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SUR L'ÉQUATION FONCTIONNELLE /(x+1) —f(x) Ö (x)

par M. Ardjomande

On connaît de nombreux résultats concernant l'existence et l'unicité des

solutions de l'équation fonctionnelle /(x+1) —/(x) <5 (x), ô (x) donnée,

satisfaisant à diverses conditions parfois globales. Un exemple classique est

le théorème d'Artin ou Bohr et Mollerup, qui affirme que lg F (x) est l'unique
solution convexe, à une constante additive près, de l'équation

Une généralisation de ce théorème a été évidemment de remplacer lg x
par une fonction ö (x), jouissant de propriétés qui permettent la construction

de/(x); par exemple la monotonie, la convexité, ou la convexité d'ordre
m> 1, avec dans chaque cas, une condition à la limite. Les théorèmes de

M. Kuczma, ainsi que ceux de W. Krull, A. Dinghas, ou encore quelques
résultats qui apparaissent dans l'article de J. Dufresnoy et Ch. Pisot,
illustrent cela. Citons un des cas les plus simples:

Soit ô (x) une fonction donnée, non croissante pour x ^ 0, et

ô (x)—>0 (x—* oo).

Alors l'équation fonctionnelle

/(x+1) —/(x) ö (x), /(0) donnée,

possède la solution

et c'est l'unique solution non décroissante pour x^0.
Or, il se trouve d'une part qu'une condition locale est suffisante pour

définir la classe où l'unicité a lieu. Par exemple, le théorème d'Artin peut
s'énoncer :

L'unique solution de l'équation /(x+1) -/(x) lg (x), x>0, qui
satisfait à la condition

/(x+1) - /(x) lgx, x>0.
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S(y + n) - f(n)+ ]
(1) lim

(ou à la condition

(2) lim{/(„ + -/(n)

^0, 0 < x < y < 2,

/(n+x) ~/(n)| 0, 0 < x < 1),

est lg F (x), à une constante additive près.
Pour le voir, d'abord il est clair que lg F (x), étant convexe, satisfait

à (1) et (2). Supposons que /x et f2 soient deux solutions satisfaisant à la
condition (1).

Soit cp (x) /x (x) — /2 (x). Pour x e ]0, 1] on a

fi (« + 1) - .A (n) -
/2(n+x) -/2(n-l)

/i (n +x) —fl
> — 8

J>n > nF

x + 1
(/2(") — /z (« — 1)) >

D'où
cp (x) cp(n+x) fx (n + x) — /2 (n + x) <

< x {lg n — lg (n — 1) } + cp (ri) + 8 (2x + 1) < s (3x + 1) + (p (1).

De même

cp (x) > — 8 (3x 4-1 + cp (1).
D'où

f\ (x) — /2 W cp (x) <p(l), x > 0, par périodicité.

Ou encore, supposant que /i et /2 sont deux solutions satisfaisant à la

condition (2), pour xe]0, 1], on a

1, fiin+x) -hin)fi in+1) - /1 in) > - s

r / /• / /2 (n + x) —

fi in+ 1 ~fi(n) < e

!•
pour une infinité

de n

J

et en permutant les indices 1 et 2, on a ces inégalités pour une infinité de m.

D'où cp(x) cp(n 4-x) < cp(n) 4- 2 ex cp (1) + 2 ex

cp(x) cp(m+x) > cp(m) — 2 ex cp(l) — 2 ex.

De manière analogue, dans le théorème relatif à Ö (x) monotone et -»0,
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(x-> oo), cité ci-dessus, l'unicité peut s'énoncer comme suit:/(x) est l'unique
solution qui satisfait à la condition

lim { f(n + y) — f(n + x) } ^ 0, 0 ^ x < y ^ 1

(ou à la condition

lim [f{n + x) -f(n) } 0, 0 < x < 1).

