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FIBRES SUR LE BRANCHEMENT SIMPLE

par C. GopBILLON et G. REEB

1. INTRODUCTION

On sait lintérét que présentent les variétés topologiques non séparées
4 une dimension dans 1’étude des feuilletages du plan. En effet, tout feuille-
tage & du plan possede les propri€tés suivantes:

a) les feuilles de & sont fermées et homéomorphes a la droite réelle R [1];

b) T’espace des feuilles X de & est une variété topologique a une dimen-
sion, en général non séparée, simplement connexe et & base dénom-
brable [1];

¢) la projection canonique du plan sur X est une fibration localement
triviale [2].

La situation la plus simple (en dehors du cas bien connu ou X est la
droite réelle R) est celle ou X est le branchement simple [1]. La non sépara-
tion de X met alors en défaut les deux résultats fondamentaux suivants [3]:

— un fibré localement trivial dont 1a base est contractile est trivial;

— un fibré localement trivial dont la fibre est contractile a une section.

Le but de cet article est d’aborder, sur le cas du branchement simple,
une étude des fibrés localement triviaux de fibre R dont la base est une
variété a une dimension non séparée.

Apres avoir obtenu des criteres de séparation et de non séparation de
I’espace total, on montre comment le type de ces fibrés peut varier a 'infini.
Sans vouloir en expliciter une classification générale (d’un intérét d’ailleurs
limité), on donne cependant un théoréme d’unicité des fibrés ayant un
espace total séparé. Ces fibrés, qui sont tous isomorphes pour le groupe des
homéomorphismes croissants de la droite, se répartissent en deux classes
d’équivalence pour ce groupe; par contre, ils sont tous équivalents pour
le groupe des homéomorphismes.

Interprété en termes de structures feuilletées du plan, ce théoreme
permet de donner une classification de ces feuilletages (orientés ou non)
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ayant le branchement simple pour espaces des feuilles, résultat qui précise
ici un théoreme général de W. Kaplan [2].

Dans une dernicre partie on restreint le groupe structural des fibrés au
groupe des translations et au groupe des difféomorphismes de R. Dans ce
cas-ci on obtient aussi un théoréme de classification des fibrés différentiables
séparés; par contre on ne peut plus en déduire une classification différen-
tiable des feuilletages différentiables du plan.

2. LE BRANCHEMENT SIMPLE

Soient R; et R, deux exemplaires de la droite réelle paramétrés respec-
tivement par x, et x,. Le branchement simple X est le quotient de la somme
topologique ¥ = R, U R, par la relation d’équivalence qui identifie les
points x; et x, pour x; = x, = x < 0. On note =« la projection de X sur X.

L’espace X est une variété topologique de dimension 1 non séparée.
En effet U, = n (R,) et U, = n (R,) sont des ouverts de X, et les restric-
tions de = a R, et R, définissent un atlas de X; on identifiera 'intersection
U = U, n U, avec l'intervalle ] — o0, 0 [ de R. Les points 0, € U, et o, € U,,
images par n des origines de R, et R,, sont les points de branchement de X
(points non séparés).

L’involution de X qui échange les deux exemplaires R, et R, définit une
involution continue 4 de X qui échange les deux ouverts U, et U, en laissant
fixes les points de U.

Plus généralement, un homéomorphisme f de X laisse U; et U, inva-
riants ou les permute; le premier cas est caractérisé par f(o;) = o0, (ou
f(0,) = 0,), le second par f(0;) = 0, (ou f(0,) = 0y). Dans tous les cas
onaf(U)=U.

On peut enfin remarquer que le branchement simple est un espace
contractile, donc acyclique.

3. FIBRES SUR LE BRANCHEMENT SIMPLE

Soit # = (E, p, X) un fibré localement trivial de base X et de fibre %R;
tous les fibrés intervenant dans la suite étant de ce type, on dira simplement

que n est un fibré sur X.
On peut considérer 7 comme un fibré & groupe structural au sens de
Steenrod [3]; le groupe de structure est ici le groupe G des homéomor-
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phismes de la droite réelle R muni de la topologie de la convergence uni-
forme sur les compacts.

