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COURBES ALGEBRIQUES*

par P. SAMUEL

[. LE THEOREME DE RIEMANN-ROCH

Soient k un corps, C une courbe projective non singuliére définie sur
k, et K = k (C) le corps des fonctions rationnelles sur C. La courbe C
est déterminée, & isomorphisme prés, par le corps K: si 'on veut le faisceau
structural de C est le faisceau des anneaux des valuations (v,) de K qui sont
triviales sur k.

On sait que ces valuations (v,) sont discrétes; elles correspondent aux
points de C lorsque k est algébriquement clos. On appelle diviseurs sur C
les combinaisons linéaires formelles, a coefficients dans Z, de ces valuations,
et on utilise I’écriture

A =) np.p

pour un tel diviseur. Ces diviseurs forment un groupe ordonné D (C). A
toute fonction rationnelle non-nulle sur C, fe k (C) *, on associe le diviseur

(f) =Y v,(f).p;

les diviseurs ainsi obtenus, sont dits principaux et forment un sous-groupe
S (C) de D (C); la relation de congruence modulo ce sous-groupe s’appelle
I’équivalence linéaire; le quotient D (C)/ S (C) est le groupe de Picard
Pic (C), de C.

Les diviseurs de C correspondent aux Idéaux fractionnaires du faisceau
structural O de C: les fibres de O sont les anneaux O, des valuations v,
et I'Idéal correspondant au diviseur &/ = ) n(p) . p a pour fibre relative a

p
O, 'ensemble o/, des x € K tels que v, (x) = — n (p).
Comme on sait, un tel Idéal est, en tant que Module, isomorphe au faisceau
des germes de sections d’un fibré vectoriel de rang 1 sur C. Il est trés com-
mode de jouer sur les trois tableaux suivants:

L Exposé des Journées Mathématiques de Caen, avril 1968.
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a) Diviseurs
b) Idéaux fractionnaires
c) Fibrés vectoriels de rang 1

On notera que, tandis que la correspondance entre diviseurs et Idéaux est
bijective, les fibrés vectoriels associés a deux diviseurs &7 et &/’ sont iso-
morphes si et seulement si o et o7’ sont linéairement équivalents; les fibrés
vectoriels correspondent donc aux classes de diviseurs.

Etant donnée une valuation v, de K = k (C), son corps résiduel est une
extension algébrique de k, de degré fini d(p). Le degré d’un diviseur &/
= Y n(p) p est par définition

p

d() =) n(pd(p);

p

un diviseur principal est de degré 0; ainsi d (&) ne dépend que de la classe
de .

Etant donné un diviseur &/, on désigne par L (/) I’espace vectoriel des
fonctions fe K telles que (f) = — &, et on note (/) sa dimension. Cet
espace vectoriel a diverses interprétations:

a) son espace projectif associé est le systéme linéaire (au sens de la vieille
géométrie algébrique) des diviseurs positifs sur C qui sont linéairement
équivalents a </

b) Notons I (&) le faisceau d’idéaux associé, comme ci-dessus, a </ ;
alors L (&/) est isomorphe & l'espace I (C,I(«)) = H°(C,1(«)) des
sections globales de ce faisceau;

c¢) Enfin L (&/) s’identifie aussi a ’espace des sections globales du fibré
vectoriel associé a 7.

Le théoréme de Riemann-Roch élémentaire dit qu’il existe un diviseur
f et un entier g = 0 tels que, pour tout diviseur &/ sur C, on ait

(1) () =d(H) —g +1+1(F-H)

L’entier g (/e genre) et 1a classe de t (la classe canonique) sont entiérement
déterminés par ces conditions. De plus, on a

(2) ) =9 dB)=29-2

La forme compléte de Riemann-Roch précise la nature de la classe cano-
nique f, du moins lorsque &k (C) est extension réguli¢re de k:
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(3) La classe canonique ¥ est la classe des diviseurs des différentielles de C,;
autrement dit le fibré vectoriel associé a T est le fibré cotangent de C
(i.e. le fibré dual du fibré tangent)

II. GEOMETRIE SUR LA SURFACE C x C

Un bon nombre de propriétés d’une courbe C se démontrent en €tu-
diant la surface produit C x C. Sur cette surface, et plus généralement sur
toute variété algébrique, on a, comme sur une courbe, les notions de divi-
seur, d’équivalence linéaire, et de fibré vectoriel. De plus, étant donnés
deux diviseurs X et Y sur C X C, sans composante commune, on définit
leur produit d’intersection X.Y (combinaison linéaire formelle des points
d’intersection de X et Y, affectés de multiplicités d’intersection convenables);
si X est une courbe irréductible, X.Y est un diviseur sur X, dont la classe
d’équivalence linéaire ne dépend que de celle de Y. Dans ce cas (X irréduc-
tible), on peut donc définir X.Y comme classe de diviseurs sur X, méme si
Y admet X pour composante: on remplace Y par un diviseur Y’ de méme
classe, n’admettant pas X pour composante, et on forme la classe (sur X)
de X.Y'. Le degré de cette classe X.Y s’appelle le nombre d’intersection de
X et Y et se note (X.Y).

