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EQUATIONS AUX DERIVEES PARTIELLES

par BERNARD MALGRANGE

En commengant cet apergu des travaux d’Hadamard, que Poincaré
qualifiait & 'époque de « considérables et de premier ordre », disons tout
d’abord que nous n’avons pas la prétention d’étre complet: on doit a
Hadamard, non seulement des travaux célebres sur la notion de probleme
correctement posé, le probléme de Cauchy, les problémes mixtes, etc., mais
encore quantité d’apergus, de remarques, a I’occasion des questions les plus
variées, et qui ont inspiré tous les spécialistes de la génération suivante,
et encore de plus jeunes; je me bornerai & en signaler certaines au passage,
que 1’état actuel de la théorie peut mettre particulicrement en lumigcre.

Deux notices sur I’ensemble de son ceuvre ont paru récemment: 1’une,
due a S. Mandelbrojt et L. Schwartz (Bulletin of the American Mathematical
Society, 1965), autre a M. L. Cartwright (Bibliographical Memoirs of the
Fellows of the Royal Society, 1965); elles ont considérablement facilité
mon travail, et je me permettrai de les utiliser librement, en évitant dans
quelques cas de les répéter: c’est ainsi que je renvoie a la seconde de ces
notices pour une discussion de ’apport propre de Hadamard a la Méca-
nique des milieux continus, qui sort un peu de mon sujet, et ou je ne me
reconnais au surplus guére de compétence.

1. Propagation des discontinuités

Cette question est au centre du premier ouvrage d’importance d’Hada-
mard sur notre sujet: les Legcons sur la propagation des ondes et les équations
de I’Hydrodynamique », [6], 1903, reproduisant avec quelques compléments
ses cours de 1898-99 et 1899-1900. Avant qu’elle soit étudiée en général,
deux cas importants sont examinés: les équations d’un fluide compressible,
(notamment, dans le cas unidimensionnel ot Hadamard reprend les tra-
vaux de Riemann, Rankine, Hugoniot, en les complétant sur le point de la
conservation ou de la non-conservation des tourbillons suivant le type de la
discontinuit€), et les équations de 1’élasticité. Il étend ensuite au cas général
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une partie des considérations précédentes, d’'une maniére que nous allons
résumer brievement.
Considérons un systéme

2

U
A..-
LAy 0x; 0x

i

L(U) +B =0 (4;;=A4;)

j
ol U est une fonction des x;, & p composantes, et 4 (resp. B) une matrice

oU
de type p X p (resp. 1 X p), fonctions régulieres des x;, de U, et des — (nous
Xi

nous limitons a I'ordre deux, pour simplifier ’exposé).

Etant donné une hypersurface réguliere (H) d’équation H = 0, peut-il
exister deux solutions de notre équation, U, et U,, se raccordant ainsi que
leurs dérivées premicres sur (H), mais non leurs dérivées secondes?

Il est facile de voir, de voir d’abord que la condition suivante est néces-

- : : 0H 0H
saire: (H) doit €tre caractéristique; autrement dit la matrice: 2 A4;; T I
X; 0X;

doit étre partout de rang < p sur H.
Cette condition n’est cependant pas suffisante, comme le montre

0*u  Ou
I’exemple de ’équation de la chaleuré—2 — = 0; et une 2tude compléte
X

de la question semble encore aujourd’hui d’une complication inextricable.
Hadamard, a la suite des travaux de Goursat et Beudon, se limite essentiel-
lement au cas des caractéristiques simples, dont nous allons dire deux mots;
supposons pour simplifier (cas auquel on peut toujours se ramener par
changement de variables), que 1'on ait H = x,; la matrice précédente se
réduit alors a A4, supposons que, en tout point de (H), 4 = 0 soit racine
simple de 1’équation caractéristique dét (4,;—Al) = 0; soient Y et Z des
vecteurs propres a gauche et a droite de 4, {, qui dépendront évidemment de

ou
X5, ...y X, On voit d’abord que les données U et — sur (H) ne peuvent étre
X1
quelconques, puisque I'équation Y L (u) = 0 ne fait intervenir que U,
Ou, et leurs dérivées tangentielles (U désigne ici U; ou U,). De plus, en

0x,
0*Ul o*U, @*U, , R
— , on voit que cette quantité doit

posant, sur (H): [ o PYE — o

étre un vecteur propre de A4;,, donc étre de la forme A (x,, ..., x,) Z: ceci
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est un point essentiel pour les applications; enfin 4 doit encore satisfaire a
une équation aux dérivées partielles que 1’on obtiendra en dérivant I’équa-
tion initiale par rapport a x, et en multipliant & gauche I’équation obtenue
par Y (Phypothése de « caractéristique simple » s’exprime ici par une pro-
priété de I’équation finalement obtenue, que nous ne détaillerons pas.)
Inversement, dans le cas d’une équation analytique, et de données analy-
tiques vérifiant les « conditions de compatibilités » indiquées, et toujours
dans le cas de caractéristiques simples, Hadamard montre, en généralisant
des calculs de Darboux, Goursat et Beudon, l’existence de solutions U
prenant effectivement sur H les valeurs imposées, ainsi que leurs dérivées
d’ordre 1 et 2 (Panalyse peut d’ailleurs se poursuivre a I’ordre supérieur).
Hadamard examine aussi un cas de caractéristique multiple intéressant les
équations de I’élasticité, ou la méme analyse s’applique.