Les fibrés induits par n sur les ouverts U, et U, sont triviaux. Deux tri-
vialisations @,: U, X R - p 1 (U)) et &,: U, Xx R— p~ 1 (U,))den/U, et
n/U, déterminent alors un changement de carte continu g:]—00,0[ - G
(noté x — g,) tel que

Dy (xy,y) = ‘pz(xzagx()’)) pour x; = x, = x<0.

Réciproquement une application continue g de ]—oo, 0 [ dans G per-
met de construire un fibré y = (E, p, X) sur X ; g détermine de plus des
triavialisations @, et &, de /U, et n/U,.

Soit g’ une seconde application continue de ]—oo, 0 [ dans G et soient
n = (E’,p', X) le fibré associé, @, et ¥, les trivialisations correspondantes
de /U, et #'/U,. Un isomorphisme F de n sur ' détermine un homéo-
morphisme f de X. Si o; est un point fixe de f, on peut trouver deux appli-
cations continues « et f de R dans G telles que

Fdsl (xla _V) = @’1 (f(xl)a axl (y))
F&,(x,,y) = (p’z (f(xz)aﬂxg (J’))Q

la condition de compatibilité s’écrit alors
9 % = Brg, pourtout x <O.

Réciproquement la donnée de deux applications continues « et f de R
dans G et d’'un homéomorphisme f de ]— o0, 0] vérifiant la condition de
compatibilité précédente permet de construire un isomorphisme F de 7
sur n'.

Si par contre f échange o, et 0, la condition de compatibilité s’écrit

e = ¢ rx)Bxge pour tout x <O0.

Les fibrés n et n’ sont équivalents dans G si on peut trouver un isomor-
phisme F pour lequel f est I'identité.

PrOPOSITION 1.
Soit # = (E, p, X) un fibré sur X. On peut réduire le groupe de
structure de n au sous-groupe G* des homéomorphismes croissants
de ‘R.
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Démonstration. — Le groupe G des homéomorphismes de R a deux
composantes connexes par arcs: le sous-groupe G* et ’ensemble G~ des
homéomorphismes décroissants.

Soit g le changement de carte associé a des trivialisations de n/U, et
n/U,. Si g est & valeurs dans G, 5 est équivalent au fibré associé & —g; il
suffit en effet de prendre o, = — B, = identité pour tout x e R.

COROLLAIRE.
Tout fibré sur X est orientable.

On supposera dorénavant que les fibrés sur X sont définis par un chan-
gement de carte a valeurs dans G*

PRroPOSITION 2.
Les fibrés # et 5’ associés aux changements de carte x — g et
x — g: ! sont isomorphes dans G*.

Il suffit en effet de prendre pour « et § 'application constante de ‘R sur
I’identité, et pour homéomorphisme de X I'involution 4.

Remarque. — Les fibrés n et ' ne sont pas en général équivalents dans
1
G* comme le montre I'exemple ol g est défini par g, (y) = y -+ —.
X

Mais dans cet exemple n et ' sont équivalents dans G (on prend
o, = B, = — identité pour tout x e R). Par contre si g est défini par
g.(y) = — xy, n et n’ ne sont pas équivalents dans G.

ProrosITION 3.
Soit # = (E, p, X) un fibré sur X. L’espace E est une variété
topologique de dimension 2 (en général non séparée), simplement
connexe et acyclique.

Cette proposition est une conséquence immédiate de la trivialité locale
et de la suite exacte d’homotopie de y [3].

COROLLAIRE.
Si E est séparé, il est homéomorphe au plan R>. Les fibres de 1

définissent alors un feuilletage du plan ayant X pour espace des
feuilles.

