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SUR L’EQUATION FONCTIONNELLE f(x+1) —f(x) = 8 (%)

par M. ARDIJOMANDE

On connait de nombreux résultats concernant ’existence et I'unicité des
solutions de I’équation fonctionnelle f (x-+1) — f(x) = ¢ (x), 6 (x) donnée,
satisfaisant & diverses conditions parfois globales. Un exemple classique est
le théoréme d’Artin ou Bohr et Mollerup, qui affirme que Ig I" (x) est 'unique
solution convexe, a une constante additive prés, de 1’équation

f(x+1) — f(x) =l1gx, x>0.

Une généralisation de ce théoréme a été évidemment de remplacer Ig x
par une fonction § (x), jouissant de propriétés qui permettent la construc-
tion de f (x); par exemple la monotonie, la convexité, ou la convexité d’ordre
m>1, avec dans chaque cas, une condition a la limite. Les théorémes de
M. Kuczma, ainsi que ceux de W. Krull, A. Dinghas, ou encore quelques
résultats qui apparaissent dans l’article de J. Dufresnoy et Ch. Pisot,
illustrent cela. Citons un des cas les plus simples:

Soit 6 (x) une fonction donnée, non croissante pour x =0, et
0 (x)»0 (x— 0).
Alors I’équation fonctionnelle
Sx+1D)—f(x) =056(x), [f(0)donnée,

posséde la solution

e8]

fx) =10 - ) {5(H+X) - 5(n)}
n=0
et c’est Punique solution non décroissante pour x=0.
Or, il se trouve d’une part qu’une condition locale est suffisante pour
définir la classe ou I'unicité a lieu. Par exemple, le théoréme d’Artin peut
s’énoncer :

L’unique solution de Péquation f(x+1) — f(x) = lg (x), x>0, qui
satisfait a la condition
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4 lim {f(y ) —f() _f(x+n) = f(n)
¥ X

}20, 0<x <y <2,
(ou a la condition

=0,0<x<1),

) @{ﬂnﬂ) —~ f(n) _f(””i—f(")}

est Ig I' (x), a une constante additive pres.

Pour le voir, d’abord il est clair que Ig I' (x), étant convexe, satisfait
a (1) et (2). Supposons que f; et f, soient deux solutions satisfaisant 4 la
condition (1).

Soit ¢ (x) = f; (x) — f, (x). Pour x€]0, 1] on a

- ]
£ 1) — £, () _f1(n+xl Sl

fo(n+x) = fr(n—1)
x + 1

— (o) —fr(n=1) > —¢
D’ou ‘
p(x) =pn+x) =filn+x) =fL(n+x) <
<x{lgn —lgn—1} +em +e2x+1) <e(Bx+1) + ¢ ().

De méme
e(x) > —eBx+1) + ().
D’ou
fi(x) = fL,(x) = o(x) =@ (1), x > 0, par périodicité.

Ou encore, supposant que f; et f, sont deux solutions satisfaisant a la
condition (2), pour x €]0, 1], on a

' — fi(n |
f1<n+1>—f1<n>—f1(”+xi SN

| pour une infinité

fi+x) = fo() de 7
J

et en permutant les indices 1 et 2, on a ces inégalités pour une infinité de m.

fi(n+1) = fr(n) —

Dou ¢(x) =@pm+x) <o) +2ex =¢(1) +2¢x
o(x) =p(m+x)>p(m) —2ex = @(1) — 2ex.

De maniére analogue, dans le théoréme relatif & 6 (x) monotone et —0,
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(x— o0), cité ci-dessus, I'unicité peut s’énoncer comme suit: /(x) est 'unique
solution qui satisfait & la condition

lim {f(n+y) —f(n+x)} 20, 0=x<y=l
(ou a la condition

lim {f(n+x) —f(m)} =0, 0<x<1).

