Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 13 (1967)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: EQUATIONS AUX DERIVEES PARTIELLES
Autor: Malgrange, Bernard

DOl: https://doi.org/10.5169/seals-41526

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-41526
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

EQUATIONS AUX DERIVEES PARTIELLES

par BERNARD MALGRANGE

En commengant cet apergu des travaux d’Hadamard, que Poincaré
qualifiait & 'époque de « considérables et de premier ordre », disons tout
d’abord que nous n’avons pas la prétention d’étre complet: on doit a
Hadamard, non seulement des travaux célebres sur la notion de probleme
correctement posé, le probléme de Cauchy, les problémes mixtes, etc., mais
encore quantité d’apergus, de remarques, a I’occasion des questions les plus
variées, et qui ont inspiré tous les spécialistes de la génération suivante,
et encore de plus jeunes; je me bornerai & en signaler certaines au passage,
que 1’état actuel de la théorie peut mettre particulicrement en lumigcre.

Deux notices sur I’ensemble de son ceuvre ont paru récemment: 1’une,
due a S. Mandelbrojt et L. Schwartz (Bulletin of the American Mathematical
Society, 1965), autre a M. L. Cartwright (Bibliographical Memoirs of the
Fellows of the Royal Society, 1965); elles ont considérablement facilité
mon travail, et je me permettrai de les utiliser librement, en évitant dans
quelques cas de les répéter: c’est ainsi que je renvoie a la seconde de ces
notices pour une discussion de ’apport propre de Hadamard a la Méca-
nique des milieux continus, qui sort un peu de mon sujet, et ou je ne me
reconnais au surplus guére de compétence.

1. Propagation des discontinuités

Cette question est au centre du premier ouvrage d’importance d’Hada-
mard sur notre sujet: les Legcons sur la propagation des ondes et les équations
de I’Hydrodynamique », [6], 1903, reproduisant avec quelques compléments
ses cours de 1898-99 et 1899-1900. Avant qu’elle soit étudiée en général,
deux cas importants sont examinés: les équations d’un fluide compressible,
(notamment, dans le cas unidimensionnel ot Hadamard reprend les tra-
vaux de Riemann, Rankine, Hugoniot, en les complétant sur le point de la
conservation ou de la non-conservation des tourbillons suivant le type de la
discontinuit€), et les équations de 1’élasticité. Il étend ensuite au cas général
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une partie des considérations précédentes, d’'une maniére que nous allons
résumer brievement.
Considérons un systéme

2

U
A..-
LAy 0x; 0x

i

L(U) +B =0 (4;;=A4;)

j
ol U est une fonction des x;, & p composantes, et 4 (resp. B) une matrice

oU
de type p X p (resp. 1 X p), fonctions régulieres des x;, de U, et des — (nous
Xi

nous limitons a I'ordre deux, pour simplifier ’exposé).

Etant donné une hypersurface réguliere (H) d’équation H = 0, peut-il
exister deux solutions de notre équation, U, et U,, se raccordant ainsi que
leurs dérivées premicres sur (H), mais non leurs dérivées secondes?

Il est facile de voir, de voir d’abord que la condition suivante est néces-

- : : 0H 0H
saire: (H) doit €tre caractéristique; autrement dit la matrice: 2 A4;; T I
X; 0X;

doit étre partout de rang < p sur H.
Cette condition n’est cependant pas suffisante, comme le montre

0*u  Ou
I’exemple de ’équation de la chaleuré—2 — = 0; et une 2tude compléte
X

de la question semble encore aujourd’hui d’une complication inextricable.
Hadamard, a la suite des travaux de Goursat et Beudon, se limite essentiel-
lement au cas des caractéristiques simples, dont nous allons dire deux mots;
supposons pour simplifier (cas auquel on peut toujours se ramener par
changement de variables), que 1'on ait H = x,; la matrice précédente se
réduit alors a A4, supposons que, en tout point de (H), 4 = 0 soit racine
simple de 1’équation caractéristique dét (4,;—Al) = 0; soient Y et Z des
vecteurs propres a gauche et a droite de 4, {, qui dépendront évidemment de

ou
X5, ...y X, On voit d’abord que les données U et — sur (H) ne peuvent étre
X1
quelconques, puisque I'équation Y L (u) = 0 ne fait intervenir que U,
Ou, et leurs dérivées tangentielles (U désigne ici U; ou U,). De plus, en