Remarque. — Dans cette derniere situation le changement de carte g
définit non seulement une orientation du feuilletage, mais aussi une orien-
tation du plan.
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Si deux tels fibrés sont isomorphes dans G*, I’'homéomorphisme corres-
pondant du plan est compatible avec ces deux orientations; par contre un
isomorphisme dans G, et non dans G induit un homéomorphisme compa-
tible avec les orientations des feuilletages, mais renversant I’orientation du
plan.

4. CRITERES DE SEPARATION

Soient 1 = (E, p, X) un fibré sur X, @, et &, des trivialisations de n/U;
et n/U,, et g le changement de carte associé.

Les ensembles p ! (U,), p~* (U,) et p7' (X — { 01, 0, }) sont des ouverts
séparés de E. Par conséquent sie; e p~! (U,) et e, € p~* (U,) sont des points
non séparés de £ on a e, = &, (0,y) et e, = &, (0, 2).

PROPOSITION 4.
Pour que E soit non séparé, il faut et il suffit qu’il existe
une suite (£,) de nombres négatifs tendant vers O,
une suite (y,) ayant une limite finie y,
telles que la suite (g, (»,) ait une limite finie z.

Démonstration. — La condition est suffisante car la suite ¢, = @, (&,,
v = D,(&,, g: (y,) converge simultanement vers les points €; = &, (0,y)
ete, = 9,(0,2).

Supposons réciproquement que e; = &, (0,y) et e, = @, (0,z) soient deux
points non séparés de E. Soient (V,)) .y (resp. (W,) ,cn) un systeme fonda-
mental de voisinages emboités de e, (resp. de e,) contenus dans p~*! (Uj)
(resp. p~ ' (U,)). Pour tout n on peut trouver un point ¢, = D, (&,y,) =
®, (&, g, (vn) dans V, N1 W, . La suite (g,) tend alors simultanément vers
e, et vers e, ; les suites (,), (v,) et (g (£,) y,) ont donc respectivement O,
y et z pour limites.

C.q.f.d.

COROLLAIRE.
Soit z un point d’accumulation de g, (y) pour y fixé et x tendant
vers 0. Alors les points @, (0, y) et @, (0, z) ne sont pas séparés
dans E.

Exemples. — Soient (1;)0<;<7 les fibrés associés aux changements de
carte suivants:



0—- g,.(») =y

1
1 — g,(») =y + sin-
X
1.1
2 - g9,(y) =y +|-sin-
X X
1 1
3 — g.(y) =y + -sin-
X X
4 — g.(y) = —xy
— Xy si |yl =1
5= g =3 —x+y-—-1si y 21
x+y+1lsi y <-—1
” 1
y + - si y =20
X
6 — ! =
y+-texpl—-+ = si y >0
X x y
1
7= 9:(y) =y +-
X

On déduit du corollaire précédent que les fibrés (17,)<;<s ne sont pas
séparés, et de la proposition 4 que 54 est aussi non séparé alors que 7, est
séparé.

On peut d’ailleurs remarquer, en considérant les ensembles d’accumu-
lation de g, (y) pour y fixé et x tendant vers O, que ces fibrés sont tous
distincts (deux & deux non isomorphes). |

Ces exemples montrent aussi comment on peut varier a I'infini le type
des fibrés sur X.

PROPOSITION 5.
Pour que E soit séparé il faut et il suffit que pour tout y dans R

on aitlim g, (y) = — oo (ou +o0).
x—0
Démonstration. — S1 E est séparé, le corollaire de la proposition 4
montre que g, (y) n’a pas de point d’accumulation a distance finie pour y
fixé et x tendant vers 0; on a donc lim | g, (¥) | = oo pour tout y dans R.
Désignons par A4 (resp. B) ’ensemble des points y de R tels que
lim g, (y) = — oo (resp. = +0o0) et supposons 4 et B non vides.

x—0
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Si y, est dans A4 (resp. y; dans B) on a aussi y dans 4 (resp. dans B) pour
y < yo (resp. y = y,). Les ensembles 4 et Bsont donc des intervalles dis-
joints recouvrant R. L’un des deux, par exemple 4, est fermé; on note alors z
le plus grand élément de A.

