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holm d’établir la convergence des séries a ’aide desquelles il a résolu sa
célebre équation intégrale.

Ce théoreme n’est d’ailleurs pas sa seule contribution a I’algébre. Un
mémoire sur I’élimination le conduit & des démonstrations élémentaires de
théorémes établis par Humbert, Appell et Goursat a 1’aide des fonctions
fuchsiennes et abéliennes. Dans un autre mémoire, il signale une lacune
dans la démonstration classique de I'impossibilité de la résolution de I’équa-
tion du cinquiéme degré. Deux autres mémoires portent sur les conditions
de décomposition des formes. Tout cela de 1894 a 1897. Il reviendra a
’algebre en 1911 pour rédiger, en collaboration avec M. Kirschak, ’impor-
tant chapitre de 1’Encyclopédie des Sciences mathématiques (éd. frangaise)
consacré a la théorie des corps et domaines algébriques.

Mentionnons encore une extension des théorémes de Paul Dubois-
Reymond sur la croissance des fonctions. C’est Hadamard, et non Paul
Dubois-Reymond, qui a démontré qu’on peut toujours définir une série
convergente (divergente) qui converge (diverge) moins rapidement que
toutes les séries d’une suite dénombrable de séries convergentes (diver-
gentes) données, et que, si f(n) est une fonction positive et indéfiniment
croissante de n, on peut toujours trouver une série divergente ) u, et une
série convergente » v, telles que 0 < u, < v, f (n).

Mentionnons enfin, pour en finir avec ces questions diverses, un mémoire
de 1906 sur les transformations ponctuelles, ou il étudie les conditions
d’unicité d’une telle transformation, et un mémoire de 1910 sur I'indice de
Kronecker, qui généralise cet indice, et qui en méme temps, dans le cas du
plan, apporte une simplification a la démonstration du théoréme de Jordan
d’aprés lequel une courbe plane fermée sans point double divise le plan
en deux régions.

III

Arrivons maintenant 4 un ensemble de travaux beaucoup plus impor-
tant, concernant le calcul des variations et le calcul fonctionnel. On sait
qu'Hadamard a donné le nom de fonctionnelle & une expression: U [x (7)]
qui dépend de toutes les valeurs d’une fonction x (#) dans un intervalle
(fini ou infini). Le calcul fonctionnel, au sens de Volterra et Hadamard,
est ’étude de ces fonctionnelles (nous n’avons pas a parler ici de ’analyse
générale, créée par M. Fréchet et E. H. Moore, et qu’on appelle souvent
analyse fonctionnelle; il est regrettable que la terminologie de M. Fréchet
n’ait pas été conservée). Volterra s’était d’abord placé au point de vue
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géométrique, en étudiant les fonctions de lignes. En ramenant I’étude des
fonctions de lignes ou de surfaces a I’étude analytique des fonctionnelles,
Hadamard a réalisé un progrés analogue a celui que Descartes a réalisé en
créant la géométrie analytique.

Dans sa notice de 1912, il indique que les progres de I’analyse et sa
tendance 4 1’énoncé de problémes de plus en plus généraux, devaient
nécessairement conduire a l’analyse fonctionnelle. Apres les fonctions
particuliéres connues depuis longlemps, Leibniz et ses successeurs avaient
étudié des fonctions de plus en plus générales d’une ou de plusieurs variables.
Il était fatal qu’on étudie un jour les fonctions d’une infinité de variables,
et, comme une fonction continue dans un intervalle fini y est bien définie
par ses coefficients de Fourier, les fonctions de ces coefficients sont en
réalité des fonctionnelles. Avant Volterra, Carlo Bourlet et surtout S. Pin-
cherle avaient étudié la relation entre une fonction analytique f(x) définie
par une série entiére ) a, x", et une autre fonction g (x) dont la forme dépend
de tous les a,; g (x) est donc en réalité une fonctionnelle qui dépend de la
fonction f(*) et accessoirement du parametre x. Le mérite de Volterra
fut d’abord de s’étre débarrassé du parameétre accessoire x, ensuite et
surtout d’avoir compris que I’étude générale des fonctionnelles ne devait
pas dépendre d’un mode particulier de représentation de la fonction dont
elles dépendent. Son premier résultat fondamental montre bien I’intérét
de ce point de vue. Traduit dans le langage d’Hadamard, c’est que, si une
fonctionnelle U dépend des valeurs de x (¢) dans un intervalle (a, b), et si
on donne a U une variation infinitésimale ox (¢), la variation correspon-
dante de U est, sous des conditions assez peu restrictives, de la forme