0x,
0*Ul o*U, @*U, , R
— , on voit que cette quantité doit

posant, sur (H): [ o PYE — o

étre un vecteur propre de A4;,, donc étre de la forme A (x,, ..., x,) Z: ceci
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est un point essentiel pour les applications; enfin 4 doit encore satisfaire a
une équation aux dérivées partielles que 1’on obtiendra en dérivant I’équa-
tion initiale par rapport a x, et en multipliant & gauche I’équation obtenue
par Y (Phypothése de « caractéristique simple » s’exprime ici par une pro-
priété de I’équation finalement obtenue, que nous ne détaillerons pas.)
Inversement, dans le cas d’une équation analytique, et de données analy-
tiques vérifiant les « conditions de compatibilités » indiquées, et toujours
dans le cas de caractéristiques simples, Hadamard montre, en généralisant
des calculs de Darboux, Goursat et Beudon, l’existence de solutions U
prenant effectivement sur H les valeurs imposées, ainsi que leurs dérivées
d’ordre 1 et 2 (Panalyse peut d’ailleurs se poursuivre a I’ordre supérieur).
Hadamard examine aussi un cas de caractéristique multiple intéressant les
équations de I’élasticité, ou la méme analyse s’applique.

On s’étonnera peut-&tre de ce que nous ayons un peu insisté sur ’analyse
précédente, au demeurant fort simple, et due pour l'essentiel a d’autres
auteurs que le ndtre; mais, outre 'intérét qui s’attache aux applications
qu’il en fait & Ia mécanique, Hadamard est amené a ce propos a discuter
(sinon a résoudre) un probléme étroitement lié au précédent: celui de
I’unicité du probléme de Cauchy, en distinguant soigneusement, ce qu’on
ne faisait pas toujours a I’époque, entre données et solution différentiables
ou analytiques; les résultats obtenus a cette époque, qu’il discute soigneu-
sement étaient les suivants: a) Le résultat de Darboux-Goursat-Beudon
sur la non-unicité dans le cas d’équations & coeflicients analytiques et de
caractéristiques simples; b) Le théoréme de Holmgren, sur l'unicité du
probleme de Couchy dans le cas de données (différentiables) non caracté-
ristiques, pour une équation /inéaire a coeflicients analytiques. Hadamard
insiste notamment sur I'intérét qu’il y aurait & éliminer I’hypothese « analy-
tique » dans ce dernier résultat, ce qui permettrait d’ailleurs d’éliminer aussi
I’hypothese « linéaire ». Comme on le sait, cette question n’a réellement
progressé€ qu’a une époque fort récente: si des contre-exemples de Plis et
Cohen montrent que la «conjecture d’Hadamard » est, dans toute sa
généralité, fausse, d’importants travaux de Carleman, Calderén, Hérmander,
et d’autres auteurs montrent qu’elle est néanmoins exacte dans des cas trés
étendus; quant a la question a), elle n’a guére progressé depuis, sauf pour
les équations a coeflicients constants. En passant, tout ceci montre que
Hadamard, lorsqu’il avait une motivation pour cela, ne s’intéressait pas
seulement aux problémes « correctement posés », quoique cette derniére
question soit un de ses principaux titres de gloire.
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Notons enfin que I’analyse précédente ne permet de traiter que les dis-
continuités « d’ordre supérieur », et non les discontinuités du premier
ordre, telles qu’elles se présentent en particulier dans les travaux de Rie-
mann, Rankine et Hugoniot sur les fluides compressibles. Dans ce dernier
cas, Hadamard, comme les auteurs de cette époque, ne voit d’autre méthode
que celle qui consiste a traiter chaque probléme physique séparément, en
« reprenant la mise en équations », suivant ses propres termes. Nous savons
aujourd’hui que, dans un grand nombre de cas (en particulier celui de
Riemann-Rankine-Hugoniot, comme 1’ont montré Hopf et Lax), les condi-
tions que I'on obtient ainsi sont précisément celles que 1'on trouve en
€crivant que les équations sont satisfaites au sens des distributions, ce qui
permet une discussion mathématique générale de telles discontinuités:
ce n’est pas ici le lieu de ’'aborder.