Soit ({,) une suite de nombres négatifs tendant vers O telle que g, (z) <O
pour tout n. On peut trouver une suite strictement décroissante (y,) tendant
vers z telle que g, (y,) < 0.Chacun des y, étant dans B, il existe ¢, > (,
tel que g (y,) = 0. La proposition 4 montre alors que cette situation est
impossible si E est séparé; on a donc A = ¢ ou B = ¢.

Supposons maintenant que pour tout y dans R on a lim g, (y) = — oo.

x—=0
Soient (£,) une suite de nombres négatifs tendant vers O et (y,) une suite

ayant une limite finie. Si z est un majorant de la suite (y,) ona g, (y,) =< g¢,.(2)

pour tout n; et par suite lim g: (y,) = —o0. L’espace E est donc séparé.
C.q.f.d.
COROLLAIRE. .
Si lim g, (y) = — oo pour tout y dans R, limg; ' (y) = + o0 pour
tout y € R. o

5. CLASSIFICATION DES FIBRES SEPARES

Soient # = (E, p. X) et ' = (E’, p/, X) deux fibrés sur X associés a
des changements de carte g et g’, et tels que E et E' soient séparés.

PROPOSITION 6.
Soit F un isomorphisme de # sur #’ pour le groupe G* induisant
un homéomorphisme f de X ayant o, comme point fixe. On a alors
lim g, (y) = lim g, () pour tout y dans R.

x—0 x—0

La démonstration est immédiate.
Plus précisément, on a d’ailleurs:

THEOREME.
Pour que les fibrés séparés n et n’ soient équivalents dans le
groupe G7, il faut et il suffit qu’on ait lim g, () = lim g'x(y) pour
tout y dans R *=0 *=0

La condition nécessaire est une conséquence de la proposition 6. Suppo-
sons donc que lim g, (y) = lim g, (y) = — oo pour tout y dans R (Ie cas

x—0 x—0
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ou cette limite est -oco se traiterait de fagon analogue).

LemMME 1.

Il existe une application f de [—1,0 [ dans R ayant les propriétés sui-
vantes:

a) limf(x) = + o

x-0

by g (f/(=1D)=0
) g.(f(x)<0 pour tout x > —1
d) limg,(f(x)) = — 0.

x—=0

Démonstration. — Soit (y,),»; une suite strictement croissante de
nombres positifs tendant vers I'infini. On peut construire une suite stricte-
ment croissante (&,),> dans ]—1, O [ tendant vers O et telle que’on ait pour
tout n g, (y,) < —n pour x = &,

On a alors

gx(yn) < —n pour XE[fn, fn+1]

9en,, (V) < —(n+1) pour yely,, Yut1] -

Il existe donc un homéomorphisme croissant £, de [£,, &, ]sur [y, V,+1]
tel que g, (f, (x)) < —npourtout x € [{,, &,+1]. Le recollement des f, déter-
mine f sur l'intervalle [, O [; on étend alors fa [—1, 0 [ de fagon a satis-
faire aux conditions a) et b). C.q.f.d.

On construit de méme une application /" de [—1, 0 [ dans R ayant les
propriétés a), b), ¢), d) du lemme 1 avec g’ en place de g.

On désigne par F (resp. F') le fermé réunion de la droite x == 0 et de
'ensemble des points (x, p) tels que —1 < x<O0et |y|=<|g, (f(x)]

(resp. |y | = | &' (f' (%))

LEMME 2.

.

Il existe un homéomorphisme de F sur F’' de la forme
(x, y) = (x, e, (y)) ou pour tout x, e, est une application croissante,
et e, = identité.

