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ÉQUATIONS AUX DÉRIVÉES PARTIELLES

par Bernard Malgrange

En commençant cet aperçu des travaux d'Hadamard, que Poincaré

qualifiait à l'époque de « considérables et de premier ordre », disons tout
d'abord que nous n'avons pas la prétention d'être complet: on doit à

Hadamard, non seulement des travaux célèbres sur la notion de problème
correctement posé, le problème de Cauchy, les problèmes mixtes, etc., mais

encore quantité d'aperçus, de remarques, à l'occasion des questions les plus
variées, et qui ont inspiré tous les spécialistes de la génération suivante,

et encore de plus jeunes; je me bornerai à en signaler certaines au passage,

que l'état actuel de la théorie peut mettre particulièrement en lumière.

Deux notices sur l'ensemble de son œuvre ont paru récemment: l'une,
due à S. Mandelbrojt et L. Schwartz (.Bulletin of the American Mathematical
Society, 1965), l'autre à M. L. Cartwright (.Bibliographical Memoirs of the

Fellows of the Royal Society, 1965); elles ont considérablement facilité
mon travail, et je me permettrai de les utiliser librement, en évitant dans

quelques cas de les répéter: c'est ainsi que je renvoie à la seconde de ces

notices pour une discussion de l'apport propre de Hadamard à la Mécanique

des milieux continus, qui sort un peu de mon sujet, et où je ne me
reconnais au surplus guère de compétence.

I. Propagation des discontinuités

Cette question est au centre du premier ouvrage d'importance d'Hada-
mard sur notre sujet: les Leçons sur la propagation des ondes et les équations
de l'Hydrodynamique », [6], 1903, reproduisant avec quelques compléments
ses cours de 1898-99 et 1899-1900. Avant qu'elle soit étudiée en général,
deux cas importants sont examinés : les équations d'un fluide compressible,
(notamment, dans le cas unidimensionnel où Hadamard reprend les
travaux de Riemann, Rankine, Hugoniot, en les complétant sur le point de la
conservation ou de la non-conservation des tourbillons suivant le type de la
discontinuité), et les équations de l'élasticité. Il étend ensuite au cas général
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une partie des considérations précédentes, d'une manière que nous allons
résumer brièvement.

Considérons un système

(a"=a«>

où U est une fonction des xi9 à p composantes, et A (resp. B) une matrice
dU

de type p X p (resp. 1 xp), fonctions régulières des xi9 de U, et des — (nous
ÔXi

nous limitons à l'ordre deux, pour simplifier l'exposé).
Etant donné une hypersurface régulière (H) d'équation H — 0, peut-il

exister deux solutions de notre équation, Ul et U2, se raccordant ainsi que
leurs dérivées premières sur (ET), mais non leurs dérivées secondes?

Il est facile de voir, de voir d'abord que la condition suivante est néces-

dHôH
saire: (H) doit être caractéristique; autrement dit la matrice: I Au

dxt dxj
doit être partout de rang < p sur H.

Cette condition n'est cependant pas suffisante, comme le montre
ô2 u du

l'exemple de l'équation de la chaleur— — 0; et une étude complète
dx dt

de la question semble encore aujourd'hui d'une complication inextricable.
Hadamard, à la suite des travaux de Goursat et Beudon, se limite essentiellement

au cas des caractéristiques simples, dont nous allons dire deux mots;
supposons pour simplifier (cas auquel on peut toujours se ramener par
changement de variables), que l'on ait H x1; la matrice précédente se

réduit alors à A1X; supposons que, en tout point de (ET), X 0 soit racine

simple de l'équation caractéristique dét(All—XI) 0; soient Y et Z des

vecteurs propres à gauche et à droite de^411? qui dépendront évidemment de

du
x2, xn. On voit d'abord que les données U et— sur (H) ne peuvent être

ôxl
quelconques, puisque l'équation YL{u) 0 ne fait intervenir que U9

du, et leurs dérivées tangentiales (U désigne ici Ux ou U2). De plus, en

dx1
d2 U! d2 u2

5 on voit que cette quantité doit
dXx dx1

rd2 U'
posant, sur (H) :

d̂x ^

être un vecteur propre de All9 donc être de la forme X (xl9 xn) Z: ceci
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est un point essentiel pour les applications ; enfin A doit encore satisfaire à

une équation aux dérivées partielles que l'on obtiendra en dérivant l'équation

initiale par rapport à xu et en multipliant à gauche l'équation obtenue

par Y (l'hypothèse de « caractéristique simple » s'exprime ici par une

propriété de l'équation finalement obtenue, que nous ne détaillerons pas.)

