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au voisinage de a. Pour I’obtenir, on passe dans le domaine complexe;
en transformant I’équation proposée, on trouve que, sur le cone I' = 0

- les U, doivent satisfaire a une équation différentielle le long des géodé-
siques, qui admet a pour point singulier, et permet de les déterminer
de proche en proche; le calcul montre aussi I'unicité de v, une fois choisi
U (a) (dont la valeur est d’ailleurs déterminée si I’on veut exactement
une solution élémentaire, et non un multiple): un calcul de majorations
permet enfin de s’assurer de la convergence de la série obtenue.

b) Dans le cas ou n est pair, il cherche une solution de la forme:

1
k
v FkaOUkF + Wlog I

Le procédé est encore analogue au précédent (on détermine encore W
par un développement X W, I'*); la solution n’est ici unique qu’a 1’addi-
tion pres d’une solution analytique de L (u) = 0.

En vue de 'utilisation ultérieure de la « méthode de descente », Hada-

mard étudie encore de fagon détaillée la relation qui existe entre la solution
2

¢lémentaire de L, et celle de 'opérateur & » + 1 variables 52 + L.
z

3. La notion de « probléme correctement posé »

Il s’agit 1la d’'une des plus importantes contributions d’Hadamard a
la théorie. Vers 1900, la distinction entre données (et solutions) différen-
tiables ou analytiques ¢€tait loin d’€tre nette dans les esprits, et beaucoup
d’auteurs considéraient le théoreme de Cauchy-Kowalewskaya comme une
réponse satisfaisante au probléme de Cauchy; déja, dans les Legons, Hada-
mard note, sans s’expliquer davantage,la différence de nature entre ce
théoréme, et les méthodes de Poisson, Kirchhoff, Riemann, méthodes
conduisant a des « formules explicites » et a des vitesses de propagation
finies; il note également que les cas traités par ces auteurs, a ’occasion de
problémes physiques, font toujours intervenir des €équations dont la partie
principale est de signature (1, n—1), et que les surfaces portant les données
initiales ont une « orientation d’espace » (comme il dira plus tard) alors
que, dans le théoreme de Cauchy-Kowalewskaya, ces restrictions n’inter-
viennent pas. La contradiction qui semble se présenter ici sera levée par une
analyse célebre, ou les considérations mathématiques sont amenées a
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partir de la signification — ou I’absence de signification— physique des
problémes considérés. Hadamard reviendra fréquemment sur cette question,
qui se trouve exposée en détail dans Le probléme de Cauchy (1922, [1] et
1932, [6]). Ses conclusions peuvent en &tre résumées ainsi: les problémes aux
limites que I'on rencontre en physique doivent posséder une solution et
une seule, et qui dépende continuement des données au sens suivant: si
I’on modifie 1égérement les données (et, éventuellement, un nombre fini
de leurs dérivées), la solution doit peu varier; autrement, nous n’avons pas
une solution physique de notre probléme, puisque, en pratique, les données
ne sont connues qu’avec une certaine approximation. Mandelbrojt et
Schwartz, dans leur notice, remarquent a ce propos: « Cette idée fut encore
plus fructueuse qu’il ne I’avait imaginé lui-méme: car les analystes furent
alors obligés d’examiner, comme il dit, les « divers ordres de voisinage et
de continuité», ce qui conduit inévitablement aux espaces fonctionnels, a
la topologie générale, et a I’analyse fonctionnelle... Les méthodes modernes
pour résoudre les équations aux dérivées partielles utilisent des « majora-
tions a priori », ce qui signifie, qu’en fait, on démontre I’existence et 1’uni-
cité d’'une solution en commengant par prouver sa continuité par rapport
aux données.» Hadamard examine de ce point de vue divers problémes:
probleme de Dirichlet dans les cas elliptiques et hyperbolique (ce dernier
non correctement posé, et dépendant de conditions arithmétiques sur les
données), problemes mixtes, sur lesquels nous reviendrons plus loin,
et surtout probléme de Cauchy, dont il montre en détail qu’il n’est pas
correctement posé pour les équations elliptiques: traitant I’exemple de
Péquation de Laplace, et de données hyperplanes, il remarque d’abord
que, pour des données continues, ou p-fois continuement différentiables,
la solution ne peut exister des deux cotés puisque les données devraient alors
tre analytiques, et il en conclut que mémela solution unilatérale ne peut
pas toujours exister. En outre, la solution, quand elle existe, ne dépend pas
continuement des données; nous lui laissons ici la parole:

« Nous avons toujours soutenu, contre plusieurs géométres, I'impor-
tance de cette distinction; quelques-uns d’entre eux arguaient du fait que
'on peut toujours considérer des fonctions quelconques comme analy-
tiques, attendu que, dans le cas contraire, elles peuvent &tre approchées
avec autant de précision qu’on veut a I'aide de fonctions analytiques. Mais,
a notre avis, cet argument ne porte pas, la question n’étant pas de savoir
si une telle approximation altérera trés peu les données, mais si elle altérera
tres peu la solution; il est facile de voir que, dans le cas qui nous occupe,
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les deux questions ne sont en aucune fagon équivalentes. Prenons 1’équation
classique des potentiels pour deux dimensions

avec les données de Cauchy suivantes

u(o,y) =0
ou .
g(o,y) = uy (y) = A, sin (ny)

n €tant trés grand, mais A4, étant une fonction de n assujettie a étre trés
, : . 1

petite quand » devient trés grand (par exemple A4, = — etc.) Ces données
n

différent aussi peu que I'on veut de zéro; cependant, un tel probléme de
Cauchy a pour solution

u, = —sin (ny)sh(nx)
n

laquelle, si

1 1 -
A, =—-ou—, ou e ¥"
p
n n

est tres grande pour toute valeur déterminée de x différente de zéro, a
cause du mode de croissance de e"* et par conséquent de sh (nx) ».

On pourrait, certes, penser a un autre argument; si la solution dépendait
continuement des données, un passage a la limite a partir du théoréme de
Cauchy-Kowalewskaya montrerait 1’existence de la solution pour toute
donnée suffisamment différentiable (ce dernier raisonnement a été effecti-
vement utilisé par la suite, notamment par Petrowsky et Leray pour les
équations hyperboliques d’ordre supérieur; connaissant par des majora-
tions a priori la continuité par rapport aux données, on peut en déduire
I’existence de la solution du probléme de Cauchy). Mais le raisonnement
d’Hadamard conserve néanmoins tout son intérét: sous des conditions
trés générales le théoréme du graphe fermé de Banach montre inversement
que, pour des équations linéaires, I’existence et 'unicité de la solution
impliquent sa continuité par rapport aux données; ceci permet, par des
généralisations du raisonnement que nous venons de citer, d’obtenir des
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conditions nécessaires pour que tel probléme admette une solution: tel est,
par exemple, le point de départ des travaux de Gérding sur les équations
hyperboliques d’ordre supérieur.

Et d’une fagon générale, le point de vue d’Hadamard suivant lequel il
convient de classer les équations en fonction des propriétés de leurs solu-
tions différentiables (plutdt qu’analytiques) a contribué de fagon décisive
au progres de la théorie et garde aujourd’hui toute sa valeur d’orientation,
méme si on ne I'exprime plus nécessairement en termes de « problémes
correctement posés ».

4. Le probléme de Cauchy pour les équations hyperboliques d’ordre deux

Il s’agit 1a de la contribution majeure d’Hadamard a la théorie des
équations aux dérivées partielles. Etant donnée une équation du second
ordre, & partie principale de signature (1, »—1), et une hypersurface (.S)
a orientation d’espace, on peut prévoir, pour des raisons physiques notam-
ment, que le probléeme de Cauchy sera correctement posé, et que la solution,
en un point @, ne dépendra que des données (conditions initiales, et second
membre), dans la région (V) limitée par (S) et le conoide caractéristique
issu de a (plus précisément: le demi-conoide caractéristique dont les géné-
ratrices rencontrent (S)). Telles étaient aussi les conclusions suggérées
par les cas déja traités: équation des ondes a trois dimensions d’espace
(donc a quatre variables), par Poisson et Kirchhoff, équations hyperboliques
a deux variables, par Riemann (I’existence de la « fonction de Riemann »
ayant été démontrée dans le cas analytique par Darboux); enfin, équation
des ondes a n variables, par Volterra et Tedone. Hadamard donne la
solution pour une équation a coefficients analytiques, d’abord en 1905 [1]
pour trois variables, puis en 1908 [3] dans le cas général. Son idée, comme
celle de Riemann ou de Volterra, dont il discute les méthodes en détail,
consiste en principe a appliquer la formule de Green dans le domaine V;
on est conduit a prendre pour solution de I’équation adjointe ce qu’il
nomme la «solution élémentaire », qui n’est autre que la fonction cons-
truite par le méme procédé que la solution élémentaire dans le cas ellip-
tique (cette fonction avait été construite dans le domaine complexe, et le
type de I’équation n’intervenait donc pas dans son calcul’). On essaie alors

] 1 Aujourd’hui, 2 la suite de L. Schwartz, il parait plus naturel de prendre pour définition d’une solution
élémentaire Ia_ formule L (v)= dq4; mais ceci exige le concept de distribution. Ce que Hadamard appelle solu-
tion élémentaire n’est donc plus, dans le cas hyperbolique, ce que I’on appellerait ainsi aujourd’hui; mais

c’est une.fonction, ayant une singularité convenable, et servant d’intermédiaire dans le calcul de la « solution
élémentaire » au sens actuel.
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