D’autre part, la nature de I’équation fonctionnelle envisagée, la lie aux
séries de Newton:

i X X cLéfx(x—l)...(x—k—i—1)
S k) k) T k!

puisqu’une « somme » de la fonction () est la fonction (,); et 'on vérifie
immédiatement que si 0: [a, oo [»R, a=0, est développable en série de
Newton, et f (0) donnée, alors I’équation

fx+1) —f(x) = 6(x),x =z a,

posséde une unique solution développable en série de Newton. Il parait
donc indiqué d’envisager une classe de fonctions J (x), qui étend celle des
fonctions développables en série de Newton. Et, pour chaque 6 (x) donnée,
on construira une solution unique dans une classe de fonctions, qui étend,
d’une deuxiéme maniére, celle des fonctions développables en série de
Newton.

Les théorémes I, II et III préciseront ces idées. Certains résultats connus
sont des conséquences du théoréeme I. Les théoremes II et III traitent de
types de fonctions non envisagés jusqu’ici.

Dans ce qui suit 4% ¢ (x) sera définie pour k € {0} U N par

4°0(x) = @(x) do(x) =4"9(x) =o(x+1) — 0 (x)
Ao (x) = 4(4 o ().

THEOREME 1

Soit 0: D= {0}JuNU [a, o[ ~R

une fonction donnée. Pour que I’équation fonctionnelle

(1) f(x+1) = f(x) = d(x), xeD, f(0) donné,

ait une solution, il suffit qu’existe en entier M >0, tel que pour la suite de
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polyndmes
Pa(x) = E 4* 5 (n) @
la série
2 é}{é(nm - (@} = S,

converge pour x € [a, oo[. Alors la série S (x) converge sur D entier, et la
fonction

M X X
3) f6) =f(O) =S + X A"5(0)<k+ 1) +S(M+1)<M+1>

qui est indépendante du degré M des polyndmes, est une solution de (1),
qui satisfait a la condition:

m+p

X
(4) f(n+x) — Z Akf(n)<k>—>0, (n— o)

pour tout entier p=1, et xe D, m = min {M}.

De plus (3) est 'unique solution de (1) qui satisfasse a (4) pour un entier
p=1, et tout x € [a, a-+1[. Enfin la condition de convergence (2) est rem-
plie si et seulement si

Y {8(n+x) = P,(¥))

converge sur D, pour une suite de polyndmes P, (x) quelconques, de degrés
bornés.

Remarque

Un changement de variables permet d’énoncer le théoréme I sous la
forme suivante:

Soit ¢: [a, co[—>R une fonction donnée.
Pour que I’équation fonctionnelle

(1) flx+1) —f(x) = 6(x), xela, o], f(a) donnée,

ait une solution, il suffit qu’existe un entier M =0 tel que pour

P = ¥ Ak5<n+a)<x;“),

k=0
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la série
(2) Y {6(n+x) — p,(x)} = S(x)
n=0

converge pour x € [a, ool.
Alors la fonction

a
3) 69 = (@) = S + Z 45 (a) (, +1)

@ X —a
AM+15
Z (n+a)<M+1>

n=0

indépendante de M, est une solution de (1), qui satisfait & la condition
m+p
(4) S(n+x) — Z A"f(n+a)< )—»0, (n— o0)

pour tout entier p=1, x € [a, o[, m = min {M}.
De plus (3) est I'unique solution de (1) qui satisfasse a (4) pour un
entier p=1, et x € [a, a+1[.