Inversement, dans le cas d'une équation analytique, et de données analytiques

vérifiant les « conditions de compatibilités » indiquées, et toujours
dans le cas de caractéristiques simples, Hadamard montre, en généralisant
des calculs de Darboux, Goursat et Beudon, l'existence de solutions U

prenant effectivement sur H les valeurs imposées, ainsi que leurs dérivées

d'ordre 1 et 2 (l'analyse peut d'ailleurs se poursuivre à l'ordre supérieur).
Hadamard examine aussi un cas de caractéristique multiple intéressant les

équations de l'élasticité, où la même analyse s'applique.
On s'étonnera peut-être de ce que nous ayons un peu insisté sur l'analyse

précédente, au demeurant fort simple, et due pour l'essentiel à d'autres

auteurs que le nôtre; mais, outre l'intérêt qui s'attache aux applications
qu'il en fait à la mécanique, Hadamard est amené à ce propos à discuter

(sinon à résoudre) un problème étroitement lié au précédent: celui de

l'unicité du problème de Cauchy, en distinguant soigneusement, ce qu'on
ne faisait pas toujours à l'époque, entre données et solution différendables

ou analytiques; les résultats obtenus à cette époque, qu'il discute soigneusement

étaient les suivants: a) Le résultat de Darboux-Goursat-Beudon
sur la non-unicité dans le cas d'équations à coefficients analytiques et de

caractéristiques simples; b) Le théorème de Holmgren, sur l'unicité du
problème de Couchy dans le cas de données (differentiates) non
caractéristiques, pour une équation linéaire à coefficients analytiques. Hadamard
insiste notamment sur l'intérêt qu'il y aurait à éliminer l'hypothèse « analytique

» dans ce dernier résultat, ce qui permettrait d'ailleurs d'éliminer aussi

l'hypothèse « linéaire ». Comme on le sait, cette question n'a réellement
progressé qu'à une époque fort récente: si des contre-exemples de Plis et
Cohen montrent que la « conjecture d'Hadamard » est, dans toute sa

généralité, fausse, d'importants travaux de Carleman, Calderön, Hörmander,
et d'autres auteurs montrent qu'elle est néanmoins exacte dans des cas très
étendus; quant à la question a), elle n'a guère progressé depuis, sauf pour
les équations à coefficients constants. En passant, tout ceci montre que
Hadamard, lorsqu'il avait une motivation pour cela, ne s'intéressait pas
seulement aux problèmes « correctement posés », quoique cette dernière
question soit un de ses principaux titres de gloire.
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Notons enfin que l'analyse précédente ne permet de traiter que les

discontinuités « d'ordre supérieur », et non les discontinuités du premier
ordre, telles qu'elles se présentent en particulier dans les travaux de

Riemann, Rankine et Hugoniot sur les fluides compressibles. Dans ce dernier

cas, Hadamard, comme les auteurs de cette époque, ne voit d'autre méthode

que celle qui consiste à traiter chaque problème physique séparément, en

« reprenant la mise en équations », suivant ses propres termes. Nous savons
aujourd'hui que, dans un grand nombre de cas (en particulier celui de

Riemann-Rankine-Hugoniot, comme l'ont montré Hopf et Lax), les conditions

que l'on obtient ainsi sont précisément celles que l'on trouve en
écrivant que les équations sont satisfaites au sens des distributions, ce qui
permet une discussion mathématique générale de telles discontinuités:
ce n'est pas ici le lieu de l'aborder.