U= [ U, x(dt, (1)

Perreur étant, comme dans la définition d’une différentielle, un infiniment
petit d’ordre supérieur au premier. Le coefficient U, = U’ (£), qu’on appelle
la dérivée fonctionnelle de U, est naturellement en général une fonction-
nelle de x (-), dépendant en outre de ¢.

Il ¢tait évident que la forme (1) de Volterra ne s’applique pas & n’importe
quelle fonctionnelle. Si U = x (1) (¢ étant un point donné dans (a, b)),

alors 60U = 6x (). De méme, si U est le maximum de la fonction x, supposée
continue dans (a, b), et si ce maximum n’est atteint qu’en un point 7, on a
oU = 6x (7). S’il est atteint en plusieurs points t;, c’est le plus grand des
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ox (1;) qui intervient, et 0U cesse d’étre une fonctionnelle linéaire. Si on
considére une famille de fonctions x (¢) = f(¢, A) dépendant d’un para-

.34 . . ~
metre A, et si 6_]; est une fonction continue de ¢ et A, U devient une fonction

F(4) qui est en général dérivable. Mais s’il arrive que pour une valeur
Ao de 4 le maximum de x (¥) soit atteint pour deux (ou plus de deux) valeurs
distinctes de ¢, alors, pour 4 = 1, F (1) a une dérivée a droite et une dérivée
a gauche qui sont en général distinctes. |

Hadamard fut le premier a remarquer que la forme de Volterra n’est
pas assez générale, et utilisa cette remarque de deux manieres différentes.
D’une part, considérant que ’accroissement infinitésimal de U n’a le carac-
tere d’une différentielle que s’il est une fonctionnelle linéaire de dx (7),
il chercha la forme générale de ces fonctionnelles, et montra que n’importe
quelle fonctionnelle linéaire U d’une fonction x (¢) est limite d’intégrales
de la forme

I, = [f,(Ox(t)dt. (2)

La représentation d’une fonctionnelle linéaire ainsi obtenue a le défaut
de n’étre pas canonique: elle donne une infinité de représentations diffé-
rentes pour une méme fonctionnelle. Mais ce résultat provoqua de nou-
velles recherches qui mirent en évidence le fait qu’on ne peut obtenir de
représentations canoniques qu’en précisant le champ fonctionnel £ dans
lequel U est supposé bien défini et borné, et par suite continu. En prenant
pour E I'ensemble C des fonctions continues dans [a, b], Fr. Riesz obtint
I’expression canonique

U= [x(t)dF (1), (3)

F (f) étant a variation bornée dans [a_, b,]. Ensuite, prenant pour E
I’ensemble L, des fonctions mesurables et de carrés sommables dans (a, D),
Fr. Riesz lui-méme et M. Fréchet, indépendamment I’un de I’autre, obtinrent
la représentation canonique

= [f(x(tydt [feL,(a,b)]. 4)

Bien entendu dans (3), F (¢) est défini a une constante pres, et, dans (4),
f(©) peut étre modifié arbitrairement sur n’importe quel ensemble de mesure
nulle.
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Revenons aux fonctionnelles linéaires continues dans C. Si la fonction
F(f) qui intervient dans (3) n’est pas absolument continue, cela veut dire
quil y a des points singuliers, formant un ensemble de mesure nulle, tels
que U dépende spécialement des valeurs de x (f) en ces points. Si on exclut
P’existence de tels points, I'expression (3) se réduit a la forme (4), 1 (2)
étant seulement une fonction quelconque dans L., et non dans L,. S’il
y a un seul point singulier 7, U étant une fonctionnelle linéaire continue
dans C, on est conduit a écrire

U= [fO)yx(®)dt + cx(1). (5)

la fonction f (¢) pouvant avoir en 7 une discontinuité qui oblige a remplacer
I’intégrale par sa valeur principale au sens d’Hadamard 1).