Démonstration du Théoreme I

On utilisera les identités

q
(5) Aopg+x) =) Ao (x) <i>,j, g, entiers = 0.
k=0
(6) Sip,(x) = Y A¢(n+a) (;i), alors
k=0

‘ X
Pns1(X) = p(x+1) + 4™ 1 o (n —I—a)( ); n, m, entiers = O.
m
Soit
pu(x) = ), 4“a(m{ ).
k=0 k
La série

{0(n+x) — p(0)} = s(x)

I
p1s

n

converge en tout entier ¢=0. En effet, pour 0<g<m,

() =d(n+q) —pfq) = 0=s5(q) =




— 292 —

Et pour- g=m-1, il suffira de vérifier que

M 8

45 (i)

0]

i

converge, puisque

Tiaro - zaso( 6 3 {3 as0f(])

O, Y {6G+x+1) = p(xt D} — {5 +%) — p (X)) =

= Z {6 (A+x+1) = pyi(x) = 6(i+x) + px) + 4™ 5(i)(;>}
= {\: Aot 5(:‘)(2) +{om+x+1) = p,i1(x)} = {6(x) = po(x) }

= Z A (i)<:’z>~_> s(x +1) — s(x) + 9(x) — po(x), (n — 00).

D’ou, par récurrence, la convergence de
o0
Y 4%6(), Vgzm+ 1.
i=0

On en tire, en particulier, que

[e¢]

X i X ,
(7) s(m+1)<m> = ) 4™F 5(n)(m> =As(x) + 0(x) — po(x),x =a

n=0
(8) VWV xe D, on a encore cette identité.

Posons
Fx) = f£(0) — s(x) + kgoAk5(0)<kil> +s (m+1)<mil), xeD.

Alors f(x-+1) — f(x) = 6 (x) (en vertu de (8)). Et si

m+1

du(x) = kgo A*f (n) (;i) qo(x) = f(0) + k=20 4* 5 (0) <kil>
D’ou

n—1

f+x) =g, (x) = 2 {8(+%) = gi41(x) + g0} +f(x) = qo(x)
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(6) "i {5 (i +x) — pi(%) + p(x) — mz AL f (D) (;i)} + f(x) — qo(x)

i=0

- 2 (6G+%) — p()} - z A+ 6(i><mj 1) + /() = o)

—0 (n— o0)
De plus
fn+x) — > A"f(n)(i)——»O(n—mo),
k=0 \

puisque pour

q ) X q-1 . X
>m+ 2, A4 = A% o (n —>0 (n——
czma2, § #0()= T #sw(] )0 e

En outre, si f;; (x) est la forme de la solution, correspondant a une suite
de polyndémes de degré M,

Ju(x) = f(x) = fux+n) = f(x+n)

M+1 m+1
- {fM<x+n>— Y 4w @} ~{f(x+n) - 3 4f ) (’;)}

+ ¥ Aka(n)( * )

m+1 k+1
—0 (n— 0)

c’est-a-dire f; (x) = f(x), xe D.
Pour voir I'unicité, soit g (x), une solution sur D, avec g (0) = f(0), et

m+p

gn+x) = ¥ A"g(n)(’,i)——»omaoox

pour x € [a, a+1][, et un entier p=1.
Vu que 4* f(n) = 4* g (n), Vk=0, on a

gx) —f(x) = gn+x) — f(h+x) = {g (n+x) — mz Akg(")<i>}“

—_ { f(n+x) — mzp A F(n) (D}

—>0 (n->ow) xela,a+1].
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D’ou g (x) = f(x) sur D, par périodicité de la différence de deux solutions.

Enfin si
M

P,(x)= > ay <;§), et i {5(n +x) — P,,(x)} = S(x)

k=0

converge sur D, la convergence de

i{fs(n) *ano} = §(0)

implique la convergence de

y {5<n+x> -y a@}

n=0 k=1

et on achéve la démonstration par récurrence.

Remarquons que certains théorémes connus sont des conséquences du
théoréme 1.

En ce qui concerne I’existence d’une solution, les conditions suffi-

santes de
1. M. Kuczma [1], J. Dufresnoy et Ch. Pisot [2]

2. W. Krull [5], M. Kuczma [6], A. Dinghas [4]
impliquent chacune la convergence de

Z {5(’1"!‘)(/') - pn(x)}a
n=0

avec degré de p, (x) = 0, 1 respectivement.