2. Solution élémentaire des équations du second ordre

Rappelons rapidement les principes de 1'utilisation des solutions ¢lé-
mentaires: soit L un opérateur différentiel linéaire dans R", L’ son adjoint
de Lagrange, et Q un ouvert de frontiere réguliere b Q; on a la formule
suivante, dite « de Green »

J [vL(u) —uL’(w)]dV = | M(u,v)d S
2 b2
M étant une fonction convenable de u, v et de leurs dérivées. Dans le cas
elliptique, 1a méthode consiste a trouver, pour tout point a € Q, une fonction
v ayant une singularité convenable en a (nous préciserons plus loin), véri-
fiant en dehors de a: L’ (v) = 0, et a appliquer la formule précédente a Q
privé d’une boule de centre @ et de rayon &. On a alors, avec des notations
¢videntes:
[ vLwdV =[] Mu,v)dS — [ M(u,v)dS
Q-B, bQ 5,

Lorsque v est choisi convenablement, et lorsque u est assez régulier
dans @, la derniéere intégrale tend vers — u (a) lorsque ¢ tend vers 0; on
obtient donc a la limite

foLw)dV —[ M(u,v)dS = u(a)
2 b2

formule qui fait connaitre u (a) en fonction des valeurs de L (1) dans Q,
et celles de u et certaines de ses dérivées sur b Q (en langage moderne, cette
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formule s’écrit, au sens des distributions L’ (v) = J,). On dira alors que v
est une solution élémentaire de L’ au point a. Si 'on veut traiter le probleme
de Dirichlet, ou de Neumann, ou un autre, il faudra encore préciser le choix
de v, de maniére & ne faire intervenir dans I'intégrale de surface que les
combinaisons données de u et de ses dérivées; mais peu importe icl.

Cette méthode avait été appliquée depuis fort longtemps déja a I’équa-
tion de Laplace avecv = log r pour deux variables, v = r>~" pour n > deux

variables, et aux fonctions holomorphes, avec v == — (on obtient alors la
z

formule intégrale de Cauchy, avec sa démonstration habituelle; il est
d’ailleurs curieux que I'identité de ce cas avec les autres n’ait guere été
souligné traditionnellement). Des travaux de divers auteurs, dont Picard,
Sommerfeld, Hilbert, et Hadamard lui-méme (voir les Legons précédem-
ment citées, pp. 335-338) avaient traité les équations elliptiques a deux
variables, a coefficients analytiques; d’importants travaux de Fredholm
avaient traité a la méme date des équations elliptiques & coefficients cons-
tants, I'ordre et le nombre de variables étant quelconques. En 1904, Hada-
mard [2] démontre I’existence (locale) des solutions élémentaires des équa-
tions elliptiques du second ordre, a coefficients analytiques; I’hypothése
d’analyticité sera levée ensuite par la « méthode de la paramétrix », par
E. E. Levi et Hilbert.

Quelques précisions sur la méthode et le résultat d’Hadamard. Prenons

2u ou

0
B.
0x; 0x ; T Z " Ox,

i J i

L(u) = Y Aj; + Cu (i,j=1,...,n)

et supposons les 4;; réels, et la forme X 4;; £; {; définie positive pour tout
x; introduisons la métrique riemanienne dont les coefficients par rapport
a des coordonnées covariantes sont égaux aux A;;; dans cette métrique,
L prend la forme A 4 M, A étant opérateur de Laplace-Beltrami, et
M un opérateur du premier ordre; désignons enfin par I' (x) le carré de la
distance géodésique du point @ donné a un point x voisin de a. Deux cas
sont a distinguer:

a) Sin est impair, Hadamard cherche une solution dans le complémentaire
de a de I’équation L (v) = 0, qui soit de la forme suivante

+ o0 "

n—2
Y U, IT* avecp =

7):——1)‘
F k=o

, Up(a) #0, et les U, analytiques
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au voisinage de a. Pour I’obtenir, on passe dans le domaine complexe;
en transformant I’équation proposée, on trouve que, sur le cone I' = 0

