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ÉQUATIONS AUX DÉRIVÉES PARTIELLES

par Bernard Malgrange

En commençant cet aperçu des travaux d'Hadamard, que Poincaré

qualifiait à l'époque de « considérables et de premier ordre », disons tout
d'abord que nous n'avons pas la prétention d'être complet: on doit à

Hadamard, non seulement des travaux célèbres sur la notion de problème
correctement posé, le problème de Cauchy, les problèmes mixtes, etc., mais

encore quantité d'aperçus, de remarques, à l'occasion des questions les plus
variées, et qui ont inspiré tous les spécialistes de la génération suivante,

et encore de plus jeunes; je me bornerai à en signaler certaines au passage,

que l'état actuel de la théorie peut mettre particulièrement en lumière.

Deux notices sur l'ensemble de son œuvre ont paru récemment: l'une,
due à S. Mandelbrojt et L. Schwartz (.Bulletin of the American Mathematical
Society, 1965), l'autre à M. L. Cartwright (.Bibliographical Memoirs of the

Fellows of the Royal Society, 1965); elles ont considérablement facilité
mon travail, et je me permettrai de les utiliser librement, en évitant dans

quelques cas de les répéter: c'est ainsi que je renvoie à la seconde de ces

notices pour une discussion de l'apport propre de Hadamard à la Mécanique

des milieux continus, qui sort un peu de mon sujet, et où je ne me
reconnais au surplus guère de compétence.

I. Propagation des discontinuités

Cette question est au centre du premier ouvrage d'importance d'Hada-
mard sur notre sujet: les Leçons sur la propagation des ondes et les équations
de l'Hydrodynamique », [6], 1903, reproduisant avec quelques compléments
ses cours de 1898-99 et 1899-1900. Avant qu'elle soit étudiée en général,
deux cas importants sont examinés : les équations d'un fluide compressible,
(notamment, dans le cas unidimensionnel où Hadamard reprend les
travaux de Riemann, Rankine, Hugoniot, en les complétant sur le point de la
conservation ou de la non-conservation des tourbillons suivant le type de la
discontinuité), et les équations de l'élasticité. Il étend ensuite au cas général
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une partie des considérations précédentes, d'une manière que nous allons
résumer brièvement.

Considérons un système

(a"=a«>

où U est une fonction des xi9 à p composantes, et A (resp. B) une matrice
dU

de type p X p (resp. 1 xp), fonctions régulières des xi9 de U, et des — (nous
ÔXi

nous limitons à l'ordre deux, pour simplifier l'exposé).
Etant donné une hypersurface régulière (H) d'équation H — 0, peut-il

exister deux solutions de notre équation, Ul et U2, se raccordant ainsi que
leurs dérivées premières sur (ET), mais non leurs dérivées secondes?

Il est facile de voir, de voir d'abord que la condition suivante est néces-

dHôH
saire: (H) doit être caractéristique; autrement dit la matrice: I Au

dxt dxj
doit être partout de rang < p sur H.

Cette condition n'est cependant pas suffisante, comme le montre
ô2 u du

l'exemple de l'équation de la chaleur— — 0; et une étude complète
dx dt

de la question semble encore aujourd'hui d'une complication inextricable.
Hadamard, à la suite des travaux de Goursat et Beudon, se limite essentiellement

au cas des caractéristiques simples, dont nous allons dire deux mots;
supposons pour simplifier (cas auquel on peut toujours se ramener par
changement de variables), que l'on ait H x1; la matrice précédente se

réduit alors à A1X; supposons que, en tout point de (ET), X 0 soit racine

simple de l'équation caractéristique dét(All—XI) 0; soient Y et Z des

vecteurs propres à gauche et à droite de^411? qui dépendront évidemment de

du
x2, xn. On voit d'abord que les données U et— sur (H) ne peuvent être

ôxl
quelconques, puisque l'équation YL{u) 0 ne fait intervenir que U9

du, et leurs dérivées tangentiales (U désigne ici Ux ou U2). De plus, en

dx1
d2 U! d2 u2

5 on voit que cette quantité doit
dXx dx1

rd2 U'
posant, sur (H) :

d̂x ^

être un vecteur propre de All9 donc être de la forme X (xl9 xn) Z: ceci
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est un point essentiel pour les applications ; enfin A doit encore satisfaire à

une équation aux dérivées partielles que l'on obtiendra en dérivant l'équation

initiale par rapport à xu et en multipliant à gauche l'équation obtenue

par Y (l'hypothèse de « caractéristique simple » s'exprime ici par une

propriété de l'équation finalement obtenue, que nous ne détaillerons pas.)

