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série de Taylor formelle: si f est un tel germe, on note f une fonction de classe
C® dans un voisinage de 0 dans k" représentant f et on définit

oXil...o0X/m
ai1+...-f~in f(O)

comme la dérivée correspondante & ’origine de f; la série de Taylor for-
melle de f est la série |

3

Un théoréme classique d’E. Borel affirme que ’homomorphisme ainsi
défini de &, dans I'anneau k [[X, ..., X,]] est surjectif.

Comme 'anneau k [[ X, ..., X,]] est complet, on voit qu’il est le séparé
complété de &,,.

Le noyau de I’homomorphisme surjectif &, — k[[Xy, ..., X,]] est
I'idéal des germes de fonctions plates (exemple, en une variable, x— xke=1/*%),
Si m est I'idéal maximal de &,, ce noyau est, évidemment, N m". L ‘anneau
&, n’est donc pas noethérien. Toutefois, 1’idéal m est de type fini engendré
par les germes des fonctions coordonnées. Les quotients des anneaux &,
sont appelés algebres différentiables.

14+, Xil in
]

. _Foy=L .
axil...ax,;nf() ! i

III. THEOREME DE PREPARATION:
WEIERSTRASS. MALGRANGE

Cas formel.

Une série f(Xy, ..., X)) €k [ Xy, ..., X,] est dite réguliére d’ordre s
en X, si, en ’ordonnant par rapport a X,, f (X, ..., X)) = fo (Xq, -0y Xu— 1)
b fis (X X ) X+ f(X o, X~ ) X5+ ..., les conditions
suivantes sont satisfaites:

f0(0,..,0) = ... =f,_4(0,..,0) =0

f:(0,...,0) #0
Si le corps k est de caractéristique 0 ou si s = 1 ceci se traduit par les

conditions:
B, mens 1) = 0,0 =0
f(0,...,0) = ... = oxe1 O 0 =
0°5f
J ©,...,0)#0

0X,

n
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11y a lieu de remarquer que toute série formelle peut étre rendue réguliére
par un automorphisme de la k-algébre k [ X1, ..., X,]: si f; (X4, ..., X)) est la
partie homogéne de plus bas degré de la série f, ou bien Xy, ..., X,_{ ne
figurent pas dans £, (X4, ..., X,) et f est réguliére d’ordre s en X, ou bien
’'un d’entre eux y figure et si le corps k est infini (c’est le cas qui nous inté-
resse), on peut trouver ay, ..., a,_; dans k en sorte que f; (ay, ..., @,— 1, 1)
soit non nul. L’automorphisme défini par

Xi “—)Xi“l“aan (i=1,...,n—~1)
X, =X,

transforme f en une série réguliere d’ordre s en X,,.

Le théoréme de préparation affirme que si [ est réguliere d’ordre s en
X,etsigek[Xy, .., X,], il existe deux séries q et rek[Xy, ..., X,] telles
que

g=4qf+r

r soit un polynéme de degré au plus s—1 en X, a coefficients dans k
(X X, - 1]]. De plus, g et r sont uniquement déterminés par ces conditions.

Appliquant au cas ou g = X, on obtient I’égalité X, — r = gf. On
vérifie par un calcul facile sur les coefficients de X que la série g est inversible
et que le premier membre est un polynome unitaire de degré s en X,, les
coefficients des termes de degré strictement inférieur a s s’annulant pour
Xy =..= X,_, = 0. Un tel polyndme est dit distingué.

Ainsi, une série réguliére d’ordre s en X, est associée a un polynéome dis-
tingué de degré s (en X)).

Cas analytique.

Tous les résultats précédents restent valables en remplagant séries for-
melles par séries convergentes: preuve par la méthode des fonctions majo-
rantes ou par une méthode de méme nature.

Cas algébrique.

Un théoréeme de préparation n’est plus valable dans ce cas. Nous verrons
méme qu’une forme plus faible n’est pas valable (théoréme des fonctions
implicites ).

Cas différentiable.

Un germe € &, est dit régulier d’ordre s en la n-éme variable si sa série de
Taylor formelle I'est en X,: cette condition se traduit donc au moyen des
dérivées partielles par rapport & X, comme dans le cas formel.
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Si f et g sont des éléments de &, tels que f soit régulier d’ordre s par
rapport a la n-éme variable, on peut trouver des éléments q et ¥ de &, tels que

g=af+r

et que 1 soit le germe d’une fonction de classe C* polynémiale par rapport
a la n-éme variable.

Ce théoreme est di & Malgrange. 11 faut indiquer que dans ce cas g et
ne sont plus déterminés de maniére unique par les conditions ci-dessus.

11 existe d’autres formes du théoréme de préparation équivalentes a cette
forme classique mais présentant, en particulier, I’avantage de faire intervenir
non seulement les anneaux types mais aussi leurs anneaux quotients (algébres
analytiques, algébres différentiables). Disons un peu briévement qu’un
homomorphisme ¢ : 4 - B d’anneaux locaux est quasi-fini s’il est local
i.e. applique I'idéal maximal de A dans celui de B, et si son prolongement &

A A A A

aux complétés séparés A — B est fini, i.e. munit B d’une structure de A4 -
module de type fini. Une forme du théoréme de préparation différentiable
(resp. analytique) affirme que si 4 et B sont des algebres différentiables
(resp. analytiques), un homomorphisme quasi-fini est fini.

IV. UN CAS PARTICULIER IMPORTANT:
LE THEOREME DES FONCTIONS IMPLICITES

Le lemme de Hensel.

Le théoréme des fonctions implicites pour une équation (mais il serait
facile de traiter le cas général) est un cas particulier du théoréme de prépara-
tion. Soit £ (X4, ..., X,) une série formelle ou convergente réguliére d’ordre 1
en X,. Son polyndme distingué est de la forme X, — g (X4, ..., X,-;) ou
g(Xyq, ..., X,— 1) est un élément de k [ Xy, ..., X, Jouk {{ Xy, ..., X,_, }}
tel que g (0, ..., 0) = 0.

On peut donc substituer g (X4, ..., X,- 1) 2 X, dans f (X}, ..., X,) obte-
nant I’égalité

f(Xla ) Xn—lag(Xls N G 1)) =0

D’autre part, I’hypothése faite sur f correspond bien a celle du théoréme
des fonctions implicites
f(@,...,00=0, —% 0,...,00# 0.
0X,
La situation est analogue dans l’anneau &,, Uunicité qui n’était pas
assurée dans le cas général du théoréme de préparation (en raison de ’exis-
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