme logarithmique, autrement dit qu'on
a (avec les notations du paragraphe 2) W 0. Il se pose à ce propos la

question de savoir s'il existe d'autres équations que l'équation des ondes,

et celles qui s'en déduisent par des transformations évidentes, qui
possèdent cette propriété. Malgré tout leur intérêt, nous nous permettrons de

ne pas insister davantage sur ces questions, et de renvoyer à ce propos le

lecteur aux notices déjà citées.

Mentionnons enfin que, dans Le problème de Cauchy, Hadamard,
s'inspirant des travaux de Levi et Hilbert dans le cas elliptique, élimine

l'hypothèse d'analyticité des coefficients en montrant que, si ceux-ci sont

assez dérivables, une solution élémentaire approchée permet de ramener
le problème à une équation intégrale du type de Volterra, qui se résoud

par approximations successives. Pour établir que la solution de l'équation
intégrale répond au problème proposé, il est amené à établir en passant
la « continuité d'ordre fini » de la solution du problème de Cauchy par
rapport aux coefficients de l'équation, question que les considérations
conduisant à la notion de « problème correctement posé » amenaient

naturellement à envisager.

5. Les problèmes mixtes

Le « problème mixte » (le nom est d'Hadamard) auquel il s'intéresse

est le suivant : étant donnée une équation hyperbolique du second ordre L,
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