Soit A4 la diagonale de C x C, etsoit T, le diviseur sur 4 correspondant
a un diviseur canonique f sur C. On montre qu’on a

(1) 4.4 = — fA
On en déduit
(2) (4.4) = 2 — 2g (g: genre de C)

de sorte que le nombre de self-intersection de /\ est < 0 pour g = 2.

On considére ensuite un morphisme séparable m d’une courbe C sur
une courbe C’ (genres g et g’). Une différentielle w sur C’ détermine son
diviseur (w), son image réciproque n*w sur C, le diviseur (n*w) de celle-ci,
et I'image réciproque n~'(w) du diviseur (w). Par considération des
anneaux de valuation des corps k (C’) = k(C), on définit, comme en
arithmétique, la différente © de n; c’est un diviseur sur C. La formule
d’Hurwitz- Zeuthen dit qu’on a:

(3) (n*w) — 17 (w) = D.
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En notant 7 (=[k(C): k(C")) le degré de =, I’égalité des degrés des deux
membres de (3) donne

(4) 29 —2=n2g'-2)+d(D)=n29"'-2).

Cette formule numérique a de nombreuses conséquences: par exemple

== 0 implique g’ = 0 (théoréme de Liiroth); aussi g=1 implique g’ = 1;
si m est étale (i.e. non-ramifié, i.e. si D=0) et si g'=0 (resp. g’=1), on a
n=1et C= C (resp. g=1).

Un morphisme séparable n : C - C’ est déterminé a isomorphisme
prés si on connait, sur C X C, le graphe T de la relation n (x) = 7 ().
Ce graphe est une partie fermée (de dimension 1) de C x C, qu’il est bon
de considérer comme un diviseur en affectant chacune de ses composantes
du coefficient 1. Réciproquement tout diviseur positif 7" sur C X C sans
composantes multiples, qui est ensemblistement le graphe d’une relation
d’équivalence, provient d’un morphisme séparable = de C sur une courbe
« quotient » convenable C’. La différente de = se calcule par la formule assez
naturelle:

(5) D, = 4.(T —4)

(D, : diviseur sur 4 correspondant a la différente D)

On notera que 4 est une composante de 7; on pose T = 4 + S. Si le
genre g’ de la courbe image est = 2, un calcul dii a F. Severi et utilisant
(4) et (5) montre qu’on a:

(6) (S.5) <0

On en déduit que S ne fait partie d’aucune famille algébrique irréductible
non triviale de diviseurs positifs sur C x C.

On fait alors intervenir la théorie des coordonnées de Chow (ou celle
des schémas de Hilbert). Appelons indices d’un diviseur X sur C x C ses
nombres d’intersection avec les horizontales, et avec les verticales. Les
théories ci-dessus montrent que les diviseurs positifs d’indices donnés sur
C x C se répartissent en un nombre fini de familles algébriques irréductibles
(’hypothése dim (C) = 1 est essentielle ici). En particulier les graphes des
automorphismes de C sont les diviseurs d’indices (1,1). Pour g = 2, I'inéga-
lité (4.4) < 0 (cf (2)) montre alors:

Théoréeme de H.A. Schwarz et F. Klein — Si C est une courbe de genre
g = 2, le groupe Aut (C) est fini.
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Le Schwarz partiellement responsable de ce théoréme est Hermann
Amandus, le complice &s inégalités de Cauchy et Buniakovski; ce
n’est pas le distributeur bien connu.

De méme I’inégalité (6) montre ce qui suit:

Théoréme de F. Severi — Etant donnée une courbe C, les couples formés
d’une courbe C' de genre g’ = 2 et d’un morphisme séparable n de C sur
C’ sont (a isomorphisme prés) en nombre fini.
En effet la formule (4) de Hurwitz-Zeuthen montre que g’ et le degré
n de © ne sont susceptibles que d’un nombre fini de valeurs. On peut
donc considérer que les indices (n—1, n—1) de S sont donnés, et
(6) montre que les diviseurs S possibles sont en nombre fini.

