| Zeitschrift: | L'Enseignement Mathématique                              |
|--------------|----------------------------------------------------------|
| Herausgeber: | Commission Internationale de l'Enseignement Mathématique |
| Band:        | 13 (1967)                                                |
| Heft:        | 1: L'ENSEIGNEMENT MATHÉMATIQUE                           |
| Artikel:     | NOTE ON TWO CRITERIA FOR DEDEKIND DOMAINS                |
| Autor:       | Gilmer, Robert                                           |
| DOI:         | https://doi.org/10.5169/seals-41548                      |

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

## Download PDF: 19.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# A NOTE ON TWO CRITERIA FOR DEDEKIND DOMAINS

## by Robert GILMER

Let A be an ideal of the commutative ring R. In case the residue class ring R/A is finite, we say that A has finite norm, and we set N(A) = |R/A|, where |S| denotes the cardinal number of the set S; N(A) is called the norm of A. We say that A has finite length s and we write L(A) = s if there is a chain  $A \subset A_1 \subset ... \subset A_s = R$  of ideals of R, but no such chain of s+1ideals; therefore L(A) is the length of R/A, as an R/A-module, when this length is finite. If A has finite norm, then A has finite length. The converse fails; for example, each maximal ideal of R has finite length 1.

In [2], Butts and Wade have shown that each of the following conditions implies, in an integral domain R with identity, that R is a Dedekind domain:

(\*) Each nonzero ideal of R has finite norm, and N(AB) = N(A) N(B) for any nonzero ideals A, B of R.

(\*\*) Each nonzero ideal of R has finite length, and L(AB) = L(A) + L(B) for any nonzero ideals A, B of R.

Our purpose here is to show that in any commutative ring R, (\*) or (\*\*) implies the following condition  $(\sqrt{})$ .

 $(\sqrt{)} R$  is Noetherian, has an identity, and for any maximal ideal M of R, there are no ideals of R properly between M and  $M^2$ .

A result of Asano in [1] shows that  $(\sqrt{})$  is equivalent to the condition that R be a general ZPI-ring—that is, each ideal of R is a finite product of prime ideals. Hence, by proving that (\*) or (\*\*) implies  $(\sqrt{})$ , we obtain a generalization of Butts and Wade's results already cited to the case of rings with zero divisors. In addition, our proof will be simpler than that given in [2] for the case of an integral domain with identity, so that we obtain both a generalization and a simplification of the results of [2].

THEOREM 1. If condition (\*) or condition (\*\*) holds in the ring R, then R is Noetherian, contains an identity, and has the property that there are no ideals properly between M and  $M^2$  for any maximal ideal M of R.

*Proof.* If (\*) or (\*\*) holds in R, it is clear that R/A is Noetherian for each nonzero ideal A of R. Therefore, R is also Noetherian. If (\*) holds,

then  $N(R^2) = [N(R)]^2 = 1$  so that  $R = R^2$ . And if (\*\*) holds,  $L(R^2) = 2L(R) = 0$ , and again  $R = R^2$ . However, a finitely generated idempotent ideal of a commutative ring is principal and is generated by an idempotent element [1; 86]. Consequently, (\*) or (\*\*) implies that R has an identity.

We consider a maximal ideal M of R. If (\*\*) is valid, then  $L(M^2) = 2L(M) = 2$ ; therefore, there are no ideals of R properly between M and  $M^2$ . If (\*) holds in R, then  $N(M^2) = [N(M)]^2$ . But the isomorphism  $R/M \simeq (R/M^2)/(M/M^2)$  implies that  $N(M^2) = N(M) \cdot k$ , where  $k = |M/M^2|$ . Therefore, k = N(M). This means that  $M/M^2$ , as a vector space over the field R/M, must have dimension 1. Consequently, there are no nontrivial R/M-subspaces of  $M/M^2$ , and therefore no ideals of R properly between M and  $M^2$ . This completes the proof of Theorem 1.

We remark that in our proof of Theorem 1 we have not used the full generality that N(AB) = N(A) N(B) or that L(AB) = L(A) + L(B); rather, we have only used the fact that,  $N(A^2) = [N(A)]^2$  and that  $L(A^2) = 2L(A)$  for any nonzero ideal A of R.

The remainder of this paper will be concerned with some results related to the converse of Theorem 1.

LEMMA 1. Suppose that A and B are relatively prime ideals of the ring R with identity.

a) If A and B have finite norm, then AB has finite norm and N(AB) = N(A) N(B).

b) If A and B have finite length, then AB has finite length and L(AB) = L(A) + L(B).

