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conditions nécessaires pour que tel probléme admette une solution: tel est,
par exemple, le point de départ des travaux de Gérding sur les équations
hyperboliques d’ordre supérieur.

Et d’une fagon générale, le point de vue d’Hadamard suivant lequel il
convient de classer les équations en fonction des propriétés de leurs solu-
tions différentiables (plutdt qu’analytiques) a contribué de fagon décisive
au progres de la théorie et garde aujourd’hui toute sa valeur d’orientation,
méme si on ne I'exprime plus nécessairement en termes de « problémes
correctement posés ».

4. Le probléme de Cauchy pour les équations hyperboliques d’ordre deux

Il s’agit 1a de la contribution majeure d’Hadamard a la théorie des
équations aux dérivées partielles. Etant donnée une équation du second
ordre, & partie principale de signature (1, »—1), et une hypersurface (.S)
a orientation d’espace, on peut prévoir, pour des raisons physiques notam-
ment, que le probléeme de Cauchy sera correctement posé, et que la solution,
en un point @, ne dépendra que des données (conditions initiales, et second
membre), dans la région (V) limitée par (S) et le conoide caractéristique
issu de a (plus précisément: le demi-conoide caractéristique dont les géné-
ratrices rencontrent (S)). Telles étaient aussi les conclusions suggérées
par les cas déja traités: équation des ondes a trois dimensions d’espace
(donc a quatre variables), par Poisson et Kirchhoff, équations hyperboliques
a deux variables, par Riemann (I’existence de la « fonction de Riemann »
ayant été démontrée dans le cas analytique par Darboux); enfin, équation
des ondes a n variables, par Volterra et Tedone. Hadamard donne la
solution pour une équation a coefficients analytiques, d’abord en 1905 [1]
pour trois variables, puis en 1908 [3] dans le cas général. Son idée, comme
celle de Riemann ou de Volterra, dont il discute les méthodes en détail,
consiste en principe a appliquer la formule de Green dans le domaine V;
on est conduit a prendre pour solution de I’équation adjointe ce qu’il
nomme la «solution élémentaire », qui n’est autre que la fonction cons-
truite par le méme procédé que la solution élémentaire dans le cas ellip-
tique (cette fonction avait été construite dans le domaine complexe, et le
type de I’équation n’intervenait donc pas dans son calcul’). On essaie alors

] 1 Aujourd’hui, 2 la suite de L. Schwartz, il parait plus naturel de prendre pour définition d’une solution
élémentaire Ia_ formule L (v)= dq4; mais ceci exige le concept de distribution. Ce que Hadamard appelle solu-
tion élémentaire n’est donc plus, dans le cas hyperbolique, ce que I’on appellerait ainsi aujourd’hui; mais

c’est une.fonction, ayant une singularité convenable, et servant d’intermédiaire dans le calcul de la « solution
élémentaire » au sens actuel.
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de copier le calcul usuel que I’on fait dans le cas elliptique; mais ici, méme
en isolant le point a, on trouve des intégrales divergentes sur tout le cone
caractéristique; dans le cas de deux variables, la méthode de Riemann
permettait d’éliminer cette difficulté & cause de certaines particularités;
d’un autre coté, Volterra et Tedone la surmontaient par des intégrations
préalables le long de certaines courbes: Hadamard note que ce procédé
pourrait €tre généralisé, mais qu’il présente un codté artificiel (et notam-
ment, dans le cas de ’équation des ondes, n’est pas invariant par les trans-
formations de Lorentz). Il montre que I'on peut surmonter directement
la difficulté au moyen de la notion de « partie finie d’une intégrale diver-
gente », qu’il introduit et développe a cette occasion.

Avant d’en dire plus sur le probléme de Cauchy, il convient de s’arréter
quelque peu sur cette notion. Commengons, comme Hadamard, par exa-
miner des fonctions d’une variable; considérons I'intégrale

()

I(e) =) — dx, o> 0 non entier (cette restriction est essentielle); lorsque
s X

f est suffisamment dérivable en 0, on peut trouver des constantes
A, (0< p< a, p entier), telles que la quantité 7 (e) — X A, ¢~ ait une limite
P p 4 q q p

pour ¢ tendant vers 0; il appelle cette limite « partie finie » de I'intégrale

a X . a
considérée, et la note || —— dx (nous écrirons plutdt P. f. | ...). Il montre que
o x 0
cette intégrale généralisée possede de remarquables propriétés relativement
au changement de variables, a 'intégration par parties (que I’on fait comme
si la borne inférieure n’existait pas), et a la dérivation par rapport a la

e . . S (x, b) dx
borne inférieure: la dérivée par rapport a b de P.f. | W— se calcule
0 X—

comme si la borne inférieure était fixe. Il remarque a ce propos: « Il s’ensuit
que toute équation différentielle (linéaire) qui serait vérifiée par I'intégrale
(considérée comme une fonction de D) si elle était prise entre les limites
constantes a, ¢, I’est aussi quand une des limites est justement b »; idée
dont il fait remonter le principe & Darboux (voir Le probleme de Cauchy [6],
1932, pp. 167 et 194).

