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Notons enfin que l'analyse précédente ne permet de traiter que les

discontinuités « d'ordre supérieur », et non les discontinuités du premier
ordre, telles qu'elles se présentent en particulier dans les travaux de

Riemann, Rankine et Hugoniot sur les fluides compressibles. Dans ce dernier

cas, Hadamard, comme les auteurs de cette époque, ne voit d'autre méthode

que celle qui consiste à traiter chaque problème physique séparément, en

« reprenant la mise en équations », suivant ses propres termes. Nous savons
aujourd'hui que, dans un grand nombre de cas (en particulier celui de

Riemann-Rankine-Hugoniot, comme l'ont montré Hopf et Lax), les conditions

que l'on obtient ainsi sont précisément celles que l'on trouve en
écrivant que les équations sont satisfaites au sens des distributions, ce qui
permet une discussion mathématique générale de telles discontinuités:
ce n'est pas ici le lieu de l'aborder.

2. Solution élémentaire des équations du second ordre

Rappelons rapidement les principes de l'utilisation des solutions
élémentaires: soit L un opérateur différentiel linéaire dans Rn, L' son adjoint
de Lagrange, et Q un ouvert de frontière régulière b Q; on a la formule
suivante, dite « de Green »

J [vL(u) — uL'(v)^\ d V — J M (u,v)d S
Q bQ

M étant une fonction convenable de u, v et de leurs dérivées. Dans le cas

elliptique, la méthode consiste à trouver, pour tout point ae Q, une fonction
v ayant une singularité convenable en a (nous préciserons plus loin),
vérifiant en dehors de a: L' (v) — 0, et à appliquer la formule précédente à Q

privé d'une boule de centre a et de rayon s. On a alors, avec des notations
évidentes :

J vL(u)dV $ M(u,v)d S - J M(u,v)dS
Q-BE bQ Se

Lorsque v est choisi convenablement, et lorsque u est assez régulier
dans Q, la dernière intégrale tend vers —u(a) lorsque s tend vers 0; on
obtient donc à la limite

J v L(u) d V — j M(u,v)d S u (a)
Q bQ

formule qui fait connaître u (a) en fonction des valeurs de L (u) dans Q,

et celles de u et certaines de ses dérivées sur b Q (en langage moderne, cette
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formule s'écrit, au sens des distributions L ' (v) Sa). On dira alors que v

est une solution élémentaire de L ' au point a. Si l'on veut traiter le problème
de Dirichlet, ou de Neumann, ou un autre, il faudra encore préciser le choix
de v, de manière à ne faire intervenir dans l'intégrale de surface que les

combinaisons données de u et de ses dérivées; mais peu importe ici.
Cette méthode avait été appliquée depuis fort longtemps déjà à l'équation

de Laplace avec?; log r pour deux variables, v r2~n pour n > deux

variables, et aux fonctions holomorphes, avec D — - (on obtient alors la
z

formule intégrale de Cauchy, avec sa démonstration habituelle; il est

d'ailleurs curieux que l'identité de ce cas avec les autres n'ait guère été

souligné traditionnellement). Des travaux de divers auteurs, dont Picard,
Sommerfeld, Hilbert, et Hadamard lui-même (voir les Leçons précédemment

citées, pp. 335-338) avaient traité les équations elliptiques à deux

variables, à coefficients analytiques; d'importants travaux de Fredholm
avaient traité à la même date des équations elliptiques à coefficients
constants, l'ordre et le nombre de variables étant quelconques. En 1904, Hadamard

[2] démontre l'existence (locale) des solutions élémentaires des équations

elliptiques du second ordre, à coefficients analytiques; l'hypothèse
d'analyticité sera levée ensuite par la « méthode de la paramétrix », par
E. E. Levi et Hilbert.

Quelques précisions sur la méthode et le résultat d'Hadamard. Prenons

„ d2 u _ du
L(u) ~ I Au -— h f Cu (ij 1, ...,*?)

OXt OXj ÔXi

et supposons les Au réels, et la forme 1 Ai} <L Cj définie positive pour tout
v; introduisons la métrique riemanienne dont les coefficients par rapport
à des coordonnées covariantes sont égaux aux A u ; dans cette métrique,
L prend la forme A + M, A étant l'opérateur de Laplace-Beltrami, et
M un opérateur du premier ordre; désignons enfin par r (v) le carré de la
distance géodésique du point a donné à un point v voisin de a. Deux cas
sont à distinguer:

a) Si n est impair, Hadamard cherche une solution dans le complémentaire
de a de l'équation L (v) 0, qui soit de la forme suivante

•f + 00I n — 2
v ~ L Uk r 9 avec p —-— U0 (a) ^ 0, et les Uk analytiques

* k o 2
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au voisinage de a. Pour l'obtenir, on passe dans le domaine complexe;
en transformant l'équation proposée, on trouve que, sur le cône r 0

les Uk doivent satisfaire à une équation différentielle le long des géodé-
siques, qui admet a pour point singulier, et permet de les déterminer
de proche en proche; le calcul montre aussi l'unicité de v, une fois choisi
U (a) (dont la valeur est d'ailleurs déterminée si l'on veut exactement

une solution élémentaire, et non un multiple): un calcul de majorations
permet enfin de s'assurer de la convergence de la série obtenue.

b) Dans le cas où n est pair, il cherche une solution de la forme :

1 B

v — Y ukrk+ wiog r
1 k 0

Le procédé est encore analogue au précédent (on détermine encore W

par un développement 1 Wk Tk); la solution n'est ici unique qu'à l'addition

près d'une solution analytique de L (u) 0.

En vue de l'utilisation ultérieure de la « méthode de descente », Hada-
mard étudie encore de façon détaillée la relation qui existe entre la solution

a2
élémentaire de L, et celle de l'opérateur à n + 1 variables —r + L.

ôzl

3. La notion de « problème correctement posé »

Il s'agit là d'une des plus importantes contributions d'Hadamard à

la théorie. Vers 1900, la distinction entre données (et solutions) différen-
tiables ou analytiques était loin d'être nette dans les esprits, et beaucoup
d'auteurs considéraient le théorème de Cauchy-Kowalewskaya comme une

réponse satisfaisante au problème de Cauchy; déjà, dans les Leçons, Hada-
mard note, sans s'expliquer davantage, la différence de nature entre ce

théorème, et les méthodes de Poisson, Kirchhoff, Riemann, méthodes

conduisant à des « formules explicites » et à des vitesses de propagation
finies; il note également que les cas traités par ces auteurs, à l'occasion de

problèmes physiques, font toujours intervenir des équations dont la partie
principale est de signature (1, n—1), et que les surfaces portant les données

initiales ont une « orientation d'espace » (comme il dira plus tard) alors

que, dans le théorème de Cauchy-Kowalewskaya, ces restrictions
n'interviennent pas. La contradiction qui semble se présenter ici sera levée par une

analyse célèbre, où les considérations mathématiques sont amenées à
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