3. On prévoit de maniére analogue, que si d (x) est m fois dérivable
6(™ (x) non croissante pour x>0 (J. Dufresnoy et Ch. Pisot [2]), ou si 6 (x)
est concave d’ordre m au sens de 7. Popoviciu, avec 4™ 6 (x)—0, (x— o)
(M. Kuczma [8]), on aurait la convergence de

5 { oo - o]

avec degré de p, (x) = m.

En ce qui concerne l'unicité, si une solution satisfait aux conditions
d’unicité des théorémes connus, alors elle satisfait a la condition (4) du
théoréme I.

Plus précisément, les conditions
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1’. g (x) solution non décroissante (dans un vg (0)) avec 6 (x) (non crois-
sante) —0, (x—00);
(J. Dufresnoy et Ch. Pisot [2], M. Kuczma [1] et 3D

2'. g (x) solution convexe (dans un vg (00)), avec 0 (x) (concave) satisfai-

sant & 46 (n)—0 (n—00);
(W. Krull [5], M. Kuczma [6] et [7], A. Dinghas [4])

entrainent que
m+1

gn+x) — A"g(n+a)<x;a)—+0 (n— o0)

k=0

avec m =, 0, 1 respectivement.
Montrons que c’est le cas pour 1’. Pour 2’, cela sera analogue. Soit

x € la, a+1].
. | X—a
h_m{g(nﬁ—x)—g(n—l—a)—( ! )Ag(n+a)}

- Qr_rl_{gm+x)—g(n+a>>o

]iﬂ{—g(n+x) +g(n+a) + <x1a>Ag(n+a)}

= E@{g(n—i—a—l—l) — g (n+x) ——(1—x+a)5(n+a)}

= }_igl{g(n—l-a—}-l) —g(n+x)}>0

D’ou la limite vaut O pour x € [a, a-+1[, et méme pour tout x = a, en écri-

vant x = x' -+ ¢, x’ € [a, a+ 1], g entier = 0.

3’. Encore ici, on peut prévoir que méme pour m > 1, si g (x) est une
solution a dérivée m-iéme non décroissante [2], ou une solution convexe
d’ordre m [8], avec O (x) satisfaisant respectivement aux conditions
citées sous 3, la condition (4) du théoréme I aurait lieu.

Notons qu’il peut arriver que |

¥ {5(n+x) — 3 446 (n) <x>}
n=g k=0 k
diverge, pour tout entier m = 0, et que

ki A* 5 (n) <z)
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et

i {5(n+x) _ i A* 5 (n) (i)}

convergent; comme le montre I’exemple:
o(x) =(1+w)*, 0 <a<l,.

Inversément la convergence de

> {5(71 +x) — pn(X)}

n=0

méme en tout x, n’implique nullement que

T 45 (n) <x>
k=0 k
converge.

Avant d’énoncer le théoréme II, rappelons que:
1) Si

¢ (x) = iak@;xgo

k=0
alors a, = A% ¢ (0), V k.
2) Si

Y 49 (0) (’;) ~ 0% ()

converge,V x = a
alors

k; A* ¢ (n) (z)

converge et = ¢* (n+x), V x = a.

3) Si
k; 4 5 (n) (’;)

converge et 4 f(x) = 0 (x)

alors
Z#o()

converge aussi.
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THEOREME 11

Soit 6 : D =Nu {0} ula, oo - R et f(0) donnés.

Supposons que

i 4% 5(0) <’;> = 6% (x)
converge et
;% {5(n+x) — 0% (n +x)} = S(x)

converge, V x = a.
Alors I’équation fonctionnelle /(x+1) — f(x) = J (x), x € D, posséde une
solution:

0 f&) = 1(0) = 5(x) + Z 445(0) (, +1>

telle que pour x € D,
5) fr+x) =f*(n+x) >0, (n>o00),

et (4) est I'unique solution qui satisfasse a (5), pour x € [a, a-+1[.