2. Solution élémentaire des équations du second ordre

Rappelons rapidement les principes de l'utilisation des solutions
élémentaires: soit L un opérateur différentiel linéaire dans Rn, L' son adjoint
de Lagrange, et Q un ouvert de frontière régulière b Q; on a la formule
suivante, dite « de Green »

J [vL(u) — uL'(v)^\ d V — J M (u,v)d S
Q bQ

M étant une fonction convenable de u, v et de leurs dérivées. Dans le cas

elliptique, la méthode consiste à trouver, pour tout point ae Q, une fonction
v ayant une singularité convenable en a (nous préciserons plus loin),
vérifiant en dehors de a: L' (v) — 0, et à appliquer la formule précédente à Q

privé d'une boule de centre a et de rayon s. On a alors, avec des notations
évidentes :

J vL(u)dV $ M(u,v)d S - J M(u,v)dS
Q-BE bQ Se

Lorsque v est choisi convenablement, et lorsque u est assez régulier
dans Q, la dernière intégrale tend vers —u(a) lorsque s tend vers 0; on
obtient donc à la limite

J v L(u) d V — j M(u,v)d S u (a)
Q bQ

formule qui fait connaître u (a) en fonction des valeurs de L (u) dans Q,

et celles de u et certaines de ses dérivées sur b Q (en langage moderne, cette
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formule s'écrit, au sens des distributions L ' (v) Sa). On dira alors que v

est une solution élémentaire de L ' au point a. Si l'on veut traiter le problème
de Dirichlet, ou de Neumann, ou un autre, il faudra encore préciser le choix
de v, de manière à ne faire intervenir dans l'intégrale de surface que les

combinaisons données de u et de ses dérivées; mais peu importe ici.
Cette méthode avait été appliquée depuis fort longtemps déjà à l'équation

de Laplace avec?; log r pour deux variables, v r2~n pour n > deux

variables, et aux fonctions holomorphes, avec D — - (on obtient alors la
z

formule intégrale de Cauchy, avec sa démonstration habituelle; il est

d'ailleurs curieux que l'identité de ce cas avec les autres n'ait guère été

souligné traditionnellement). Des travaux de divers auteurs, dont Picard,
Sommerfeld, Hilbert, et Hadamard lui-même (voir les Leçons précédemment

citées, pp. 335-338) avaient traité les équations elliptiques à deux

variables, à coefficients analytiques; d'importants travaux de Fredholm
avaient traité à la même date des équations elliptiques à coefficients
constants, l'ordre et le nombre de variables étant quelconques. En 1904, Hadamard

[2] démontre l'existence (locale) des solutions élémentaires des équations

elliptiques du second ordre, à coefficients analytiques; l'hypothèse
d'analyticité sera levée ensuite par la « méthode de la paramétrix », par
E. E. Levi et Hilbert.

Quelques précisions sur la méthode et le résultat d'Hadamard. Prenons

„ d2 u _ du
L(u) ~ I Au -— h f Cu (ij 1, ...,*?)

OXt OXj ÔXi

et supposons les Au réels, et la forme 1 Ai} <L Cj définie positive pour tout
v; introduisons la métrique riemanienne dont les coefficients par rapport
à des coordonnées covariantes sont égaux aux A u ; dans cette métrique,
L prend la forme A + M, A étant l'opérateur de Laplace-Beltrami, et
M un opérateur du premier ordre; désignons enfin par r (v) le carré de la
distance géodésique du point a donné à un point v voisin de a. Deux cas
sont à distinguer:

a) Si n est impair, Hadamard cherche une solution dans le complémentaire
de a de l'équation L (v) 0, qui soit de la forme suivante