D'autre part, la nature de l'équation fonctionnelle envisagée, la lie aux
séries de Newton:

® /x\ /x\ déf x(x l)...(x k +1)
,?.>)• Ur—«—

puisqu'une « somme » de la fonction (*) est la fonction (fc/i); et l'on vérifie

immédiatement que si ô: [a, oo [->R, 0, est développable en série de

Newton, et / (0) donnée, alors l'équation

/(x + 1) -/(x) ô (x), x ^ a,

possède une unique solution développable en série de Newton. Il paraît
donc indiqué d'envisager une classe de fonctions ô (x), qui étend celle des

fonctions développables en série de Newton. Et, pour chaque ô (x) donnée,

on construira une solution unique dans une classe de fonctions, qui étend,
d'une deuxième manière, celle des fonctions développables en série de

Newton.
Les théorèmes I, II et III préciseront ces idées. Certains résultats connus

sont des conséquences du théorème I. Les théorèmes II et III traitent de

types de fonctions non envisagés jusqu'ici.
Dans ce qui suit Ak cp (x) sera définie pour k e {0} u N par

A °
(p (x) (p (x) A (p (x) A1 (p (x) cp (x + 1) - <p (x)

^^(x) A (dk_1 cp (x))

Théorème I

Soit ô: D {0}u N u [a, oo [ >R

une fonction donnée. Pour que l'équation fonctionnelle

(1) /(x + 1) — /(x) <5(x), xeD, /(O) donné,

ait une solution, il suffit qu'existe en entier 0, tel que pour la suite de



J
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polynômes

] Pn0) Z A*<5 («) ^0»

la série
I 00

I (2) £ {<5(n+x) -p„(x)} S(x),
n 0

converge pour x e [a, oo [. Alors la série S (x) converge sur D entier, et la
fonction

(3) f{x)f{0)- S ix) + <5 (0) J + S (M +1) (MX+ J
qui est indépendante du degré M des polynômes, est une solution de (1),

qui satisfait à la condition:

m + p

(4) fin+x)-£ àkfin)
k=0

pour tout entier p^l, et x e D, m min {M}.
De plus (3) est l'unique solution de (1) qui satisfasse à (4) pour un entier
1, et tout xe[a,a+1[. Enfin la condition de convergence (2) est remplie

si et seulement si

00

s {ôin+x)
n 0

converge sur D, pour une suite de polynômes Pn (x) quelconques, de degrés
bornés.

Remarque

Un changement de variables permet d'énoncer le théorème I sous la
forme suivante :

Soit ô : [a, co [—R une fonction donnée.

Pour que l'équation fonctionnelle

(1) /(x + 1) —/(x) <5(x), xe[a, go[, f(a) donnée,

ait une solution, il suffit qu'existe un entier M^O tel que pour

^ [x—a\
Pn(x) E Akôi^Y

n-0, („-.00)
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la série
00

(2) £ {ô(n+x) -
converge pour xe [a, oo [.

Alors la fonction

(3) +

indépendante de M, est une solution de (1), qui satisfait à la condition

rn~^~ P / q\
(4) f(n+x)~ Y Akf(n+a)l

^
0, (n^oo)

pour tout entier p^l, xe [a, oo[, m min {M}.
De plus (3) est l'unique solution de (1) qui satisfasse à (4) pour un

entier p^ 1, et x g [a, a+1[.

Démonstration du Théorème I
On utilisera les identités

(5)

(6)

Pn+lW Pn(x+1) + I; n, m, entiers ^ O.

Soit

La série
00

£ {ô{n+x) - pn(x}}=
71 0

converge en tout entier q^O. En effet, pour 0^q<,m,

(5) => ô (n+q)- 0 => 0
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Et pour q^.m+\,ilsuffira de vérifier que

Z A<à{i)
i=0

converge, puisque

n

Or, Z {ô(i+x + t)~ pi (x +1)} - {<5 (<" +x) - p, (x)}
t 0

Z |^(i+x + l) - pi + 1(x) - <5(i + x) + + <5(i)(

£ Am+1ô(i)(X) + {ô(n+x + l)-pn + 1(x)}-{5(x)-p0(x)}
t 0

* « Y Am+lô(i)(>-s(x + l) - s(x)+ ù(x)-p0(x),(n->co).
i 0 \mJ

D'où, par récurrence, la convergence de

00

X Aqô (0 V q ^ m + 1

i 0

On en tire, en particulier, que

(7) s (m + l)f £ dm+1 ô(n) \ A s(x) + ô(x) — p0(x),x ^ a

W n=o \m/
(8) V x g Z), on a encore cette identité.

Posons

/(x) =/(0)-s(x)+ ^Akô(0)(^kX+^ ++ xeD.