On s’étonnera peut-&tre de ce que nous ayons un peu insisté sur ’analyse
précédente, au demeurant fort simple, et due pour l'essentiel a d’autres
auteurs que le ndtre; mais, outre 'intérét qui s’attache aux applications
qu’il en fait & Ia mécanique, Hadamard est amené a ce propos a discuter
(sinon a résoudre) un probléme étroitement lié au précédent: celui de
I’unicité du probléme de Cauchy, en distinguant soigneusement, ce qu’on
ne faisait pas toujours a I’époque, entre données et solution différentiables
ou analytiques; les résultats obtenus a cette époque, qu’il discute soigneu-
sement étaient les suivants: a) Le résultat de Darboux-Goursat-Beudon
sur la non-unicité dans le cas d’équations & coeflicients analytiques et de
caractéristiques simples; b) Le théoréme de Holmgren, sur l'unicité du
probleme de Couchy dans le cas de données (différentiables) non caracté-
ristiques, pour une équation /inéaire a coeflicients analytiques. Hadamard
insiste notamment sur I'intérét qu’il y aurait & éliminer I’hypothese « analy-
tique » dans ce dernier résultat, ce qui permettrait d’ailleurs d’éliminer aussi
I’hypothese « linéaire ». Comme on le sait, cette question n’a réellement
progressé€ qu’a une époque fort récente: si des contre-exemples de Plis et
Cohen montrent que la «conjecture d’Hadamard » est, dans toute sa
généralité, fausse, d’importants travaux de Carleman, Calderén, Hérmander,
et d’autres auteurs montrent qu’elle est néanmoins exacte dans des cas trés
étendus; quant a la question a), elle n’a guére progressé depuis, sauf pour
les équations a coeflicients constants. En passant, tout ceci montre que
Hadamard, lorsqu’il avait une motivation pour cela, ne s’intéressait pas
seulement aux problémes « correctement posés », quoique cette derniére
question soit un de ses principaux titres de gloire.
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Notons enfin que I’analyse précédente ne permet de traiter que les dis-
continuités « d’ordre supérieur », et non les discontinuités du premier
ordre, telles qu’elles se présentent en particulier dans les travaux de Rie-
mann, Rankine et Hugoniot sur les fluides compressibles. Dans ce dernier
cas, Hadamard, comme les auteurs de cette époque, ne voit d’autre méthode
que celle qui consiste a traiter chaque probléme physique séparément, en
« reprenant la mise en équations », suivant ses propres termes. Nous savons
aujourd’hui que, dans un grand nombre de cas (en particulier celui de
Riemann-Rankine-Hugoniot, comme 1’ont montré Hopf et Lax), les condi-
tions que I'on obtient ainsi sont précisément celles que 1'on trouve en
€crivant que les équations sont satisfaites au sens des distributions, ce qui
permet une discussion mathématique générale de telles discontinuités:
ce n’est pas ici le lieu de ’'aborder.

2. Solution élémentaire des équations du second ordre

Rappelons rapidement les principes de 1'utilisation des solutions ¢lé-
mentaires: soit L un opérateur différentiel linéaire dans R", L’ son adjoint
de Lagrange, et Q un ouvert de frontiere réguliere b Q; on a la formule
suivante, dite « de Green »

J [vL(u) —uL’(w)]dV = | M(u,v)d S
2 b2
M étant une fonction convenable de u, v et de leurs dérivées. Dans le cas
elliptique, 1a méthode consiste a trouver, pour tout point a € Q, une fonction
v ayant une singularité convenable en a (nous préciserons plus loin), véri-
fiant en dehors de a: L’ (v) = 0, et a appliquer la formule précédente a Q
privé d’une boule de centre @ et de rayon &. On a alors, avec des notations
¢videntes:
[ vLwdV =[] Mu,v)dS — [ M(u,v)dS
Q-B, bQ 5,

Lorsque v est choisi convenablement, et lorsque u est assez régulier
dans @, la derniéere intégrale tend vers — u (a) lorsque ¢ tend vers 0; on
obtient donc a la limite

foLw)dV —[ M(u,v)dS = u(a)
2 b2

formule qui fait connaitre u (a) en fonction des valeurs de L (1) dans Q,
et celles de u et certaines de ses dérivées sur b Q (en langage moderne, cette
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