- les U, doivent satisfaire a une équation différentielle le long des géodé-
siques, qui admet a pour point singulier, et permet de les déterminer
de proche en proche; le calcul montre aussi I'unicité de v, une fois choisi
U (a) (dont la valeur est d’ailleurs déterminée si I’on veut exactement
une solution élémentaire, et non un multiple): un calcul de majorations
permet enfin de s’assurer de la convergence de la série obtenue.

b) Dans le cas ou n est pair, il cherche une solution de la forme:

1
k
v FkaOUkF + Wlog I

Le procédé est encore analogue au précédent (on détermine encore W
par un développement X W, I'*); la solution n’est ici unique qu’a 1’addi-
tion pres d’une solution analytique de L (u) = 0.

En vue de 'utilisation ultérieure de la « méthode de descente », Hada-

mard étudie encore de fagon détaillée la relation qui existe entre la solution
2

¢lémentaire de L, et celle de 'opérateur & » + 1 variables 52 + L.
z

3. La notion de « probléme correctement posé »

Il s’agit 1la d’'une des plus importantes contributions d’Hadamard a
la théorie. Vers 1900, la distinction entre données (et solutions) différen-
tiables ou analytiques ¢€tait loin d’€tre nette dans les esprits, et beaucoup
d’auteurs considéraient le théoreme de Cauchy-Kowalewskaya comme une
réponse satisfaisante au probléme de Cauchy; déja, dans les Legons, Hada-
mard note, sans s’expliquer davantage,la différence de nature entre ce
théoréme, et les méthodes de Poisson, Kirchhoff, Riemann, méthodes
conduisant a des « formules explicites » et a des vitesses de propagation
finies; il note également que les cas traités par ces auteurs, a ’occasion de
problémes physiques, font toujours intervenir des €équations dont la partie
principale est de signature (1, n—1), et que les surfaces portant les données
initiales ont une « orientation d’espace » (comme il dira plus tard) alors
que, dans le théoreme de Cauchy-Kowalewskaya, ces restrictions n’inter-
viennent pas. La contradiction qui semble se présenter ici sera levée par une
analyse célebre, ou les considérations mathématiques sont amenées a
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partir de la signification — ou I’absence de signification— physique des
problémes considérés. Hadamard reviendra fréquemment sur cette question,
qui se trouve exposée en détail dans Le probléme de Cauchy (1922, [1] et
1932, [6]). Ses conclusions peuvent en &tre résumées ainsi: les problémes aux
limites que I'on rencontre en physique doivent posséder une solution et
une seule, et qui dépende continuement des données au sens suivant: si
I’on modifie 1égérement les données (et, éventuellement, un nombre fini
de leurs dérivées), la solution doit peu varier; autrement, nous n’avons pas
une solution physique de notre probléme, puisque, en pratique, les données
ne sont connues qu’avec une certaine approximation. Mandelbrojt et
Schwartz, dans leur notice, remarquent a ce propos: « Cette idée fut encore
plus fructueuse qu’il ne I’avait imaginé lui-méme: car les analystes furent
alors obligés d’examiner, comme il dit, les « divers ordres de voisinage et
de continuité», ce qui conduit inévitablement aux espaces fonctionnels, a
la topologie générale, et a I’analyse fonctionnelle... Les méthodes modernes
pour résoudre les équations aux dérivées partielles utilisent des « majora-
tions a priori », ce qui signifie, qu’en fait, on démontre I’existence et 1’uni-
cité d’'une solution en commengant par prouver sa continuité par rapport
aux données.» Hadamard examine de ce point de vue divers problémes:
probleme de Dirichlet dans les cas elliptiques et hyperbolique (ce dernier
non correctement posé, et dépendant de conditions arithmétiques sur les
données), problemes mixtes, sur lesquels nous reviendrons plus loin,
et surtout probléme de Cauchy, dont il montre en détail qu’il n’est pas
correctement posé pour les équations elliptiques: traitant I’exemple de
Péquation de Laplace, et de données hyperplanes, il remarque d’abord
que, pour des données continues, ou p-fois continuement différentiables,
la solution ne peut exister des deux cotés puisque les données devraient alors
tre analytiques, et il en conclut que mémela solution unilatérale ne peut
pas toujours exister. En outre, la solution, quand elle existe, ne dépend pas
continuement des données; nous lui laissons ici la parole:

« Nous avons toujours soutenu, contre plusieurs géométres, I'impor-
tance de cette distinction; quelques-uns d’entre eux arguaient du fait que
'on peut toujours considérer des fonctions quelconques comme analy-
tiques, attendu que, dans le cas contraire, elles peuvent &tre approchées
avec autant de précision qu’on veut a I'aide de fonctions analytiques. Mais,
a notre avis, cet argument ne porte pas, la question n’étant pas de savoir
si une telle approximation altérera trés peu les données, mais si elle altérera
tres peu la solution; il est facile de voir que, dans le cas qui nous occupe,
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les deux questions ne sont en aucune fagon équivalentes. Prenons 1’équation
classique des potentiels pour deux dimensions

avec les données de Cauchy suivantes

u(o,y) =0
ou .
g(o,y) = uy (y) = A, sin (ny)

n €tant trés grand, mais A4, étant une fonction de n assujettie a étre trés
, : . 1

petite quand » devient trés grand (par exemple A4, = — etc.) Ces données
n

différent aussi peu que I'on veut de zéro; cependant, un tel probléme de
Cauchy a pour solution

u, = —sin (ny)sh(nx)
n

laquelle, si

1 1 -
A, =—-ou—, ou e ¥"
p
n n

est tres grande pour toute valeur déterminée de x différente de zéro, a
cause du mode de croissance de e"* et par conséquent de sh (nx) ».

On pourrait, certes, penser a un autre argument; si la solution dépendait
continuement des données, un passage a la limite a partir du théoréme de
Cauchy-Kowalewskaya montrerait 1’existence de la solution pour toute
donnée suffisamment différentiable (ce dernier raisonnement a été effecti-
vement utilisé par la suite, notamment par Petrowsky et Leray pour les
équations hyperboliques d’ordre supérieur; connaissant par des majora-
tions a priori la continuité par rapport aux données, on peut en déduire
I’existence de la solution du probléme de Cauchy). Mais le raisonnement
d’Hadamard conserve néanmoins tout son intérét: sous des conditions
trés générales le théoréme du graphe fermé de Banach montre inversement
que, pour des équations linéaires, I’existence et 'unicité de la solution
impliquent sa continuité par rapport aux données; ceci permet, par des
généralisations du raisonnement que nous venons de citer, d’obtenir des
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conditions nécessaires pour que tel probléme admette une solution: tel est,
par exemple, le point de départ des travaux de Gérding sur les équations
hyperboliques d’ordre supérieur.

Et d’une fagon générale, le point de vue d’Hadamard suivant lequel il
convient de classer les équations en fonction des propriétés de leurs solu-
tions différentiables (plutdt qu’analytiques) a contribué de fagon décisive
au progres de la théorie et garde aujourd’hui toute sa valeur d’orientation,
méme si on ne I'exprime plus nécessairement en termes de « problémes
correctement posés ».

4. Le probléme de Cauchy pour les équations hyperboliques d’ordre deux

Il s’agit 1a de la contribution majeure d’Hadamard a la théorie des
équations aux dérivées partielles. Etant donnée une équation du second
ordre, & partie principale de signature (1, »—1), et une hypersurface (.S)
a orientation d’espace, on peut prévoir, pour des raisons physiques notam-
ment, que le probléeme de Cauchy sera correctement posé, et que la solution,
en un point @, ne dépendra que des données (conditions initiales, et second
membre), dans la région (V) limitée par (S) et le conoide caractéristique
issu de a (plus précisément: le demi-conoide caractéristique dont les géné-
ratrices rencontrent (S)). Telles étaient aussi les conclusions suggérées
par les cas déja traités: équation des ondes a trois dimensions d’espace
(donc a quatre variables), par Poisson et Kirchhoff, équations hyperboliques
a deux variables, par Riemann (I’existence de la « fonction de Riemann »
ayant été démontrée dans le cas analytique par Darboux); enfin, équation
des ondes a n variables, par Volterra et Tedone. Hadamard donne la
solution pour une équation a coefficients analytiques, d’abord en 1905 [1]
pour trois variables, puis en 1908 [3] dans le cas général. Son idée, comme
celle de Riemann ou de Volterra, dont il discute les méthodes en détail,
consiste en principe a appliquer la formule de Green dans le domaine V;
on est conduit a prendre pour solution de I’équation adjointe ce qu’il
nomme la «solution élémentaire », qui n’est autre que la fonction cons-
truite par le méme procédé que la solution élémentaire dans le cas ellip-
tique (cette fonction avait été construite dans le domaine complexe, et le
type de I’équation n’intervenait donc pas dans son calcul’). On essaie alors

