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A NEW FAMILY OF LINEAR TRANSFORMATIONS

by A. MEIR

1. In 1935 J. Karamata [6] defined a linear transformation method
which in 1953 was rediscovered by Lototsky [8] and was published in the
survey article of R.P. Agnew [2]. Let { P, } (k=0,1, ..., n;n=0,1, )
be defined by the identity

(1.1) x(x+1 ... (x+n—1) = > Pux*,
k=0

and let {7,}% , the Lototsky transform of a sequence {s, } be

Ih = i > P s
n!y=o
Some immediate generalizations were given by Wuckovic [11] who replaced
the left hand side of (1.1) by (x+a)..(x+a+n—1)(a>—1) and by
Harlestam [4] who replaced it by (x+¢g—1) ... (x+rg—1), (g>0) . Jaki-
movski’s result [5] included all the previous ones as special cases by defining
the [F, d,] transformation for any fixed sequence of real or complex numbers

{d,}7 (d,#—1) by

(x+d)(x+dy)...(x+d,) = ) Pux".
k=0
Regularity, inclusion, shift-properties and applications to analytic continua-
tion, Fourier series, etc., have been thoroughly investigated (see [9], [7]).
Here we give certain further possible generalizations of the above
methods, some of their main properties and their relations to well-known
classical summation methods.

2. For given sequences of real or complex numbers {c,}7, {d,}7
(c,2—1,d,#—1)let Cy(x) = Dy(x) =1and forn =1

{ C,(x) = (x+c))(x+cy)...(x+c,)
D,(x) = (x+dy)(x+d,)...(x +d,)

and let the matrix {r, } (n=0,1,...; k=0, ..., n) be defined by ry, = 1

(2.1)
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and for n > 1 by

(2.2) 2 T C(®) [ € (1) = D, (x)/ Dy (1) .

A sequence {s,}5 will be called [F, ¢, d]-summable to o if

n
lim ) rys =0

n—so k=0

The [F, d,)-transformation is the special case ¢, =0 for n = 1,2, ... .
Other special examples are the following: (i) If d, = 0 (n=1, 2, ...) and
for some fixed ¢ > 0, ¢, = ¢"~! (n=1, 2, ...) then (2.2) yields

e = (=177 [,’j [T(t+¢"™
ji=1

where [;] denotes the g-binomial coefficients (see e.g. [1]). (i) Ifd, = n>
¢, = q" ' (n=1,2,..) then (2.2) is equivalent to formula (2) of Carlitz [3]
(iii) If d, = 0 (n=1, 2, ...) then { r,; } is the inverse of [F, c,]-transformation
(see Formula (8.7) in [9]). (iv) If ¢, = d,_4 (k=2,3,...), ¢, = 0 then
{ ru.} is the matrix transforming the [F, d,]-sum of 0, s, , sy, ... into the
[F, d ]J-sum of sy, §q, ... .

3. Regularity. The following recursion relation is an easy conclusion
from (2.2)

(3.1) (A+d)ry = dy—ce) Tno1p T L+ ) Fumq g1

where roo = land r,, = 0if bk > n,if k < 0 or if n < 0. Iterating (3.1)
one shows by induction that for n = k = 1 we have

(32) Fok = Z bnv rv—-l,k——l
v=k

where for k < v < n

1 +¢ = | B
3.3 b, =bM = 1—
(3-3) Y144, j:lll 1+d;

(an empty product being 1 by definition). We formulate now the following

THEOREM. Suppose { ¢, }T , { d, }T satisfy
(B4 O0<(l+c)(+da)=1, k=1,2,..;v=01,..
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(3.5) Y1 +d|™' = 4.
n=1

Then [F, c, d]-method of summation is regular.
Proof. First we observe that from (3.4) it follows by (3.1) that »,, = 0

n

for all » and k and from (2.2) that ) r,, =1 for all n. Thus to prove regular-
k=0
ity it remains to show that for fixed k = 0, 1, ... we have r,, = 0 (1) as

n— o . Now, from (3.1) r,y = (d,—c;) (14+4d,)~* Fu—1,0» SINCE Foo = 1,

we have
" 1+c
rnO = H (1— 1)

éexp{—[l-l—cl[ PR +dkl"1}.

k=1

and by (3.4)

By (3.5) then
(3.6) limr,, =0.

n—-o0

We assume now that for some k > 1

limr, ., =0

n—>0

and prove that then lim r,, = 0 too. This will follow from (3.2) if we

establish that, for fixed k, { b,, } satisfy the inequalities

(3.7) YIlby| SH< 0, n=1kk+1,..
v=k
(3.8) limb, =0, v==kk+1,...

Now from (3.3), b,, = 0 for all n, v and by an easy calculation

. 1+ d, — i
Y b, = — {1 _ DT G I <1~ L s
b=k I+ ¢pyq 1 +de ;55 1+d;

= 1ra {1+ h = Cuur
1+ Cors 1 + d,

which proves (3.7). Also by (3.4) for fixed v =k,
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: 1+ ¢ . -
lbnvlél_’_dvexp{——ll_{_ckﬂ-ll Z |1+d1|1}

j=v+1

which by (3.5)
=0(1), as n-> ©.

This proves (3.8) and thus by induction from (3.6)

limr, =0, k=0,1,..

n—»o0

completing the proof of the Theorem.

4. The { r, } defined by (2.2) or (3.1) can be expressed on using divided
differences (see e.g. [10] p. 8, formula 1.4 (1)) as follows

(4.1) Fae = (Lt+c)(I4c)) . ..(T+ce)[—cy, —€ay ooy —Cpiq3 D]

where [x{, x,, ..., x;; f] denotes the usual divided differences of a function
f(x) at xq, x5, ..., X; . This formula suggests another family of possible
transformation methods. For a function f(x) with f(0) = 1, for a given
sequence { ¢, }7 and for A > 0, let for kK = 0

(4.2) (D) =(=DCA+ec)...(A+cp[d+eq, e, At f].

If for a sequence { s, } and for A = 4,

[o¢]

t(A) = Z ry (A) s,

k=0

exists and lim ¢ (1) = o, then we say the sequence { s, } is { f, ¢ } summable

A= 0

to o. In particular if f(x) = (14+x)"' then

(A+cy)...(A4+¢c)
(I+A4+c)...(1+A+cesy)

ry(2) =

and this transformation method reduces to the classical Abel method if
¢ =0 (k=1,2,..).

Another modification of (4.1) would suggest to define { r,; } for a function
f(x) and a given sequence { ¢, } by

P = (— 1)n—k Cr+1Ck+2 -+ Cy [Ck, cees Cn§f]

which, if f(c,) = u,, generates the well known generalized Hausdorff
[H, c,; u,]-transformation methods.
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