•f + 00I n — 2
v ~ L Uk r 9 avec p —-— U0 (a) ^ 0, et les Uk analytiques

* k o 2
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au voisinage de a. Pour l'obtenir, on passe dans le domaine complexe;
en transformant l'équation proposée, on trouve que, sur le cône r 0

les Uk doivent satisfaire à une équation différentielle le long des géodé-
siques, qui admet a pour point singulier, et permet de les déterminer
de proche en proche; le calcul montre aussi l'unicité de v, une fois choisi
U (a) (dont la valeur est d'ailleurs déterminée si l'on veut exactement

une solution élémentaire, et non un multiple): un calcul de majorations
permet enfin de s'assurer de la convergence de la série obtenue.

b) Dans le cas où n est pair, il cherche une solution de la forme :

1 B

v — Y ukrk+ wiog r
1 k 0

Le procédé est encore analogue au précédent (on détermine encore W

par un développement 1 Wk Tk); la solution n'est ici unique qu'à l'addition

près d'une solution analytique de L (u) 0.

En vue de l'utilisation ultérieure de la « méthode de descente », Hada-
mard étudie encore de façon détaillée la relation qui existe entre la solution

a2
élémentaire de L, et celle de l'opérateur à n + 1 variables —r + L.

ôzl

3. La notion de « problème correctement posé »

Il s'agit là d'une des plus importantes contributions d'Hadamard à

la théorie. Vers 1900, la distinction entre données (et solutions) différen-
tiables ou analytiques était loin d'être nette dans les esprits, et beaucoup
d'auteurs considéraient le théorème de Cauchy-Kowalewskaya comme une

réponse satisfaisante au problème de Cauchy; déjà, dans les Leçons, Hada-
mard note, sans s'expliquer davantage, la différence de nature entre ce

théorème, et les méthodes de Poisson, Kirchhoff, Riemann, méthodes

conduisant à des « formules explicites » et à des vitesses de propagation
finies; il note également que les cas traités par ces auteurs, à l'occasion de

problèmes physiques, font toujours intervenir des équations dont la partie
principale est de signature (1, n—1), et que les surfaces portant les données

initiales ont une « orientation d'espace » (comme il dira plus tard) alors

que, dans le théorème de Cauchy-Kowalewskaya, ces restrictions
n'interviennent pas. La contradiction qui semble se présenter ici sera levée par une

analyse célèbre, où les considérations mathématiques sont amenées à
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partir de la signification — ou l'absence de signification— physique des

problèmes considérés. Hadamard reviendra fréquemment sur cette question,

qui se trouve exposée en détail dans Le problème de Cauchy (1922, [1] et

1932, [6]). Ses conclusions peuvent en être résumées ainsi: les problèmes aux
limites que l'on rencontre en physique doivent posséder une solution et

une seule, et qui dépende continuement des données au sens suivant: si

l'on modifie légèrement les données (et, éventuellement, un nombre fini
de leurs dérivées), la solution doit peu varier; autrement, nous n'avons pas

une solution physique de notre problème, puisque, en pratique, les données

ne sont connues qu'avec une certaine approximation. Mandelbrojt et

Schwartz, dans leur notice, remarquent à ce propos : « Cette idée fut encore

plus fructueuse qu'il ne l'avait imaginé lui-même: car les analystes furent
alors obligés d'examiner, comme il dit, les « divers ordres de voisinage et
de continuité», ce qui conduit inévitablement aux espaces fonctionnels, à

la topologie générale, et à l'analyse fonctionnelle... Les méthodes modernes

pour résoudre les équations aux dérivées partielles utilisent des « majorations

a priori », ce qui signifie, qu'en fait, on démontre l'existence et l'unicité

d'une solution en commençant par prouver sa continuité par rapport
aux données.» Hadamard examine de ce point de vue divers problèmes:
problème de Dirichlet dans les cas elliptiques et hyperbolique (ce dernier
non correctement posé, et dépendant de conditions arithmétiques sur les

données), problèmes mixtes, sur lesquels nous reviendrons plus loin,
et surtout problème de Cauchy, dont il montre en détail qu'il n'est pas
correctement posé pour les équations elliptiques: traitant l'exemple de

l'équation de Laplace, et de données hyperplanes, il remarque d'abord
que, pour des données continues, ou p-fois continuement différentiables,
la solution ne peut exister des deux côtés puisque les données devraient alors
être analytiques, et il en conclut que même la solution unilatérale ne peut
pas toujours exister. En outre, la solution, quand elle existe, ne dépend pas
continuement des données; nous lui laissons ici la parole:

« Nous avons toujours soutenu, contre plusieurs géomètres, l'importance

de cette distinction; quelques-uns d'entre eux arguaient du fait que
l'on peut toujours considérer des fonctions quelconques comme
analytiques, attendu que, dans le cas contraire, elles peuvent être approchées
avec autant de précision qu'on veut à l'aide de fonctions analytiques. Mais,
à notre avis, cet argument ne porte pas, la question n'étant pas de savoir
si une telle approximation altérera très peu les données, mais si elle altérera
très peu la solution; il est facile de voir que, dans le cas qui nous occupe,
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les deux questions ne sont en aucune façon équivalentes. Prenons l'équation
classique des potentiels pour deux dimensions

d2 u d2 u

dx2 ôy2

avec les données de Cauchy suivantes

u (o, y) 0

du
— (o,y) u1 (y) An sin (ny)
ox

n étant très grand, mais An étant une fonction de n assujettie à être très

petite quand n devient très grand (par exemple An — etc.) Ces données
np

diffèrent aussi peu que l'on veut de zéro; cependant, un tel problème de

Cauchy a pour solution

un — sin (ny) s h (nx)
n

laquelle, si

11An - ou — ou e Vn
n np

est très grande pour toute valeur déterminée de x différente de zéro, à

cause du mode de croissance de enx et par conséquent de sh (nx) ».

On pourrait, certes, penser à un autre argument ; si la solution dépendait
continuement des données, un passage à la limite à partir du théorème de

Cauchy-Kowalewskaya montrerait l'existence de la solution pour toute
donnée suffisamment différentiable (ce dernier raisonnement a été

effectivement utilisé par la suite, notamment par Petrowsky et Leray pour les

équations hyperboliques d'ordre supérieur; connaissant par des majorations

a priori la continuité par rapport aux données, on peut en déduire
l'existence de la solution du problème de Cauchy). Mais le raisonnement
d'Hadamard conserve néanmoins tout son intérêt: sous des conditions
très générales le théorème du graphe fermé de Banach montre inversement

que, pour des équations linéaires, l'existence et l'unicité de la solution

impliquent sa continuité par rapport aux données; ceci permet, par des

généralisations du raisonnement que nous venons de citer, d'obtenir des
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conditions nécessaires pour que tel problème admette une solution: tel est,

par exemple, le point de départ des travaux de Gârding sur les équations

hyperboliques d'ordre supérieur.
Et d'une façon générale, le point de vue d'Hadamard suivant lequel il

convient de classer les équations en fonction des propriétés de leurs
solutions dilférentiables (plutôt qu'analytiques) a contribué de façon décisive

au progrès de la théorie et garde aujourd'hui toute sa valeur d'orientation,
même si on ne l'exprime plus nécessairement en termes de « problèmes

correctement posés ».

4. Le problème de Cauchy pour les équations hyperboliques d'ordre deux

Il s'agit là de la contribution majeure d'Hadamard à la théorie des

équations aux dérivées partielles. Etant donnée une équation du second

ordre, à partie principale de signature (1, n—1), et une hypersurface (S)
à orientation d'espace, on peut prévoir, pour des raisons physiques notamment,

que le problème de Cauchy sera correctement posé, et que la solution,
en un point a, ne dépendra que des données (conditions initiales, et second

membre), dans la région (F) limitée par (S) et le conoïde caractéristique
issu de a (plus précisément: le demi-conoïde caractéristique dont les

génératrices rencontrent (S)). Telles étaient aussi les conclusions suggérées

par les cas déjà traités: équation des ondes à trois dimensions d'espace
(donc à quatre variables), par Poisson et Kirchhoff, équations hyperboliques
à deux variables, par Riemann (l'existence de la « fonction de Riemann »

ayant été démontrée dans le cas analytique par Darboux); enfin, équation
des ondes à n variables, par Volterra et Tedone. Hadamard donne la
solution pour une équation à coefficients analytiques, d'abord en 1905 [1]

pour trois variables, puis en 1908 [3] dans le cas général. Son idée, comme
celle de Riemann ou de Volterra, dont il discute les méthodes en détail,
consiste en principe à appliquer la formule de Green dans le domaine V;
on est conduit à prendre pour solution de l'équation adjointe ce qu'il
nomme la « solution élémentaire », qui n'est autre que la fonction
construite par le même procédé que la solution élémentaire dans le cas elliptique

