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holm d'établir la convergence des séries à l'aide desquelles il a résolu sa

célèbre équation intégrale.
Ce théorème n'est d'ailleurs pas sa seule contribution à l'algèbre. Un

mémoire sur l'élimination le conduit à des démonstrations élémentaires de

théorèmes établis par Humbert, Appell et Goursat à l'aide des fonctions
fuchsiennes et abéliennes. Dans un autre mémoire, il signale une lacune
dans la démonstration classique de l'impossibilité de la résolution de l'équation

du cinquième degré. Deux autres mémoires portent sur les conditions
de décomposition des formes. Tout cela de 1894 à 1897. Il reviendra à

l'algèbre en 1911 pour rédiger, en collaboration avec M. Kûrschak, l'important

chapitre de YEncyclopédie des Sciences mathématiques (éd. française)
consacré à la théorie des corps et domaines algébriques.

Mentionnons encore une extension des théorèmes de Paul Dubois-
Reymond sur la croissance des fonctions. C'est Hadamard, et non Paul
Dubois-Reymond, qui a démontré qu'on peut toujours définir une série

convergente (divergente) qui converge (diverge) moins rapidement que
toutes les séries d'une suite dénombrable de séries convergentes
(divergentes) données, et que, si f(n) est une fonction positive et indéfiniment
croissante de n, on peut toujours trouver une série divergente Yßn une
série convergente YPn telles que 0 < un < vnf(n).

Mentionnons enfin, pour en finir avec ces questions diverses, un mémoire
de 1906 sur les transformations ponctuelles, où il étudie les conditions
d'unicité d'une telle transformation, et un mémoire de 1910 sur l'indice de

Kronecker, qui généralise cet indice, et qui en même temps, dans le cas du

plan, apporte une simplification à la démonstration du théorème de Jordan

d'après lequel une courbe plane fermée sans point double divise le plan
en deux régions.

III
Arrivons maintenant à un ensemble de travaux beaucoup plus important,

concernant le calcul des variations et le calcul fonctionnel. On sait

qu'Hadamard a donné le nom de fonctionnelle à une expression : U [x (t)]

qui dépend de toutes les valeurs d'une fonction x (.t) dans un intervalle

(fini ou infini). Le calcul fonctionnel, au sens de Volterra et Hadamard,
est l'étude de ces fonctionnelles (nous n'avons pas à parler ici de l'analyse

générale, créée par M. Fréchet et E. H. Moore, et qu'on appelle souvent

analyse fonctionnelle; il est regrettable que la terminologie de M. Fréchet

n'ait pas été conservée). Volterra s'était d'abord placé au point de vue
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géométrique, en étudiant les fonctions de lignes. En ramenant l'étude des

fonctions de lignes ou de surfaces à l'étude analytique des fonctionnelles,
Hadamard a réalisé un progrès analogue à celui que Descartes a réalisé en

créant la géométrie analytique.
Dans sa notice de 1912, il indique que les progrès de l'analyse et sa

tendance à l'énoncé de problèmes de plus en plus généraux, devaient

nécessairement conduire à l'analyse fonctionnelle. Après les fonctions

particulières connues depuis longtemps, Leibniz et ses successeurs avaient

étudié des fonctions de plus en plus générales d'une ou de plusieurs variables.

Il était fatal qu'on étudie un jour les fonctions d'une infinité de variables,

et, comme une fonction continue dans un intervalle fini y est bien définie

par ses coefficients de Fourier, les fonctions de ces coefficients sont en
réalité des fonctionnelles. Avant Volterra, Carlo Bourlet et surtout S. Pin-
cherle avaient étudié la relation entre une fonction analytique / (x) définie

par une série entière Yßn une autre fonction g (x) dont la forme dépend
de tous les an; g (x) est donc en réalité une fonctionnelle qui dépend de la
fonction /(•) et accessoirement du paramètre x. Le mérite de Volterra
fut d'abord de s'être débarrassé du paramètre accessoire x, ensuite et
surtout d'avoir compris que l'étude générale des fonctionnelles ne devait