Alors /(x+1) — f{x) <5 (x) (en vertu de (8)). Et si

m + 1 fx\ m fxq„(x)Z ^/(n) î «oto /(O) + Z ^ « (0)
(c=o W fc=o Vfc +

D'où
n— 1

/(n +x) - #„(x) Z «H1' +x) - qi + l(x) + qfx)} +/(x) - q0(x)



« —1 m + 1 /x\)
(6) £ |<5 (i+x) - pi(x)+ pi(x) - Z Ak+lf(i)( k)\ +f(x) ~ (x)

"z{«5(/• +x) - Pi(x)}- Z Am+1ô(X)+ fix) -
i o i — o \m + i/

v 0 (n-+oo)

m + P ,x
De plus

f(n+x)-Z v 0(n-»oo),

puisque pour

q^m + 2, Z Akf(n)(*S)= Z ^ 5 (n) f, * i) *° *c0)
* m + 2\kj * »i + l Ve + 1/

En outre, si fM (x) est la forme de la solution, correspondant à une suite
de polynômes de degré M,

/mW -/<*) =/M(x+") -/(*+")

|/mC* + n) - Z f(x+nZAkf(n\k

+.?/H+.
>- 0 (/2 —> 00

c'est-à-dire fM (x) f (x), xe D.
Pour voir l'unicité, soit g (x), une solution sur D, avec g (0) / (0), et

m + p / \

g(n+x)- ZAkd(n){kJ+ 0(n^oo),

pour xe [a, a-\~I[, et un entier p^l.
Vu que A kf(n)Akg(n), 0, on a

g(x)- fix) g(n+x) -/(n+x) =|gf(n+x) - Z Akg^{l
r m + p

\f(n+x) - Z
I k=o \k

0 (u-> oo xe[fl,a + l[.



— 294 —

D'où g (X) f{x) sur D, par périodicité de la différence de deux solutions.
Enfin si

et on achève la démonstration par récurrence.

Remarquons que certains théorèmes connus sont des conséquences du
théorème I.

En ce qui concerne l'existence d'une solution, les conditions
suffisantes de

1. M. Kuczma [1], J. Dufresnoy et Ch. Pisot [2]

2. W. Krull [5], M. Kuczma [6], A. Dinghas [4]

impliquent chacune la convergence de

£ j<5(n+x) - p„(x) |,
avec degré de pn (x) 0, 1 respectivement.

3. On prévoit de manière analogue, que si ô (x) est m fois dérivable'
<5(m) (x) non croissante pour x^O (J. Dufresnoy et Ch. Pisot [2]), ou si ô (x)
est concave d'ordre m au sens de T. Popoviciu, avec Am ô (x)-»0, (x->oo)
(M. Kuczma [8]), on aurait la convergence de

avec degré de pn (x) m.

En ce qui concerne l'unicité, si une solution satisfait aux conditions
d'unicité des théorèmes connus, alors elle satisfait à la condition (4) du
théorème I.

Plus précisément, les conditions

converge sur Z>, la convergence de

n

implique la convergence de
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1'. g(x) solution non décroissante (dans un vg (oo)) avec <5 (x) (non crois¬

sante) -+0, (x->co);
(J. Dufresnoy et Ch. Pisot [2], M. Kuczma [1] et [3])

2'. g (x) solution convexe (dans un vg (oo)), avec <5 (x) (concave) satisfai¬

sant à Aö (n)-+0 (n->oo);
(W. Krull [5], M. Kuczma [6] et [7], A. Dinghas [4])

entraînent que

g (n+x) — Y Akg(n+a)y ^ J 0(n-*oo)

avec m —, 0, 1 respectivement.
Montrons que c'est le cas pour 1'. Pour 2', cela sera analogue. Soit

x e [a, a-\-1[.

lim j# (n+x) - g (n+a) - ^ ^ A g (n + a)

lim jg (n + x) — g (n + a) > 0

lim g(n + x) + g(n + a) + j ^ Ag (n +a)|

lim ^g (n+a + 1) — g (n + x) — (1 —x+a) ô (n +a)|

lim \g (n + a + 1) — g (n + x) > > 0

D'où la limite vaut 0 pour x e [a, a+l[, et même pour tout x ^ a, en
écrivant x x + q, x' e [a, a+1[, q entier ^ 0.