On peut généraliser le théoréme de Severi en remplagant, dans son
énoncé, la courbe C par une variété V' de dimension quelconque. Pour
varier, donnons I’énoncé correspondant pour des corps.

Corollaire 1 — Soient k un corps et K une extension réguliere de type fini
de k. Les corps intermédiaires L (k = L = K) qui sont de degré de transcen -
dance 1, de genre = 2 et séparablement contenus dans K sont en nombre
fini.

Un cas particulier est:

Corollaire 2 — (De Franchis) — Soient V une variété et D une courbe de
genre = 2. Les morphismes séparables non constants de V dans D sont
en nombre fini.

Ainsi les graphes de presque tous les morphismes de ¥ dans D
sont tangents au « champ horizontal » de V' X D. La séparabilité
est essentielle: prendre V' = D définie sur un corps fini F, et consi-
dérer les itérés du morphisme de Frobenius x — x? sur D.

ITI. LA CONJECTURE DE MORDELL POUR LES CORPS DE FONCTIONS

La conjecture de Mordell est la suivante: étant donnée une courbe C
de genre = 2 définie sur un corps de nombres algébrigques K, I’ensemble Cyk
des points de C a coordonnées dans K est-il fini ?

Cet énoncé reste une conjecture. Cependant D. Mumford a récemment
montré que les €léments de Cy sont « assez rares »: plus précisément le
nombre d’éléments de Cy dont la hauteur est au plus égale & un nombre
réel donné x est de I'ordre de Log (Log x) (x— +o0) ([6]).
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Il est connu que les corps de fonctions algébriques sont un peu plus
faciles a traiter que les corps de nombres, car on y dispose de toutes les
ressources de la géométrie algébrique: un exemple déja ancien est celui
de I’hypothése de Riemann. Ici encore, I’analogue de la conjecture de
Mordell pour les corps de fonctions a été récemment démontré, par Ju Manin
(en caractéristique 0, méthode analytique) et par Hans Grauert (méthode
algébro-géométrique, valable aussi en caractéristique p # 0 moyennant un
petit complément dii a 'auteur) (cf. [4], [5], [7]).

On considére ici un corps algébriquement clos &, un corps K de fonctions
algébriques sur k, et une courbe C de genre g = 2 définie sur K. On suppose
que Cg est infini, et on cherche a montrer qu’il I’est de fagon « triviale ».

L’essentiel de la démonstration consiste a montrer que, dans ces condi-
tions:

(1) Il existe un isomorphisme u : C — C' de C sur une courbe C' définie
sur k (une « courbe constante »)

La démonstration est longue et délicate. L’idée consiste a considérer C
comme la courbe générique d’une famille de courbes paramétrée par un
modeéle ¥ du corps K sur k. Une récurrence sur la dimension permet de
supposer que V est une courbe, de sorte que la famille ci-dessus engendre
une surface S fibrée en courbes de genre g = 2 au-dessus de C. On considere
alors, sur S, le fibré des directions tangentes a S qui sont transversales aux
fibres de S — V; c’est un fibré en droites affines au-dessus de S'; I’essentiel
du travail consiste & montrer qu’il admet une section. Ainsi la fibration
S — V est «infinitésimalement » un produit, ce qui donne (1). L’hypothese
g = 2 intervient sous la forme 2g — 2 > 0, ce qui veut dire que les diviseurs
canoniques de C sont amples.

Voyons maintenant ce qu'on peut déduire de (1). Le cas le plus simple
est celui ou 'isomorphisme u de (1) est défini sur K; il en est toujours ainsi
en caractéristique 0, et aussi en caractéristique p lorsque C n’est isomorphe
a aucune courbe définie sur un corps fini (comme on dit, lorsque C « est a
modules transcendants »). Alors u donne une bijection de Cy sur C'g.
Or, en notant ¥ un modéle de K sur k, les points de C’y correspondent aux
applications rationnelles de ¥ dans C'. Le théoréme de De Franchis (cf. § 1I)
dit alors que C’, — C’g est fini en caractéristique O; il en est de méme dans
le cas « & modules transcendants » de caractéristique p par le théoréme plus
précis de F. Severi.

Lorsque C est isomorphe a une courbe C’ définie sur un corps finiF,,
les isomorphismes u : C — C’ peuvent n’€tre définis que sur une extension



— 311 —

galoisienne finie K’ de K. Alors C’ est munie du morphisme de Frobenius
f:x — x%, et on montre que C'y. — C’, est réunion d’un nombre fini de
« familles de Frobenius » (f"(x)),.y. Ceci donne une description de C’'g;
on descend alors & C, par une descente galoisienne ou intervient le mor-
phisme de Frobenius.
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