] 1 Aujourd’hui, 2 la suite de L. Schwartz, il parait plus naturel de prendre pour définition d’une solution
élémentaire Ia_ formule L (v)= dq4; mais ceci exige le concept de distribution. Ce que Hadamard appelle solu-
tion élémentaire n’est donc plus, dans le cas hyperbolique, ce que I’on appellerait ainsi aujourd’hui; mais

c’est une.fonction, ayant une singularité convenable, et servant d’intermédiaire dans le calcul de la « solution
élémentaire » au sens actuel.
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de copier le calcul usuel que I’on fait dans le cas elliptique; mais ici, méme
en isolant le point a, on trouve des intégrales divergentes sur tout le cone
caractéristique; dans le cas de deux variables, la méthode de Riemann
permettait d’éliminer cette difficulté & cause de certaines particularités;
d’un autre coté, Volterra et Tedone la surmontaient par des intégrations
préalables le long de certaines courbes: Hadamard note que ce procédé
pourrait €tre généralisé, mais qu’il présente un codté artificiel (et notam-
ment, dans le cas de ’équation des ondes, n’est pas invariant par les trans-
formations de Lorentz). Il montre que I'on peut surmonter directement
la difficulté au moyen de la notion de « partie finie d’une intégrale diver-
gente », qu’il introduit et développe a cette occasion.

Avant d’en dire plus sur le probléme de Cauchy, il convient de s’arréter
quelque peu sur cette notion. Commengons, comme Hadamard, par exa-
miner des fonctions d’une variable; considérons I'intégrale

()

I(e) =) — dx, o> 0 non entier (cette restriction est essentielle); lorsque
s X

f est suffisamment dérivable en 0, on peut trouver des constantes
A, (0< p< a, p entier), telles que la quantité 7 (e) — X A, ¢~ ait une limite
P p 4 q q p

pour ¢ tendant vers 0; il appelle cette limite « partie finie » de I'intégrale

a X . a
considérée, et la note || —— dx (nous écrirons plutdt P. f. | ...). Il montre que
o x 0
cette intégrale généralisée possede de remarquables propriétés relativement
au changement de variables, a 'intégration par parties (que I’on fait comme
si la borne inférieure n’existait pas), et a la dérivation par rapport a la

e . . S (x, b) dx
borne inférieure: la dérivée par rapport a b de P.f. | W— se calcule
0 X—

comme si la borne inférieure était fixe. Il remarque a ce propos: « Il s’ensuit
que toute équation différentielle (linéaire) qui serait vérifiée par I'intégrale
(considérée comme une fonction de D) si elle était prise entre les limites
constantes a, ¢, I’est aussi quand une des limites est justement b »; idée
dont il fait remonter le principe & Darboux (voir Le probleme de Cauchy [6],
1932, pp. 167 et 194).

Passant ensuite aux intégrales multiples, 1l définit et étudie de méme
I’expression

P.f.| A

V[G(X)]“dx’



45 —

lorsqu’une partie de la frontiére de V est constituée par I'hypersurface
G = 0, supposée régulicre.

