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au voisinage de a. Pour l'obtenir, on passe dans le domaine complexe;
en transformant l'équation proposée, on trouve que, sur le cône r 0

les Uk doivent satisfaire à une équation différentielle le long des géodé-
siques, qui admet a pour point singulier, et permet de les déterminer
de proche en proche; le calcul montre aussi l'unicité de v, une fois choisi
U (a) (dont la valeur est d'ailleurs déterminée si l'on veut exactement

une solution élémentaire, et non un multiple): un calcul de majorations
permet enfin de s'assurer de la convergence de la série obtenue.

b) Dans le cas où n est pair, il cherche une solution de la forme :

1 B

v — Y ukrk+ wiog r
1 k 0

Le procédé est encore analogue au précédent (on détermine encore W

par un développement 1 Wk Tk); la solution n'est ici unique qu'à l'addition

près d'une solution analytique de L (u) 0.

En vue de l'utilisation ultérieure de la « méthode de descente », Hada-
mard étudie encore de façon détaillée la relation qui existe entre la solution

a2
élémentaire de L, et celle de l'opérateur à n + 1 variables —r + L.

ôzl

3. La notion de « problème correctement posé »

Il s'agit là d'une des plus importantes contributions d'Hadamard à

la théorie. Vers 1900, la distinction entre données (et solutions) différen-
tiables ou analytiques était loin d'être nette dans les esprits, et beaucoup
d'auteurs considéraient le théorème de Cauchy-Kowalewskaya comme une

réponse satisfaisante au problème de Cauchy; déjà, dans les Leçons, Hada-
mard note, sans s'expliquer davantage, la différence de nature entre ce

théorème, et les méthodes de Poisson, Kirchhoff, Riemann, méthodes

conduisant à des « formules explicites » et à des vitesses de propagation
finies; il note également que les cas traités par ces auteurs, à l'occasion de

problèmes physiques, font toujours intervenir des équations dont la partie
principale est de signature (1, n—1), et que les surfaces portant les données

initiales ont une « orientation d'espace » (comme il dira plus tard) alors

que, dans le théorème de Cauchy-Kowalewskaya, ces restrictions
n'interviennent pas. La contradiction qui semble se présenter ici sera levée par une

analyse célèbre, où les considérations mathématiques sont amenées à
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partir de la signification — ou l'absence de signification— physique des

problèmes considérés. Hadamard reviendra fréquemment sur cette question,

qui se trouve exposée en détail dans Le problème de Cauchy (1922, [1] et

1932, [6]). Ses conclusions peuvent en être résumées ainsi: les problèmes aux
limites que l'on rencontre en physique doivent posséder une solution et

une seule, et qui dépende continuement des données au sens suivant: si

l'on modifie légèrement les données (et, éventuellement, un nombre fini
de leurs dérivées), la solution doit peu varier; autrement, nous n'avons pas

une solution physique de notre problème, puisque, en pratique, les données

ne sont connues qu'avec une certaine approximation. Mandelbrojt et

Schwartz, dans leur notice, remarquent à ce propos : « Cette idée fut encore

plus fructueuse qu'il ne l'avait imaginé lui-même: car les analystes furent
alors obligés d'examiner, comme il dit, les « divers ordres de voisinage et
de continuité», ce qui conduit inévitablement aux espaces fonctionnels, à

la topologie générale, et à l'analyse fonctionnelle... Les méthodes modernes

pour résoudre les équations aux dérivées partielles utilisent des « majorations

a priori », ce qui signifie, qu'en fait, on démontre l'existence et l'unicité

d'une solution en commençant par prouver sa continuité par rapport
aux données.» Hadamard examine de ce point de vue divers problèmes:
problème de Dirichlet dans les cas elliptiques et hyperbolique (ce dernier
non correctement posé, et dépendant de conditions arithmétiques sur les

données), problèmes mixtes, sur lesquels nous reviendrons plus loin,
et surtout problème de Cauchy, dont il montre en détail qu'il n'est pas
correctement posé pour les équations elliptiques: traitant l'exemple de

l'équation de Laplace, et de données hyperplanes, il remarque d'abord
que, pour des données continues, ou p-fois continuement différentiables,
la solution ne peut exister des deux côtés puisque les données devraient alors
être analytiques, et il en conclut que même la solution unilatérale ne peut
pas toujours exister. En outre, la solution, quand elle existe, ne dépend pas
continuement des données; nous lui laissons ici la parole:

« Nous avons toujours soutenu, contre plusieurs géomètres, l'importance

de cette distinction; quelques-uns d'entre eux arguaient du fait que
l'on peut toujours considérer des fonctions quelconques comme
analytiques, attendu que, dans le cas contraire, elles peuvent être approchées
avec autant de précision qu'on veut à l'aide de fonctions analytiques. Mais,
à notre avis, cet argument ne porte pas, la question n'étant pas de savoir
si une telle approximation altérera très peu les données, mais si elle altérera
très peu la solution; il est facile de voir que, dans le cas qui nous occupe,
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les deux questions ne sont en aucune façon équivalentes. Prenons l'équation
classique des potentiels pour deux dimensions

d2 u d2 u

dx2 ôy2

avec les données de Cauchy suivantes

u (o, y) 0

du
— (o,y) u1 (y) An sin (ny)
ox

n étant très grand, mais An étant une fonction de n assujettie à être très

petite quand n devient très grand (par exemple An — etc.) Ces données
np

diffèrent aussi peu que l'on veut de zéro; cependant, un tel problème de

Cauchy a pour solution

un — sin (ny) s h (nx)
n

laquelle, si

11An - ou — ou e Vn
n np

est très grande pour toute valeur déterminée de x différente de zéro, à

cause du mode de croissance de enx et par conséquent de sh (nx) ».

On pourrait, certes, penser à un autre argument ; si la solution dépendait
continuement des données, un passage à la limite à partir du théorème de

Cauchy-Kowalewskaya montrerait l'existence de la solution pour toute
donnée suffisamment différentiable (ce dernier raisonnement a été

effectivement utilisé par la suite, notamment par Petrowsky et Leray pour les

équations hyperboliques d'ordre supérieur; connaissant par des majorations

a priori la continuité par rapport aux données, on peut en déduire
l'existence de la solution du problème de Cauchy). Mais le raisonnement
d'Hadamard conserve néanmoins tout son intérêt: sous des conditions
très générales le théorème du graphe fermé de Banach montre inversement

que, pour des équations linéaires, l'existence et l'unicité de la solution

impliquent sa continuité par rapport aux données; ceci permet, par des

généralisations du raisonnement que nous venons de citer, d'obtenir des
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conditions nécessaires pour que tel problème admette une solution: tel est,

par exemple, le point de départ des travaux de Gârding sur les équations

hyperboliques d'ordre supérieur.
Et d'une façon générale, le point de vue d'Hadamard suivant lequel il

convient de classer les équations en fonction des propriétés de leurs
solutions dilférentiables (plutôt qu'analytiques) a contribué de façon décisive

au progrès de la théorie et garde aujourd'hui toute sa valeur d'orientation,
même si on ne l'exprime plus nécessairement en termes de « problèmes

correctement posés ».

4. Le problème de Cauchy pour les équations hyperboliques d'ordre deux

Il s'agit là de la contribution majeure d'Hadamard à la théorie des

équations aux dérivées partielles. Etant donnée une équation du second

ordre, à partie principale de signature (1, n—1), et une hypersurface (S)
à orientation d'espace, on peut prévoir, pour des raisons physiques notamment,

que le problème de Cauchy sera correctement posé, et que la solution,
en un point a, ne dépendra que des données (conditions initiales, et second

membre), dans la région (F) limitée par (S) et le conoïde caractéristique
issu de a (plus précisément: le demi-conoïde caractéristique dont les

génératrices rencontrent (S)). Telles étaient aussi les conclusions suggérées

par les cas déjà traités: équation des ondes à trois dimensions d'espace
(donc à quatre variables), par Poisson et Kirchhoff, équations hyperboliques
à deux variables, par Riemann (l'existence de la « fonction de Riemann »

ayant été démontrée dans le cas analytique par Darboux); enfin, équation
des ondes à n variables, par Volterra et Tedone. Hadamard donne la
solution pour une équation à coefficients analytiques, d'abord en 1905 [1]

pour trois variables, puis en 1908 [3] dans le cas général. Son idée, comme
celle de Riemann ou de Volterra, dont il discute les méthodes en détail,
consiste en principe à appliquer la formule de Green dans le domaine V;
on est conduit à prendre pour solution de l'équation adjointe ce qu'il
nomme la « solution élémentaire », qui n'est autre que la fonction
construite par le même procédé que la solution élémentaire dans le cas elliptique

(cette fonction avait été construite dans le domaine complexe, et le

type de l'équation n'intervenait donc pas dans son calcul1). On essaie alors

1 Aujourd'hui, à la suite de L. Schwartz, il paraît plus naturel de prendre pour définition d'une solution
élémentaire la formule L (v)= ôa ; mais ceci exige le concept de distribution. Ce que Hadamard appelle solution

élémentaire n'est donc plus, dans le cas hyperbolique, ce que l'on appellerait ainsi aujourd'hui; mais
c'est une fonction, ayant une singularité convenable, et servant d'intermédiaire dans le calcul de la « solution
élémentaire » au sens actuel.
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