(cette fonction avait été construite dans le domaine complexe, et le

type de l'équation n'intervenait donc pas dans son calcul1). On essaie alors

1 Aujourd'hui, à la suite de L. Schwartz, il paraît plus naturel de prendre pour définition d'une solution
élémentaire la formule L (v)= ôa ; mais ceci exige le concept de distribution. Ce que Hadamard appelle solution

élémentaire n'est donc plus, dans le cas hyperbolique, ce que l'on appellerait ainsi aujourd'hui; mais
c'est une fonction, ayant une singularité convenable, et servant d'intermédiaire dans le calcul de la « solution
élémentaire » au sens actuel.
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de copier le calcul usuel que l'on fait dans le cas elliptique; mais ici, même

en isolant le point a, on trouve des intégrales divergentes sur tout le cône

caractéristique; dans le cas de deux variables, la méthode de Riemann

permettait d'éliminer cette difficulté à cause de certaines particularités;
d'un autre côté, Volterra et Tedone la surmontaient par des intégrations
préalables le long de certaines courbes: Hadamard note que ce procédé
pourrait être généralisé, mais qu'il présente un côté artificiel (et notamment,

dans le cas de l'équation des ondes, n'est pas invariant par les

transformations de Lorentz). Il montre que l'on peut surmonter directement
la difficulté au moyen de la notion de « partie finie d'une intégrale divergente

», qu'il introduit et développe à cette occasion.

Avant d'en dire plus sur le problème de Cauchy, il convient de s'arrêter
quelque peu sur cette notion. Commençons, comme Hadamard, par
examiner des fonctions d'une variable; considérons l'intégrale

a f(x)
I(s) J —— dx, a > 0 non entier (cette restriction est essentielle); lorsque

£ x

f est suffisamment dérivable en 0, on peut trouver des constantes
Xp (0<p< a p entier), telles que la quantité I (s) — I Xp 8p~a ait une limite

pour e tendant vers 0 ; il appelle cette limite « partie finie » de l'intégrale

considérée, et la note
a f(x) a

j —— dx (nous écrirons plutôt P.f. J Il montre que
n X n

cette intégrale généralisée possède de remarquables propriétés relativement

au changement de variables, à l'intégration par parties (que l'on fait comme
si la borne inférieure n'existait pas), et à la dérivation par rapport à la

a f (x, b) dx
borne inférieure: la dérivée par rapport à b de P.f. J — se calcule

o by

comme si la borne inférieure était fixe. Il remarque à ce propos: « Il s'ensuit

que toute équation différentielle (linéaire) qui serait vérifiée par l'intégrale
(considérée comme une fonction de b) si elle était prise entre les limites
constantes a, c, l'est aussi quand une des limites est justement b»; idée

dont il fait remonter le principe à Darboux (voir Le problème de Cauchy [6],

1932, pp. 167 et 194).

Passant ensuite aux intégrales multiples, il définit et étudie de même

l'expression

D r f fto AP.f. —dxike«]"
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lorsqu'une partie de la frontière de V est constituée par l'hypersurface
G 0, supposée régulière.

Il convient de noter ici combien cette notion pouvait sembler inattendue

et paradoxale à l'époque, et à Hadamard lui-même, comme il l'a dit
souvent; certes, on connaissait déjà les intégrales convergeant en «valeur
principale, au sens de Cauchy », et qui exigeaient pour exister des conditions
de dérivabilité sur /; mais, là, il n'était pas nécessaire de retrancher des

infiniment grands, et, pour cette raison, la « partie finie » semblait à Hadamard

de nature fort différente. Il faut noter aussi, avec L. Schwartz toute
son importance pour le développement de la théorie des distributions, dont
les parties finies fournissent naturellement les premiers exemples non
triviaux, et où elles conduisent naturellement au « problème de la division ».