pas dépendre d'un mode particulier de représentation de la fonction dont
elles dépendent. Son premier résultat fondamental montre bien l'intérêt
de ce point de vue. Traduit dans le langage d'Hadamard, c'est que, si une
fonctionnelle U dépend des valeurs de x (t) dans un intervalle (a, b), et si

on donne à U une variation infinitésimale Sx (t), la variation correspondante

de U est, sous des conditions assez peu restrictives, de la forme
b

ÔU J U'x ôx (t) dt, (1)
a

l'erreur étant, comme dans la définition d'une différentielle, un infiniment
petit d'ordre supérieur au premier. Le coefficient U'x U'x (t), qu'on appelle
la dérivée fonctionnelle de U, est naturellement en général une fonctionnelle

de x (•), dépendant en outre de t.

Il était évident que la forme (1) de Volterra ne s'applique pas à n'importe
quelle fonctionnelle. Si U x (t) (t étant un point donné dans (a, b)),

alors ôU ôx (t). De même, si U est le maximum de la fonction x, supposée
continue dans (u, b), et si ce maximum n'est atteint qu'en un point t, on a
ôU ôx (t). S'il est atteint en plusieurs points th c'est le plus grand des
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öx(ti) qui intervient, et ôU cesse d'être une fonctionnelle linéaire. Si on
considère une famille de fonctions x(t) — f (t, X) dépendant d'un para-

df
mètre X, et si — est une fonction continue de t et A. U devient une fonction

dX

F (A) qui est en général dérivable. Mais s'il arrive que pour une valeur
X0 de X le maximum de x (f) soit atteint pour deux (ou plus de deux) valeurs
distinctes de t, alors, pour X X0, F (X) a une dérivée à droite et une dérivée
à gauche qui sont en général distinctes.

Hadamard fut le premier à remarquer que la forme de Volterra n'est

pas assez générale, et utilisa cette remarque de deux manières différentes.
D'une part, considérant que l'accroissement infinitésimal de U n'a le caractère

d'une différentielle que s'il est une fonctionnelle linéaire de ôx (t),
il chercha la forme générale de ces fonctionnelles, et montra que n'importe
quelle fonctionnelle linéaire U d'une fonction x (t) est limite d'intégrales
de la forme

h f/» (t)x{(2)

La représentation d'une fonctionnelle linéaire ainsi obtenue a le défaut
de n'être pas canonique: elle donne une infinité de représentations
différentes pour une même fonctionnelle. Mais ce résultat provoqua de
nouvelles recherches qui mirent en évidence le fait qu'on ne peut obtenir de

représentations canoniques qu'en précisant le champ fonctionnel E dans

lequel U est supposé bien défini et borné, et par suite continu. En prenant

pour E l'ensemble C des fonctions continues dans [a, b], Fr. Riesz obtint
l'expression canonique

b

U =$x(t)dF(t), (3)
a

F{t) étant à variation bornée dans [a_,Z?+]. Ensuite, prenant pour E
l'ensemble L2 des fonctions mesurables et de carrés sommables dans (a, b),

Fr. Riesz lui-même et M. Fréchet, indépendamment l'un de l'autre, obtinrent
la représentation canonique

b

u jf(t)x(t)dt[/e&)]. 4)
a

Bien entendu dans (3), F(t) est défini à une constante près, et, dans (4),

/ (0 peut être modifié arbitrairement sur n'importe quel ensemble de mesure

nulle.
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Revenons aux fonctionnelles linéaires continues dans C. Si la fonction

F (t) qui intervient dans (3) n'est pas absolument continue, cela veut dire

qu'il y a des points singuliers, formant un ensemble de mesure nulle, tels

que U dépende spécialement des valeurs de x (7) en ces points. Si on exclut

l'existence de tels points, l'expression (3) se réduit à la forme (4), f (t)

étant seulement une fonction quelconque dans Ll9 et lion dans L2. S'il

y a un seul point singulier t, U étant une fonctionnelle linéaire continue

dans C, on est conduit à écrire

b

U J/(0 x (t) dt + cx(t). (5)
a

la fonction/(t) pouvant avoir en t une discontinuité qui oblige à remplacer
l'intégrale par sa valeur principale au sens d'Hadamard 1).