11 convient de noter ici combien cette notion pouvait sembler inattendue
et paradoxale a I’époque, et & Hadamard lui-méme, comme il I’a dit sou-
vent; certes, on connaissait déja les intégrales convergeant en « valeur
principale, au sens de Cauchy », et qui exigeaient pour exister des conditions
de dérivabilité sur f; mais, 1a, il n’était pas nécessaire de retrancher des
infiniment grands, et, pour cette raison, la « partie finie » semblait & Hada-
mard de nature fort différente. Il faut noter aussi, avec L. Schwartz toute
son importance pour le développement de la théorie des distributions, dont
les parties finies fournissent naturellement les premiers exemples non tri-
viaux, et ou elles conduisent naturellement au « probleme de la division ».

Muni de cette théorie, Hadamard peut alors résoudre le probleme de
Cauchy, en commencgant par le cas d’un nombre impair de variables; la
méthode indiquée plus haut peut alors s’appliquer, en commengant par
isoler le point a en retranchant du domaine d’intégration (V) la portion
(W) située entre le conoide caractéristique et une hypersurface d’espace (X)
proche de a; il applique alors la formule de Green au sens des parties
finies; avec des notations que nous avons déja employées, et en prenant
pour v la « solution élémentaire » décrite plus haut on trouve

Pfé;_WvL(u)dV = Pfg'M(u,‘v)dS —Pf;M(u,v)dS

S’ (resp. 2') désignant la portion de S (resp. X) contenue a Pintérieur du
conoide caractéristique; le fait important est qu’ici, il n’y a pas d’intégrale
sur le conoide caractéristique (son équation est I' = 0, et v est de la forme

U
——3 | » et par consequent, tout est connu en fonction des données a I’excep-

Iz

tion du dernier terme; or il montre précisément que (comme dans le cas
elliptique), ce dernier terme tend vers k u (a), k étant une constante numé-
rique aisée a calculer, lorsque X s’approche de a. On obtient ainsi une for-
mule que doit nécessairement vérifier la solution du probléme de Cauchy;
reste & montrer que 'on a effectivement obtenu la solution.

Le cas d’'un nombre pair de variables est plus délicat. Hadamard en
donne d’abord la solution par la « méthode de descente », i.e. en rajoutant
une variable d’espace, prenant des données qui n’en dépendent pas, et
eliminant cette variable dans les formules définitives; si le principe est fort
simple, les calculs sont assez compliqués dans le détail. Plus tard, en 1924
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[1], il donnera également une méthode directe dont on pourrait dire, en
deux mots, qu’elle consiste a faire le méme type de calculs, en substituant
a la notion de « partie finie » d’une intégrale divergente celle de « partie
logarithmique » (notion qu’il n’introduit pas explicitement). Cependant
ici, la solution s’exprime par des intégrales ordinaires, mais de deux types:
d’une part des intégrales dans V et S’; d’autre part des intégrales « de
surface » sur le conoide caractéristique, et son intersection avec S. Dans
le cas de I’équation des ondes a un nombre pair de variables, en particulier
dans le « potentiel retardé » de Poisson-Kirchhoff, les termes du premier
type ne se présentent pas: Hadamard se livre a cette occasion a une discus-
sion, aujourd’hui classique, du « principe de Huygens », distinguant entre
la « mineure », qui exprime la propriété précédente, et la « majeure »,
propriété générale des équations d’évolution; il montre que, pour les équa-
tions d’ordre deux, la « mineure » ne peut étre satisfaite que pour un nombre
pair de variables, et qu’elle équivaut au fait que la « solution élémentaire »
de 1’équation adjointe n’a pas de terme logarithmique, autrement dit qu’on
a (avec les notations du paragraphe 2) W = 0. 1l se pose a ce propos la
question de savoir s’il existe d’autres équations que 1’équation des ondes,
et celles qui s’en déduisent par des transformations €videntes, qui pos-
sédent cette propriété. Malgré tout leur intérét, nous nous permettrons de
ne pas insister davantage sur ces questions, et de renvoyer a ce propos le
lecteur aux notices déja citées.

Mentionnons enfin que, dans Le probléeme de Cauchy, Hadamard,
s’inspirant des travaux de Levi et Hilbert dans le cas elliptique, élimine
I’hypothese d’analyticité des coefficients en montrant que, si ceux-ci sont
assez dérivables, une solution élémentaire approchée permet de ramener
le probleme a une équation intégrale du type de Volterra, qui se résoud
par approximations successives. Pour établir que la solution de I’équation
intégrale répond au probléme proposé, il est amené a établir en passant
la « continuité d’ordre fini » de la solution du probléme de Cauchy par
rapport aux coefficients de I’équation, question que les considérations
conduisant a la notion de « probléme correctement posé€ » amenaient
naturellement a envisager.