3'. Encore ici, on peut prévoir que même pour m > 1, si g (x) est une
solution à dérivée m-ième non décroissante [2], ou une solution convexe
d'ordre m [8], avec ô (x) satisfaisant respectivement aux conditions
citées sous 3, la condition (4) du théorème I aurait lieu.
Notons qu'il peut arriver que

00 f m /x
£ lô (n+x) - Y AkS(n)

n o l k= 0 X*

diverge, pour tout entier m ^ 0, et que

+s<
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et
00 f 1:0 fx
X i<5(n+x) - X

n — O l k 0 Ve

convergent; comme le montre l'exemple:

ô (x) (1 + a)* 0 < a < 1

Inversément la convergence de

X j<5(n+x) -
même en tout x, n'implique nullement que

i/H)
converge.
Avant d'énoncer le théorème II, rappelons que:

1) Si

<p(x) X a* (0 * x - 0

alors ak Akcp(0),V k.

2) Si

X (P <°> ^ <P*00

converge, Vjc^û
alors

J/H)
converge et <p* («+x), V x ^ a

3) Si

J/H)
converge et A f (x) £ (x)
alors

J/H)
converge aussi.
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Theoreme II

Soit ^:D Nu{0}u[ß, oo[ -» R et/(0) donnés.

Supposons que

£ /I^U0)Q ô*(x)

converge et

Y|<5(n+x) - ô*+ x)j S(x)

converge, V x ^ a.

Alors l'équation fonctionnelle/(x+1) — /(x) <5 (x), x e D, possède une
solution :

4) fix)/(0) -S(x)+ AkS(0) *
k o Ve + V

telle que pour xeD,
5) /(w+x) -f*(n+x) 0, (n -> oo)

et (4) est l'unique solution qui satisfasse à (5), pour x e [a, ß+l[.

Démonstration du théorème II
Pour tout entier m ^ 0, S {m) 0

Pour x g [a, oo [,

6) 5 (x +1) — S (x) lim { ô (n -fx) - <5* (n +x) } —
n—>oo

- <5(x) + <5* (x) - S(x) + Y <5(0) •

\kj
Posons

/(x) =/(0) - S (x) + X AkH0)(, X

k=0

Pour tout entier m > 0,

/(m + l) -/(m) Y S (°) S (m).
k=0 \fe/

Et pour x e [a, co[ /(x + 1) -/(x) <5 (x), par 6).
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De plus

/* (x +1) -/* (x) £ Akf(0) (kX_^j <5* (X),

ce qui implique:

f(n+x)— / * (n + x) X |ö(/+x) - <5*(i+x)j +f(x) -f*(x)

—>S(x) +/(*) -/(0) - J ^+1/(0)f, * \ 0
* o Ve+ V

Enfin, soit g- (x) t.q. g(x+1) — g(x) <S (x), VxeD;
g(«+x) —g* (n+x) - 0, (n->co), V xe [a, a+l[; et g(0) /(0).
Vu que g (n) f(n),V nentier 2; 0, et que

g* (n+x)X ^"<?00 (*) gin) £ f *
fc o vv fc=o \* +1 /

/(«) + /*("+*)

on a, V x g [a, a+l[

0(*) -/(*) g (n+x)-/(n+x) |gf(n+x) -0*(n+x)j

- | f(n+x) — f* (n+x)| »-0 (n >-oo)

D'où g(x) =f (x) sur D, par périodicité de la différence de deux solutions.
Si <5 (x) satisfait à la fois aux hypothèses des théorèmes I et II, pour que

les solutions associées coïncident il faut et il suffit que

lim Y Ak ô (n) ^ 0
n—>00 * „ + 1 \fc+l/

Mais la convergence de

lb-»-!>•'(*)}
pour une suite double (ank) n'entraîne même pas la convergence de
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en général. Exemple: ô (x) -i)w + (l + a)x, 0 < a < 1, où le théorème

I n'est, de plus, pas applicable.
Et même la convergence de

n= o
E <j^(n+x) - E

k—0
s(x)

avec convergence uniforme relativement à k, de la série,

00

Aks(0)£
n — 0

n'entraîne pas la convergence de

E Akô(«)

k 0

pour tout entier n ^ 0; mais seulement pour n suffisamment grand.
Exemple :

ô (x) cp (x) + (1 +a)*, 0 < a < 1 où

0 x 0, 2, 3,...
<p(x)

1 x 1

1

et\q>(x)\ < —r partout; ß > 1

xp

On peut formuler des conditions suffisantes pour la convergence de

E \ô(n+x) - (5* +x)l,

nk

dont par exemple:
Soit ((ank) une suite double telle que

oo r <

E |<5(n+x) - E a,
n 0 [ k

converge, xe[a, oo[u{0}uN;
et soit

E AkS(n)
n N

s (x)

nk <
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Z Mk

pour tout N' > N, et

convergente, x ^ a.