Démonstration du théoréme II

Pour tout entier m = 0, S(m) = 0
Pour x € [a, oo [,

0) S(x+1) = S(x) =lim {6(n+x) — 6*(n+x)} —

n—oo

—5(X) + 0% (x) = — 6(x) + iA"é(O) (’;)

k=0

Posonsl
fx) =f0) —Skx) + ) A"é(O)( )
k=0
Pour tout entier m > 0,
fm+1) —f(m) = ) A"5(0)< ) = 0 (m).
k=0

Et pour xefa, o , f(x+1) —f(x) = 6(x), par 6).
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De plus
S+ - f*(x) = Z Akf(0)< 1) = 0*(x),

ce qui implique:
n—1

f+x) = f*(n+x) = ) {5(i+x) - 5*(i+X)} +f0) —f* %)

i=0

—> S () +f(x) ~ f(0) Z A"“f(0)< 1) =0

Enfin, soitg (x)t.q.g (x+1) — g (x) = 6 (x),V x € D;
g (n+x) —g* (n+x) - 0, (n—>00), V x € [a, a+1[; et g (0) = f(0).
Vu que g (n) = f(n), V n entier = 0, et que

& - - k X k
g* (n+x) —k=ZOA g(n)<k> =g(n) + Z 4 5(n)< +1>

k=0
=f) + X 4G (kfrl) = f*(n+x)
ona, Vxela at+l]

gx) —f(x) =gm+x) —f(n+x) = {g(n +x) —g*(n +X)}

— {f(n +x) —f*(n +x)} —0 (n—> )

D’ou g (x) = f(x) sur D, par périodicité de la différence de deux solutions.
Si 6 (x) satisfait a la fois aux hypothéses des théorémes I et II, pour que
les solutions associées coincident il faut et il suffit que

lim Z A"é(n)( +1)=O

n—o k=m+1

Mais la convergence de

e}

P {5 (n+x) — ki i (’;)}

pour une suite double (a,;) n’entraine méme pas la convergence de

3 #50(;)
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en général. Exemple: 6 (x) = (=) +(1+a)% 0 < a < 1, ou le théoréme
I n’est, de plus, pas applicable.
Et méme la convergence de

¥ {5<n+x> _ Y ay (x)} = s(x)
=2 &\ k

avec convergence uniforme relativement a k, de la série,
450) = Y (4 5(n) — a)
n=0

n’entraine pas la convergence de

ki A% 5 (n) (i)

pour tout entier » = 0; mais seulement pour » suffisamment grand.
Exemple:

0(x) =0p(x)+(1+a)*, 0<a<l1, ou

0 x =0,2,3,..

(p(x)={_1 ‘= 1

1
et| o (x)| < — partout; f > 1.
X

On peut formuler des conditions suffisantes pour la convergence de

o0

) {5(71 +x) — 6% (n +X)},

n=0

dont par exemple:
Soit (a,;) une suite double telle que

5 fo9 - 5 au()} =09

converge, xe[a, o[ U{0} UN;
et soit

-
Z Aké(n) — g | < M,
n=N
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pourtout N' > N, et

convergente, x = a.
Alors

T 4% 5(0) <x> = 5% (x)
k=0 k
converge et

i {5(n +x) — o0*(n +x)}

converge, x = d.
En effet, on démontre par récurrence que V m € N, la série

[0.0]

5 {5(n +x) — i A% 5 (n) (x> _ i - <x>}
n=0 k=0 k k=m+1 k
Converge.

L’hypothése implique la convergence de

i A% 5(0) (x) — 5% (x)
k=0 k

On écrit enfin,

Z{é(n+X)_5*(n+X)}i< Z{é(ner)— iAké(n)(i>_
W= n=N k=0
~ X O (i)} + 3| Y (458(n) —ayy) (i) ‘

Indépendamment, on peut énoncer le théoréme suivant, dont le théoréme II
(pour a=0) est un cas particulier.