Ces circonstances se présentent presque toujours lorsqu’on étudie la
variation d’une fonctionnelle non linéaire U. Méme si aucune valeur de ¢
ne joue un role particulier dans sa définition, la dérivée fonctionnelle U L)
n’est pas en général une constante, et on peut, comme Hadamard I’a fait
remarquer dés 1902, s’attendre a ce que SU, (¢) dépende spécialement de
ox (t). Si la fonctionnelle U est continue d’ordre zéro et qu’aucun point
ne joue un role particulier dans sa définition, on peut s’attendre a ce que
SU, (¢) ait la forme que j’ai appelée normale

b
S UL(t) = [ Usy, (1, 1) 0x (1) dt; + U, 6x (1), (6)
ce qui, en supposant 6% x () = 0, donne pour 6* U la forme normale
b b b
0* U = [ [ Uy (t,1,) 6x (1) 6xy () didty + [ U, (1) [0x (1)]*dt . (7)

Volterra avait négligé le second terme sans s’apercevoir que les fonc-
tionnelles qu’il considérait comme générales ne sont en réalité que des
solutions de I’équation U ;2 = 0, et cru que I’équation de Laplace (4u=0)
se généralisait par I’équation

1) Dans des applications importantes, ¢ est une abscisse curviligne sur une courbe fermée. S’il n’en
est pas ainsi, et si a et b sont finis, il faut naturellement en général introduire des termes en dx (a) et ox (b).
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b
J U (t,0)dt =0

[alors que U ;xl (¢, t;) est une fonction mesurable de deux variables dont
Iintégrale sur la ligne # = ¢, ne peut jouer aucun réle]. En réalité, comme
cela résulte des travaux de Gateaux et des miens, I’équation de Laplace
généralisée est

b
JUL®) =0 (8)

Ces travaux, comme ceux de Gateaux et de M. Fréchet qui ont étudié Ies
solutions de I’é¢quation U;2 = 0 auxquelles s’appliquent les formules de
Volterra, apparaissent un peu comme des développements de la courte note
d’Hadamard (Bull. Soc. math., 30, 1902, pp. 40-43).

v

Si Hadamard s’intéressait aux théories générales (il s’est en particulier
beaucoup intéress¢ a l’analyse générale de Fréchet et Moore), cela ne
I’empéchait pas d’attacher une grande importance aux applications. Dans
sa notice de 1912, il fait remarquer que, dans ses travaux sur les fonctions
entieres, il s’était déja inspiré des principes du calcul fonctionnel: il avait
en effet étudié les relations entre trois fonctions, celle qui caractérise la
croissance d’une fonction entiére, celle qui définit la décroissance des
coefficients de la série entiere qui la représente, et celle qui définit le nombre
de ses zéros de modules < r. Mais en 1907, un sujet mis au concours par
I’Académie, I’étude de I’équilibre des plaques élastiques encastrées, lui
donna I’occasion d’appliquer plus précisément les idées de Volterra, en
considérant les fonctions de Green comme fonctions du contour. On sait
que ces fonctions dépendent, dans le cas du plan, d’un contour C et de deux
points intérieurs 4 et B. Il en considéra spécialement trois: la fonction de
Green proprement dite, g (A4, B), relative a I’équation de Laplace et au
probléme de Dirichlet; la fonction de Neumann y (4, B), relative a la
méme équation de Neumann; enfin la fonction de Green d’ordre deux,
G (A, B), dont dépend I’équilibre des plaques élastiques encastrées. Il dut
d’abord préciser la définition de y (A4, B) que Neumann n’avait, pour
chaque A fixe, défini qu’a une constante pres. Il put le faire de maniere que
cette fonction soit, comme les deux autres, symétrique en 4 et B. Supposant
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