Alors

converge et

converge, x ^ a.

En effet, on démontre par récurrence que V m e N, la série

£ j^n+x)- £j<<5(n)(£) - £ aJX
n= 0 k 0 W k m +1 Ve

converge.
L'hypothèse implique la convergence de

So^(0)(J **(*)

£ < <5 (n +x) — <5* (n +x)

5*(*)

On écrit enfin,

£ -j c)(n +x) — <5* + x)
n N

Z fl"*u
m + 1

< X -j <5 (n + x) - X ^0{n)
n=N k=0 \'C

+ z
m + 1

Y,{Akô(n)-ank)

Indépendamment, on peut énoncer le théorème suivant, dont le théorème II
(pour a=0) est un cas particulier.

Theoreme III

Soit ô : [ 0, oo [ -> R, et /(0) donnés.

Soit

PJx) I lnk
k 0
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une suite de séries de Newton, telle que

£ j<S(n+x) -P„(x)J S(x)

converge x ^ 0; et

AkS(0) £ \.Ak 8 - an
n= 0 i

converge uniformément rel. h k — 0, 1 Alors l'équation fonctionnelle

/(x + 1) - fix) ô(x)

possède une solution
00 fxm m + s(o)-s(x)+

k= 0 \/C + l
où

Xk d*+1S(0) +dfc(5(0).

Cette solution est indépendante du choix de la suite Pn (x), et l'unique qui
satisfait à la condition

f(n+x) -/(")- E a"k[k + l)*6[ML
où (oink) est l'une quelconque des suites doubles ci-dessus.

Démonstration du théorème III.
Soit

n- 1

Ank — Yj aik> ank ~ ^n,k+1 tik

On a:

D'où

Ak+1SC0) lim {Ak8(n) - £ (0)
/• 0

def
(1) bnk^Ak+1S(0)+ Ak8(0) Xk, (n^ 00),

uniformément en k 0, 1
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D'autre part

donc aussi

£ / *
JoMfc+i

convergent.
De ceci, de (1) et du fait que x ^ 0, découle la convergence de

De plus,

et

Posons

I M
*

\1

,?>U. '•

/(*) m + S(0) - S(x) + £ a
k=o vfc + J.

On vérifie que:

S(x +1) - S(x) lim j<5 (n + x) - £ £ aik
* .)]• ~ 5 (*)

n—ycG l i=0 k=l \/C — 1/J

lim jp„(x) - £ 4,,*+1 (f)} - <5(x) lim £ bnk (X\ - Ô(x).
ft—>00 (_ k — 0 \ J «->00 k — 0 \k/

D'où/(x+l) - /(x) <5 (x).
Vu que

n—îf V oo

A.«)-/«-i^(/+1)-



£ { ô(i +x)-5(0}- + /(*) -/(0) - k + 1

E \ô(i+x) -Pi wl - E ^(0 - pt(°)\ -
i ol J i 0

-.?> Gl.)+/w-/<o)
0 (n~> oo

Et si (anfc) est une quelconque des suites doubles satisfaisant aux hypothèses,

comme ank — ank -+ 0 (n^> oo) uniformément en k, on en déduit que

/(n+x) -f(n) - E <*»* ^ *° —"°°)-

Pour voir que la solution est indépendante du choix de la suite Pn (x),
soit ft (x) la solution associée à une autre suite. La remarque précédente
entraîne que:

m - fi (x) j/(n +x) E ank
X

k 4-1

k o

X
fyin+x) -hin) - E ank V in-* oo).

k + 1

Do nef f\.
Pour vérifier, enfin, l'unicité, soit (x) une solution satisfaisant à

|gf (n + x) - gin) - E * 0 (n- oo), x e [0, 1[

Soit /(x) la solution associée à la suite i<xnk) par la construction ci-dessus.

fix)-g (x) |/(n +x) - /(n) - Eq «„* (fe
* J} -

»("+*) -gin)-E«rtffc*j)j *0 (n-> oo).
k 0

D'où / g(par périodicité de la différence de 2 solutions).
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