THEOREME 111

Soit 6 : [ 0, oo [ — R, et £(0) donnés.

Soit
Pn(x) = i ank (z)

k=0
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une suite de séries de Newton, telle que

3 {5<n+x) - P,,(x)} = S(x)

converge x = 0; et
A* S(0) = Z {A" o(n) — ank}
n=0

converge uniformément rel. & k = 0, 1 ... Alors I’équation fonctionnelle:

fx+1) —f(x) = d(x)

posséde une solution

> X
f(x) = f(0) + S(0) — S(x) + ), 4 ;
k=0 k+1
ou
A = A1 S(0) + 4*5(0) .
Cette solution est indépendante du choix de la suite P, (x), et I'unique qui
satisfait a la condition

[ee]

fn+x) —f(n) — ), oy (k11>_—>0’ (n—> o), xe[0,1],

k=0

ou (a,,) est 'une quelconque des suites doubles ci-dessus.

Démonstration du théoreme 111.

Soit
n—1
Ay = ), ag, et ay — Ay pr1 = by
i=0
On a:
n—1
Ak+1 S(O) - lim {Aké(n) - Z ai,k+1} - Aké(O)
n—sco i=0
D’ou
def
(D = AT S(0) + 4*5(0) =1, (n— ),

uniformément en £k = 0, 1 ...




D’autre part

donc aussi

convergent.
De ceci, de (1) et du fait que x = 0, découle la convergence de

De plus,
* X ® X
5 b,,k( ) Ly zk( ) (10
k=0 k k=0 k
et
* X x X
b, — A , (n—0).
kgo k(k+1) kgf) k(k 1)
Posons

0) + S(0) — S wz(x
1) =50 +50 - 50 + T (], )

=0
On vérifie que:

S(x+1) — S(x) = lim {5(n +x) — ni i Ay <kx )} — 0 (x)

n—>0 i=0 k=1 —1

~ lim {P,,(x) — }Ojo; Ay s (z)} —6(x) = lim i b, (’;) — 5(x).

n—0 k=0 n—o k=0
D’ou f(x+1) — f(x) = d (x).
Vu que

n—1

® [ X
i;() {Pi(x) - Pi(o)} = kzoAn,k-i-l <k+1> ’

Fn+x) — f(n) — Z\f a (kjl) -
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n—1

_ {5(i+x) - 5(1')} F ) —f(0) — ¥ au (kL) =

i=0 k=0

i

n—1

n—1
= {5(i+x) ~ Pi(x)} - {5(1‘) - Pz(O)} -

i=0 i=0

~ Y b, (kj:l) +f@) = £(0)

k=0

—0 (n-+oo)

Et si (a,,;) est une quelconque des suites doubles satisfaisant aux hypotheses,
comme 4, — &, — 0 (n—o00) uniformément en k, on en déduit que

fn+x) —f(n) - OZOZ O <k11>-——>0 (n—>00).

k=0

Pour voir que la solution est indépendante du choix de la suite P, (x),
soit f; (x) la solution associée a une autre suite. La remarque précédente
entraine que:

fG) —f(x) = {f(n +x) — f(n) — ki Ay (k—):—1>} _

“{f1(”+x) — f1(n) — Z ank(kj_1>} —0 (n—0).

Donc f = f;.

Pour vérifier, enfin, I'unicité, soit g (x) une solution satisfaisant a

{g(n-HC) —gm) — 3, Otnk<kj_1)}—-->0 (n—o0), xel0,1].

k=0

Soit f(x) la solution associée a la suite (a,,) par la construction ci-dessus.

J&x) =g ) = {f(n+X) —f(n) — i - (kj-1>} ~

k=0

— {g(n+x) —g(n) — _Zocnk(k;)} —>0 (n—> ).

D’ou f = g (par périodicité de la différence de 2 solutions).




(1]
(2]

B3]
[4]
(3]
6]
(7]
(8]
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