Muni de cette théorie, Hadamard peut alors résoudre le problème de

Cauchy, en commençant par le cas d'un nombre impair de variables; la
méthode indiquée plus haut peut alors s'appliquer, en commençant par
isoler le point a en retranchant du domaine d'intégration (F) la portion
(W) située entre le conoïde caractéristique et une hypersurface d'espace (F)
proche de a\ il applique alors la formule de Green au sens des parties
finies; avec des notations que nous avons déjà employées, et en prenant
pour v la « solution élémentaire » décrite plus haut on trouve

P/J vL(u)dV P/J M (u,v)d S -P/J M (u 9v)d S
V-W S' 1'

Sf (resp. X") désignant la portion de S (resp. 1) contenue à l'intérieur du
conoïde caractéristique ; le fait important est qu'ici, il n'y a pas d'intégrale
sur le conoïde caractéristique (son équation est F 0, et v est de la forme

U \
—^2 > et Par consequent, tout est connu en fonction des données à l'excep-fT/
tion du dernier terme; or il montre précisément que (comme dans le cas
elliptique), ce dernier terme tend vers k u (a), k étant une constante numérique

aisée à calculer, lorsque 1 s'approche de a. On obtient ainsi une
formule que doit nécessairement vérifier la solution du problème de Cauchy;
reste à montrer que l'on a effectivement obtenu la solution.

Le cas d'un nombre pair de variables est plus délicat. Hadamard en
donne d'abord la solution par la « méthode de descente », i.e. en rajoutant
une variable d'espace, prenant des données qui n'en dépendent pas, et
éliminant cette variable dans les formules définitives; si le principe est fort
simple, les calculs sont assez compliqués dans le détail. Plus tard, en 1924
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[1], il donnera également une méthode directe dont on pourrait dire, en

deux mots, qu'elle consiste à faire le même type de calculs, en substituant
à la notion de « partie finie » d'une intégrale divergente celle de « partie
logarithmique » (notion qu'il n'introduit pas explicitement). Cependant
ici, la solution s'exprime par des intégrales ordinaires, mais de deux types :

d'une part des intégrales dans V et S'; d'autre part des intégrales « de

surface » sur le conoïde caractéristique, et son intersection avec S. Dans
le cas de l'équation des ondes à un nombre pair de variables, en particulier
dans le « potentiel retardé » de Poisson-Kirchhoff, les termes du premier
type ne se présentent pas : Hadamard se livre à cette occasion à une discussion,

aujourd'hui classique, du « principe de Huygens », distinguant entre
la « mineure », qui exprime la propriété précédente, et la « majeure »,

propriété générale des équations d'évolution; il montre que, pour les équations

d'ordre deux, la « mineure » ne peut être satisfaite que pour un nombre

pair de variables, et qu'elle équivaut au fait que la « solution élémentaire »

de l'équation adjointe n'a pas de terme logarithmique, autrement dit qu'on
a (avec les notations du paragraphe 2) W 0. Il se pose à ce propos la

question de savoir s'il existe d'autres équations que l'équation des ondes,

et celles qui s'en déduisent par des transformations évidentes, qui
possèdent cette propriété. Malgré tout leur intérêt, nous nous permettrons de

ne pas insister davantage sur ces questions, et de renvoyer à ce propos le

lecteur aux notices déjà citées.

Mentionnons enfin que, dans Le problème de Cauchy, Hadamard,
s'inspirant des travaux de Levi et Hilbert dans le cas elliptique, élimine

l'hypothèse d'analyticité des coefficients en montrant que, si ceux-ci sont

assez dérivables, une solution élémentaire approchée permet de ramener
le problème à une équation intégrale du type de Volterra, qui se résoud

par approximations successives. Pour établir que la solution de l'équation
intégrale répond au problème proposé, il est amené à établir en passant
la « continuité d'ordre fini » de la solution du problème de Cauchy par
rapport aux coefficients de l'équation, question que les considérations
conduisant à la notion de « problème correctement posé » amenaient

naturellement à envisager.