*Proof.* a) is immediate from the fact that R/AB is isomorphic to  $R/A \oplus R/B$ , the direct sum of R/A and R/B [4; 178]. To prove b), we need only note that if  $R_1$  and  $R_2$  are rings of which the zero ideals have finite lengths  $n_1$  and  $n_2$ , then the zero ideal of  $R_1 \oplus R_2$  has finite length  $n_1 + n_2$ . This is immediate from the fact, however, that each ideal of  $R_1 \oplus R_2$  is of the form  $A_1 \oplus A_2$ , where  $A_i$  is an ideal of  $R_i$  [4; 175].

LEMMA 2. Let M be a maximal ideal of a commutative ring R with identity such that there are no ideals properly between M and  $M^2$ , and let k be a positive integer such that  $M^k \subset M^{k-1}$ .

a) If M has finite norm, then  $N(M^k) = [N(M)]^k$ .

b) If M has finite length, then  $L(M^k) = kL(M) = k$ .

*Proof.* If r is a positive integer such that  $M^r \supset M^{r+1}$ , it is known that  $M^r/M^{r+1}$  and R/M are, as vector spaces over R/M, isomorphic [1; 83]. Hence,  $|R/M| = |M^r/M^{r+1}|$ . If we assume that  $N(M^{k-1}) = [N(M)]^{k-1}$ , then the isomorphism  $R/M^{k-1} \simeq (R/M^k)/(M^{k-1}/M^k)$  implies that  $N(M^k) = N(M^{k-1})|M^{k-1}/M^k| = [N(M)]^{k-1} N(M) = [N(M)]^k$ . This establishes a).

To prove b), we note that if A is an ideal of R containing  $M^k$ , then  $\sqrt{M^k} = M \subseteq \sqrt{A}$ . Therefore,  $\sqrt{A} = M$  or  $\sqrt{A} = R$ . In the first case  $M^k \subseteq A \subseteq M$ , so that A is a power of M since there are no ideals properly between M and  $M^2$  [3; 45]. And in the second case, A = R. Therefore,  $\{M^i\}_{i=0}^{k-1}$  is the set of ideals of R properly containing  $M^k$ , and  $L(M^k) = k = kL(M)$ .

COROLLARY 1. Let A and B be ideals of the Dedekind domain D.

a) If A and B have finite norm, then AB has finite norm and N(AB) = N(A) N(B).

b) If A and B have finite length, then AB has finite length and L(AB) = L(A) + L(B).

*Proof.* Since D is Dedekind, there is a set  $\{M_i\}_1^n$  of maximal ideals of D and sets  $\{e_i\}_1^n$ ,  $\{f_i\}_1^n$  of nonnegative integers such that  $A = M_1^{e_1} \dots M_n^{e_n}$ and such that  $B = M_1^{f_1} \dots M_n^{f_n}$ . Further, we may assume that for each *i*, either  $e_i$  or  $f_i$  is positive. The fact that D is Dedekind implies that for each *i*, there are no ideals properly between  $M_i$  and  $M_i^2$  and the powers of  $M_i$ properly descend.

If a) holds, then each  $M_i$  has finite norm and Lemmas 1 and 2 show that  $N(AB) = N(M_1^{e_1+f_1} \dots M_n^{e_n+f_n}) = N(M_1^{e_1+f_1}) \dots N(M_n^{e_n+f_n}) =$  $= N(M_1)^{e_1+f_1} \dots N(M_n)^{e_n+f_n} = N(M_1)^{e_1} \dots N(M_n)^{e_n} N(M_1)^{f_1} \dots N(M_n)^{f_n} =$ = N(A) N(B). Similarly, if b) holds, then each  $M_i$  has finite length, and Lemmas 1 and 2 imply that L(AB) = L(A) + L(B).

*Remark.* Corollary 1 need not hold in a general ZPI-ring R, for in such a ring, a nonzero maximal ideal of finite norm may be idempotent. This occurs, for example, if R is the direct sum of two finite fields.

A close reading of [2] will indicate that some of our results were likely known to Butts and Wade, especially Corollary 1 and our proof that (\*\*) implies ( $\sqrt{}$ ) in a ring with identity (cf. pages 18 and 20 of [2]).

## REFERENCES

- 1. ASANO, Keizo, Über kommutative Ringe, in denen jedes Ideal als Produkt von Primidealen darstellbar ist. J. Math. Soc. Japan, 1 (1951), 82-90.
- 2. BUTTS, H. S. and L. I. WADE, Two criteria for Dedekind domains. Amer. Math. Monthly, 73 (1966), 14-21.
- 3. GILMER, Robert and Joe MOTT, Multiplication rings as rings in which ideals with prime radical are primary. *Trans. Amer. Math. Soc*, 114 (1965), 40-52.
- 4. ZARISKI, O. and P. SAMUEL, Commutative Algebra, Volume I (Van Nostrand, 1958).

(Reçu le 10 juin 1968)

Department of Mathematics Florida State University Tallahassee, Florida, U.S.A.