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A NEW FAMILY OF LINEAR TRANSFORMATIONS

by A. Meir

1. In 1935 J. Karamata [6] defined a linear transformation method

which in 1953 was rediscovered by Lototsky [8] and was published in the

survey article of R. P. Agnew [2]. Let { Pnk} (k—0, 1, ...,«; n=0, 1,

be defined by the identity
n

(1.1) X (X + 1) (X + U — 1) Yj Pnk
k 0

and let { tn } o >
the Lototsky transform of a sequence { sn } o be

1 "

L — " X Pnk Sk •

nlk=o

Some immediate generalizations were given by Wuckovic [11] who replaced

the left hand side of (1.1) by (x+a) (x+a+w—1) (a> — 1) and by
Harlestam [4] who replaced it by (x+q—l) (x+nq — 1) (#>0) Jaki-

movski's result [5] included all the previous ones as special cases by defining
the [F, dn] transformation for any fixed sequence of real or complex numbers

{4,}T (4^-1) by
n

(x+d1)(x+d2) ,..(x+dn)Y.PnkXk.
k= 0

Regularity, inclusion, shift-properties and applications to analytic continuation,

Fourier series, etc., have been thoroughly investigated (see [9], [7]).
Here we give certain further possible generalizations of the above

methods, some of their main properties and their relations to well-known
classical summation methods.

2. For given sequences of real or complex numbers { cn }®,
(cn# — l,dny£—l) let C0 (x) — D0 (x) 1 and for n 1

I Cn(x) (x+c1)(x+c2) ...(x+
\ Dn(x) (x+d1)(x+d2) ...(x+

and let the matrix { rnk) («=0, 1, k=0, n) be defined by r00 1
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and for n ^ 1 by
n

(2.2) X rnkCk(x) I Ck(1)D„ (x) / Dn (1).
k= 0

A sequence { sn } q will be called [F, c, d]-summable to a if
n

lim £ rnk sk a
M->oo k 0

The [F, ^-transformation is the special case cn 0 for «—1,2,....
Other special examples are the following: (i) If dn 0 (n= 1, 2, and
for some fixed q > 0, cn qn_1 («=1, 2, then (2.2) yields

(-1)jt — k na+r1)
J=1

where [JJ] denotes the ^-binomial coefficients (see e.g. [1]). (ii) If dn n 9

cn qn_1 («==1, 2, then (2.2) is equivalent to formula (2) of Carlitz [3]*

(iii) If dn — 0 («=1, 2, then { rnk } is the inverse of [F, cj-transformation
(see Formula (8.7) in [9]). (iv) If ck dk^t (k=2, 3, 0 then

{ rnk'} is the matrix transforming the [F, JJ-sum of 0 s0 su into the

[F, rfj-sum of ^o, »5*1, ••• •

3. Regularity. The following recursion relation is an easy conclusion
from (2.2)

(3.1) (1 +dn)rnk (dn~ck+i) rn-i,k+(1

where r00 1 and rnk 0 if k > «, if k < 0 or if n < 0 Iterating (3.1)

one shows by induction that for n ^ k ^ 1 we have

(3.2) rnk X h

where for k < v < n

nv ' v— l,fc— 1

v fc

1 + A A 1 +Cfc+1
(3.3) fcnv &<*> ——în 1

1 +dvj=v+iV l+dj
(an empty product being 1 by definition). We formulate now the following

Theorem. Suppose { c„ { 4. }T sa

(3.4) 0 <(l+c4)(l+dt+v)^l, fc 1,2,...; v 0,1,...



(3.5)
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00

Z I 1 + dnr1 + 00

Then [F, c, d]-method of summation is regular.

Proof First we observe that from (3.4) it follows by (3.1) that rnk ^ 0
n

for all n and k and from (2.2) that £ rnk 1 for all n. Thus to prove regular-
k—O

ity it remains to show that for fixed k 0, 1, we have rnk 0 (1) aS

n-+ co Now, from (3.1) rn0 (4,-Cj) (1+</„)"1 b.-i,o since 1

we have

'--n ('"£*)
and by (3.4)

By (3.5) then

(3.6)

— exp - I 1 + cj I Z 11+41 1

k=l

lim r„ o0.
n—>oo

We assume now that for some k > 1

lim rn,k-i 0
n-^-co

and prove that then lim rnk 0 too. This will follow from (3.2) if we
n-* oo

establish that, for fixed k, { bnv} satisfy the inequalities

n

(3-7) Z 16», I <oo.
v k

(3-8) lim b„v0, v + 1,...
n—>-oo

Now from (3.3), bm ^ 0 for all n,vand by an easy calculationib„f] (i-httui
y=* 1 + ck+1 I 1 4- dk \ 1 -f ^1 + ck+1

1 + cfc

1 "b cfc + l

1 + d{

1 +

k j=k+1

dk - c,fc+i
1 +

which proves (3.7). Also by (3.4) for fixed v ^ k.
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|fc"'-T^rrexpf-11+Ct+i1 £ U+^-r1}
l+^v [ J =7+1 J

which by (3.5)

^ 0(1), as n — oo

This proves (3.8) and thus by induction from (3.6)

lim rnk 0, k 0, 1,
«—>00

completing the proof of the Theorem.

4. The { rnk } defined by (2.2) or (3.1) can be expressed on using divided
differences (see e.g. [10] p. 8, formula 1.4 (1)) as follows

(4.1) rnk (l+c1)(l+c2)...(l+ci()[-c1, -cs,-ct+1;D„]
where [xl5 x2,xk;f] denotes the usual divided differences of a function

/(x) at xi9 x2, xk • This formula suggests another family of possible
transformation methods. For a function /(x) with /(0) — 1 for a given

sequence { ck and for X > 0, let for k ^ 0

(4.2) rk{X) — l)k (X + cq) (2 +ck) [2 + cl5..., 2 + C/c+1;/]

If for a sequence { ^ } q and for A ^ A0

00

/(A) £ r,(AK

exists and lim t (X) a then we say the sequence { s„ } is {/, c } summable
A-> oo

to a. In particular if /(x) — (l+x)_1 then

(A + cx) (A+cfc)
rk (/)

(1 + X + ct) (1 +X+ck+1)

and this transformation method reduces to the classical Abel method if
ck Q (k= 1,2,...).
Another modification of (4.1) would suggest to define { rnk } for a function

/ (x) and a given sequence { cn} by

r„k(-1 )"~kck+1ck+2 ...c„lck,

which, if /(icn) — fin, generates the well known generalized Hausdorff
[FT, juj-transformation methods.
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