5. Les problèmes mixtes

Le « problème mixte » (le nom est d'Hadamard) auquel il s'intéresse

est le suivant : étant donnée une équation hyperbolique du second ordre L,
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et un ouvert V en forme de demi-cylindre, de base une hypersurface S'

à orientation d'espace, de surface latérale une hypersurface S" à orientation

de temps, trouver une fonction u dans V connaissant L u dans F, u et

du
ses dérivées premières sur S', et u (ou, par exemple — sur S". Hadamard,

dn

dès ses premiers travaux sur les équations aux dérivées partielles, avait

rencontré ce problème ou des variantes, notamment à propos des fluides

compressibles; en 1900 [3], il montre dans le cas de l'équation des ondes et

d'un « cylindre droit » (i.e. produit d'un ouvert d'espace par la demi-

droite t > 0) l'unicité du problème en utilisant l'intégrale d'énergie dont

ce semble être la première apparition comme instrument de démonstration
dans la théorie des équations hyperboliques (mais non la dernière, comme

on sait). Une note dans Le Problème de Cauchy, traduction française

(1932 [6]) résume ses travaux sur la question. Il note que ce type de

problèmes peut être traité par deux types de méthodes : l'une, celle des « fonctions

fondamentales » (i.e. des fonctions propres), qui « retiennent, en

quelque sorte, l'aspect elliptique du problème » — on pourrait d'ailleurs
en dire autant de la méthode par transformation de Laplace, équivalente
à celle de Heaviside, qu'il cite brièvement.

L'autre, cherche à retenir l'aspect hyperbolique du problème, la
propagation des ondes, les réflexions sur les parois, et qui évite de faire jouer
sans nécessité un rôle spécial à une variable de temps particulière. Il nous
faut ajouter que les deux types de méthodes ont, en fait, un domaine d'application

assez différent: la première s'applique à des produits d'un ouvert
d'espace par la demi-droite t > 0, et à des équations non nécessairement

hyperboliques ; la seconde, à des ouverts « variables au cours du temps »,
mais est limitée aux équations hyperboliques (et même, encore maintenant,
essentiellement aux équations du second ordre).

C'est à ce second type de méthodes que s'attache Hadamard: il note
d'abord que, aux points dont le conoïde caractéristique rétrograde rencontre
entièrement la frontière sur S\ le problème coïncide avec le problème de

Cauchy: traçant l'hypersurface caractéristique L passant par Sf n S",
on est ramené, pour trouver la solution, à un problème du type de Goursat:
trouver la solution entre 1 et S", connaissant ses valeurs sur ces deux
surfaces; dans le cas analytique, le théorème de Goursat dont nous avons
parlé au paragraphe 1 fournit alors la solution (tout au moins au voisinage
de la surface initiale S'; le prolongement demande d'autres arguments,
notamment la « majeure » du principe de Huygens). Il ne pousse pas plus
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loin cette méthode qui sera reprise ultérieurement par Schauder et lui
fournira, avec les majorations a priori qu'il déduira de l'intégrale d'énergie,
la solution du problème; quant à Hadamard, il préfère opérer de façon un
peu différente, en cherchant, en langage moderne, le noyau élémentaire qui
donne u en fonction des données du problème, et il esquisse une méthode
le lui donnant, au moyen de réflexions et d'équations intégrales (analogues
à celles considérées précédemment dans le cas non analytique du problème
de Cauchy). Les conclusions auxquelles il arrive, notamment sur les

singularités du noyau élémentaire et sur la conception des problèmes elliptiques
comme limites de problèmes mixtes hyperboliques semblent avoir été

partiellement délaissées depuis; on peut penser que de nouvelles études

mériteraient encore d'y être consacrées.

;
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