5. Les probléemes mixtes

Le « probléme mixte » (le nom est d’Hadamard) auquel il s’intéresse
est le suivant: étant donnée une équation hyperbolique du second ordre L,
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et un ouvert ¥ en forme de demi-cylindre, de base une hypersurface S’
3 orientation d’espace, de surface latérale une hypersurface S” a orienta-
tion de temps, trouver une fonction u dans ¥ connaissant L u dans V, u et

. u
ses dérivées premiéres sur S, et u (ou, par exemple &7—) sur S”. Hadamard,
'

dés ses premiers travaux sur les équations aux dérivées partielles, avait
rencontré ce probléme ou des variantes, notamment a propos des fluides
compressibles; en 1900 [3], il montre dans le cas de ’équation des ondes et
d’un «cylindre droit» (i.e. produit d’un ouvert d’espace par la demi-
droite ¢t > 0) l'unicité du probléme en utilisant I'intégrale d’énergie dont
ce semble étre la premiére apparition comme instrument de démonstration
dans la théorie des équations hyperboliques (mais non la derniére, comme
on sait). Une note dans Le Probléme de Cauchy, traduction frangaise
(1932 [6]) résume ses travaux sur la question. Il note que ce type de pro-
blemes peut €tre traité par deux types de méthodes: I'une, celle des « fonc-
tions fondamentales » (i.e. des fonctions propres), qui « retiennent, en
quelque sorte, ’aspect elliptique du probléme » — on pourrait d’ailleurs
en dire autant de la méthode par transformation de Laplace, équivalente
a celle de Heaviside, qu’il cite brievement.

L’autre, cherche a retenir ’aspect hyperbolique du probléme, la pro-
pagation des ondes, les réflexions sur les parois, et qui évite de faire jouer
sans nécessité un role spécial a une variable de temps particuliére. Il nous
faut ajouter que les deux types de méthodes ont, en fait, un domaine d’appli-
cation assez différent: la premicre s’applique a des produits d’un ouvert
d’espace par la demi-droite # > 0, et & des équations non nécessairement
hyperboliques; la seconde, a des ouverts « variables au cours du temps »,
mais est limitée aux équations hyperboliques (et méme, encore maintenant,
essentiellement aux équations du second ordre).

C’est a ce second type de méthodes que s’attache Hadamard: il note
d’abord que, aux points dont le conoide caractéristique rétrograde rencontre
enticrement la frontiere sur S’, le probléeme coincide avec le probléme de
Cauchy: tragant I’hypersurface caractéristique X passant par S’ n S”,
on est ramené, pour trouver la solution, & un probléme du type de Goursat:
trouver la solution entre X et S”, connaissant ses valeurs sur ces deux sur-
faces; dans le cas analytique, le théoréeme de Goursat dont nous avons
parlé au paragraphe 1 fournit alors la solution (tout au moins au voisinage
de la surface initiale S”; le prolongement demande d’autres arguments,
notamment la « majeure » du principe de Huygens). Il ne pousse pas plus
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loin cette méthode qui sera reprise ultérieurement par Schauder et lui
fournira, avec les majorations a priori qu’il déduira de I'intégrale d’énergie,
la solution du probléme; quant & Hadamard, il préfére opérer de fagon un
peu différente, en cherchant, en langage moderne, le noyau élémentaire qui
donne u en fonction des données du probléme, et il esquisse une méthode
le lui donnant, au moyen de réflexions et d’équations intégrales (analogues
a celles considérées précédemment dans le cas non analytique du probleme
de Cauchy). Les conclusions auxquelles il arrive, notamment sur les singu-
larités du noyau élémentaire et sur la conception des probléemes elliptiques
comme limites de problémes mixtes hyperboliques semblent avoir été
partiellement délaissées depuis; on peut penser que de nouvelles études
mériteraient encore d’y €tre consacrées.
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