Inversement, dans le cas d'une équation analytique, et de données analytiques

vérifiant les « conditions de compatibilités » indiquées, et toujours
dans le cas de caractéristiques simples, Hadamard montre, en généralisant
des calculs de Darboux, Goursat et Beudon, l'existence de solutions U

prenant effectivement sur H les valeurs imposées, ainsi que leurs dérivées

d'ordre 1 et 2 (l'analyse peut d'ailleurs se poursuivre à l'ordre supérieur).
Hadamard examine aussi un cas de caractéristique multiple intéressant les

équations de l'élasticité, où la même analyse s'applique.
On s'étonnera peut-être de ce que nous ayons un peu insisté sur l'analyse

précédente, au demeurant fort simple, et due pour l'essentiel à d'autres

auteurs que le nôtre; mais, outre l'intérêt qui s'attache aux applications
qu'il en fait à la mécanique, Hadamard est amené à ce propos à discuter

(sinon à résoudre) un problème étroitement lié au précédent: celui de

l'unicité du problème de Cauchy, en distinguant soigneusement, ce qu'on
ne faisait pas toujours à l'époque, entre données et solution différendables

ou analytiques; les résultats obtenus à cette époque, qu'il discute soigneusement

étaient les suivants: a) Le résultat de Darboux-Goursat-Beudon
sur la non-unicité dans le cas d'équations à coefficients analytiques et de

caractéristiques simples; b) Le théorème de Holmgren, sur l'unicité du
problème de Couchy dans le cas de données (differentiates) non
caractéristiques, pour une équation linéaire à coefficients analytiques. Hadamard
insiste notamment sur l'intérêt qu'il y aurait à éliminer l'hypothèse « analytique

» dans ce dernier résultat, ce qui permettrait d'ailleurs d'éliminer aussi

l'hypothèse « linéaire ». Comme on le sait, cette question n'a réellement
progressé qu'à une époque fort récente: si des contre-exemples de Plis et
Cohen montrent que la « conjecture d'Hadamard » est, dans toute sa

généralité, fausse, d'importants travaux de Carleman, Calderön, Hörmander,
et d'autres auteurs montrent qu'elle est néanmoins exacte dans des cas très
étendus; quant à la question a), elle n'a guère progressé depuis, sauf pour
les équations à coefficients constants. En passant, tout ceci montre que
Hadamard, lorsqu'il avait une motivation pour cela, ne s'intéressait pas
seulement aux problèmes « correctement posés », quoique cette dernière
question soit un de ses principaux titres de gloire.
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Notons enfin que l'analyse précédente ne permet de traiter que les

discontinuités « d'ordre supérieur », et non les discontinuités du premier
ordre, telles qu'elles se présentent en particulier dans les travaux de

Riemann, Rankine et Hugoniot sur les fluides compressibles. Dans ce dernier

cas, Hadamard, comme les auteurs de cette époque, ne voit d'autre méthode

que celle qui consiste à traiter chaque problème physique séparément, en

« reprenant la mise en équations », suivant ses propres termes. Nous savons
aujourd'hui que, dans un grand nombre de cas (en particulier celui de

Riemann-Rankine-Hugoniot, comme l'ont montré Hopf et Lax), les conditions

que l'on obtient ainsi sont précisément celles que l'on trouve en
écrivant que les équations sont satisfaites au sens des distributions, ce qui
permet une discussion mathématique générale de telles discontinuités:
ce n'est pas ici le lieu de l'aborder.

2. Solution élémentaire des équations du second ordre

Rappelons rapidement les principes de l'utilisation des solutions
élémentaires: soit L un opérateur différentiel linéaire dans Rn, L' son adjoint
de Lagrange, et Q un ouvert de frontière régulière b Q; on a la formule
suivante, dite « de Green »

J [vL(u) — uL'(v)^\ d V — J M (u,v)d S
Q bQ

M étant une fonction convenable de u, v et de leurs dérivées. Dans le cas

elliptique, la méthode consiste à trouver, pour tout point ae Q, une fonction
v ayant une singularité convenable en a (nous préciserons plus loin),
vérifiant en dehors de a: L' (v) — 0, et à appliquer la formule précédente à Q

privé d'une boule de centre a et de rayon s. On a alors, avec des notations
évidentes :

J vL(u)dV $ M(u,v)d S - J M(u,v)dS
Q-BE bQ Se

Lorsque v est choisi convenablement, et lorsque u est assez régulier
dans Q, la dernière intégrale tend vers —u(a) lorsque s tend vers 0; on
obtient donc à la limite

J v L(u) d V — j M(u,v)d S u (a)
Q bQ

formule qui fait connaître u (a) en fonction des valeurs de L (u) dans Q,

et celles de u et certaines de ses dérivées sur b Q (en langage moderne, cette
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