Passant ensuite aux intégrales multiples, 1l définit et étudie de méme
I’expression

P.f.| A

V[G(X)]“dx’
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lorsqu’une partie de la frontiére de V est constituée par I'hypersurface
G = 0, supposée régulicre.

11 convient de noter ici combien cette notion pouvait sembler inattendue
et paradoxale a I’époque, et & Hadamard lui-méme, comme il I’a dit sou-
vent; certes, on connaissait déja les intégrales convergeant en « valeur
principale, au sens de Cauchy », et qui exigeaient pour exister des conditions
de dérivabilité sur f; mais, 1a, il n’était pas nécessaire de retrancher des
infiniment grands, et, pour cette raison, la « partie finie » semblait & Hada-
mard de nature fort différente. Il faut noter aussi, avec L. Schwartz toute
son importance pour le développement de la théorie des distributions, dont
les parties finies fournissent naturellement les premiers exemples non tri-
viaux, et ou elles conduisent naturellement au « probleme de la division ».

Muni de cette théorie, Hadamard peut alors résoudre le probleme de
Cauchy, en commencgant par le cas d’un nombre impair de variables; la
méthode indiquée plus haut peut alors s’appliquer, en commengant par
isoler le point a en retranchant du domaine d’intégration (V) la portion
(W) située entre le conoide caractéristique et une hypersurface d’espace (X)
proche de a; il applique alors la formule de Green au sens des parties
finies; avec des notations que nous avons déja employées, et en prenant
pour v la « solution élémentaire » décrite plus haut on trouve

Pfé;_WvL(u)dV = Pfg'M(u,‘v)dS —Pf;M(u,v)dS

S’ (resp. 2') désignant la portion de S (resp. X) contenue a Pintérieur du
conoide caractéristique; le fait important est qu’ici, il n’y a pas d’intégrale
sur le conoide caractéristique (son équation est I' = 0, et v est de la forme

U
——3 | » et par consequent, tout est connu en fonction des données a I’excep-

Iz

tion du dernier terme; or il montre précisément que (comme dans le cas
elliptique), ce dernier terme tend vers k u (a), k étant une constante numé-
rique aisée a calculer, lorsque X s’approche de a. On obtient ainsi une for-
mule que doit nécessairement vérifier la solution du probléme de Cauchy;
reste & montrer que 'on a effectivement obtenu la solution.

Le cas d’'un nombre pair de variables est plus délicat. Hadamard en
donne d’abord la solution par la « méthode de descente », i.e. en rajoutant
une variable d’espace, prenant des données qui n’en dépendent pas, et
eliminant cette variable dans les formules définitives; si le principe est fort
simple, les calculs sont assez compliqués dans le détail. Plus tard, en 1924
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[1], il donnera également une méthode directe dont on pourrait dire, en
deux mots, qu’elle consiste a faire le méme type de calculs, en substituant
a la notion de « partie finie » d’une intégrale divergente celle de « partie
logarithmique » (notion qu’il n’introduit pas explicitement). Cependant
ici, la solution s’exprime par des intégrales ordinaires, mais de deux types:
d’une part des intégrales dans V et S’; d’autre part des intégrales « de
surface » sur le conoide caractéristique, et son intersection avec S. Dans
le cas de I’équation des ondes a un nombre pair de variables, en particulier
dans le « potentiel retardé » de Poisson-Kirchhoff, les termes du premier
type ne se présentent pas: Hadamard se livre a cette occasion a une discus-
sion, aujourd’hui classique, du « principe de Huygens », distinguant entre
la « mineure », qui exprime la propriété précédente, et la « majeure »,
propriété générale des équations d’évolution; il montre que, pour les équa-
tions d’ordre deux, la « mineure » ne peut étre satisfaite que pour un nombre
pair de variables, et qu’elle équivaut au fait que la « solution élémentaire »
de 1’équation adjointe n’a pas de terme logarithmique, autrement dit qu’on
a (avec les notations du paragraphe 2) W = 0. 1l se pose a ce propos la
question de savoir s’il existe d’autres équations que 1’équation des ondes,
et celles qui s’en déduisent par des transformations €videntes, qui pos-
sédent cette propriété. Malgré tout leur intérét, nous nous permettrons de
ne pas insister davantage sur ces questions, et de renvoyer a ce propos le
lecteur aux notices déja citées.

Mentionnons enfin que, dans Le probléeme de Cauchy, Hadamard,
s’inspirant des travaux de Levi et Hilbert dans le cas elliptique, élimine
I’hypothese d’analyticité des coefficients en montrant que, si ceux-ci sont
assez dérivables, une solution élémentaire approchée permet de ramener
le probleme a une équation intégrale du type de Volterra, qui se résoud
par approximations successives. Pour établir que la solution de I’équation
intégrale répond au probléme proposé, il est amené a établir en passant
la « continuité d’ordre fini » de la solution du probléme de Cauchy par
rapport aux coefficients de I’équation, question que les considérations
conduisant a la notion de « probléme correctement posé€ » amenaient
naturellement a envisager.

5. Les probléemes mixtes

Le « probléme mixte » (le nom est d’Hadamard) auquel il s’intéresse
est le suivant: étant donnée une équation hyperbolique du second ordre L,
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