Ces circonstances se présentent presque toujours lorsqu'on étudie la

variation d'une fonctionnelle non linéaire U. Même si aucune valeur de t

ne joue un rôle particulier dans sa définition, la dérivée fonctionnelle Ux (t)
n'est pas en général une constante, et on peut, comme Hadamard l'a fait
remarquer dès 1902, s'attendre à ce que ôUx (t) dépende spécialement de

<3x (t). Si la fonctionnelle U est continue d'ordre zéro et qu'aucun point
ne joue un rôle particulier dans sa définition, on peut s'attendre à ce que
SUX (t) ait la forme que j'ai appelée normale

b

<5 U'x(t)J U"XXi(t,tl)ôx(tl)dt1 + (6)
a

ce qui, en supposant ô2 x (0 0, donne pour ô2 U la forme normale

b b b

Ô2U j j U'XXI (t, tx) öx (0 5xt (0 dtdt, + J U"x2 (0 [Sx (0]2 dt. (7)
a a a

Volterra avait négligé le second terme sans s'apercevoir que les
fonctionnelles qu'il considérait comme générales ne sont en réalité que des

solutions de l'équation U"x2 0, et cru que l'équation de Laplace (Au=0)
se généralisait par l'équation

1) Dans des applications importantes, t est une abscisse curviligne sur une courbe fermée. S'il n'en
est pas ainsi, et si a et b sont finis, il faut naturellement en général introduire des termes en ôx (a) et öx (b).
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b

J U"XXl(t,t)dt0
a

[alors que UXXi (t, tx) est une fonction mesurable de deux variables dont
l'intégrale sur la ligne t — t1 ne peut jouer aucun rôle]. En réalité, comme
cela résulte des travaux de Gâteaux et des miens, l'équation de Laplace
généralisée est

b

ft/;, (o o (8)
a

Ces travaux, comme ceux de Gâteaux et de M. Fréchet qui ont étudié les

solutions de l'équation Ux2 0 auxquelles s'appliquent les formules de

Yolterra, apparaissent un peu comme des développements de la courte note
d'Hadamard (Bull. Soc. math., 30, 1902, pp. 40-43).

IV

Si Hadamard s'intéressait aux théories générales (il s'est en particulier
beaucoup intéressé à l'analyse générale de Fréchet et Moore), cela ne

l'empêchait pas d'attacher une grande importance aux applications. Dans

sa notice de 1912, il fait remarquer que, dans ses travaux sur les fonctions
entières, il s'était déjà inspiré des principes du calcul fonctionnel: il avait

en effet étudié les relations entre trois fonctions, celle qui caractérise la
croissance d'une fonction entière, celle qui définit la décroissance des

coefficients de la série entière qui la représente, et celle qui définit le nombre
de ses zéros de modules ^ r. Mais en 1907, un sujet mis au concours par
l'Académie, l'étude de l'équilibre des plaques élastiques encastrées, lui
donna l'occasion d'appliquer plus précisément les idées de Volterra, en

considérant les fonctions de Green comme fonctions du contour. On sait

que ces fonctions dépendent, dans le cas du plan, d'un contour C et de deux

points intérieurs A et B. Il en considéra spécialement trois: la fonction de

Green proprement dite, g (A, B), relative à l'équation de Laplace et au

problème de Dirichlet; la fonction de Neumann y (A, B), relative à la
même équation de Neumann; enfin la fonction de Green d'ordre deux,
G (A, B), dont dépend l'équilibre des plaques élastiques encastrées. Il dut
d'abord préciser la définition de y (A, B) que Neumann n'avait, pour
chaque A fixe, défini qu'à une constante près. Il put le faire de manière que
cette fonction soit, comme les deux autres, symétrique en A et B. Supposant
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