Démonstration. — On définit e, (y) par
e.(y) =y si |y £3inf(g. (fO) 19:(F'C)1)
e, (9. (f () = 9. (f" (%)
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(=g (S () = —g.(f' ()
e, est affine pour y 2 tinf(lg.(f () 1g:(f"())1)

ety £ —%inf(|g.(f )|, [g:(f" ())1)
C.qf.d.

LEMME 3.
11 existe une application continue « de R dans G* ayant les pro-
priétés suivantes:

A

I

« identité pour x < —1 et x =0

2, () = g:les gx(y) si gi(WeF'.
On construit « par un procédé analogue a celui utilisé dans la démons-

tration du lemme 2.

Démonstration du théoréeme. — On définit une application continue f
de R dans G par

f. = identité si x=0
B(y) = e (y) si (x,y)eF
Be(y) = geor g (y) si x <Oet(x,y)¢F.

On a alors B, g, «, = g, pour tout x < O.
C.q.f.d.

COROLLAIRE 1.

Pour le groupe G* il existe deux classes d’équivalence de fibrés
séparés sur X.

En effet, si n est défini par un changement de carte g tel que
lim = g, (y) = — oo pour tout y dans R il est équivalent dans G* au fibré ,

x—0

associé au changement de carte g, (y) = y + —.
X

Si, par contre, lim g, (y) = o0 pour tout y dans R, n est équivalent

x—0

: a 1
dans G* au fibré 5, associé au changement de carte g, (y) =y — —.
%

Enfin on a remarqué apres la proposition 2 que les fibrés 5, et n, ne sont
pas équivalents dans G.
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Mais n; et n, sont isomorphes dans G* et équivalents dans G; on a
donc:

COROLLAIRE 2.
“ Tous les fibrés séparés sur X sont isomorphes pour le groupe G

COROLLAIRE 3.
l{ Tous les fibrés séparés sur X sont équivalents pour le groupe G.

On peut traduire ces corollaires dans la théorie des feuilletages du plan.
Rappelons pour cela que deux structures feuilletées & et #’ du plan sont
équivalentes pour un groupe I' d’homéomorphismes du plan s’il existe un
homéomorphisme f dans I' qui transforme chaque feuille de &# en une
feuille de #'; si &# et &  sont orientées f doit de plus étre compatible avec
les orientations de ces feuilles. On a alors (comparer a [2]):

COROLLAIRE 4.

Tous les feuilletages (non orientés) du plan dont 1’espace des
feuilles est le branchement simple sont équivalents pour le groupe
des homéomorphismes conservant ’orientation.

COROLLAIRE 3.

Pour le groupe des homéomorphismes conservant I’orientation,
les feuilletages orientés du plan dont I’espace des feuilles est le bran-
chement simple se répartissent en deux classes d’équivalence.

COROLLAIRE 6.

Tous les feuilletages orientés du plan dont I'espace des feuilles
est le branchement simple sont équivalents pour le groupe des
homéomorphismes.

6. SPECIALISATION DU GROUPE DE STRUCTURE

Les résultats précédents montrent que chaque fibré séparé sur X est
équivalent dans G* 2 un fibré pour lequel le changement de carte prend
ses valeurs dans le groupe T des translations de R. On peut donc se proposer
d’étudier les fibrés localement triviaux de base X, de fibre R et de groupe 7;
un changement de carte s’identifie alors a une application continue de
]— o0, 0 [ dans R. Si « et B sont deux telles applications, les fibrés associés
sont isomorphes dans T si et seulement si il existe un homéomorphisme f'de
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]— o0, 0] tel que « (x) — B (f(x)) se prolonge a R; ils sont équivalents si

1
% (x) — B (x) se prolonge & R. Par exemple les fibrés définis par o (x) = .

1 , : .
et f(x) = — —;sont isomorphes, mais ne sont pas équivalents dans T; les
X
. : 1 1 :
fibrés définis par « (x) = — et f(x) = - -+ sin - ne sont pas isomorphes
X X X

dans T (mais sont équivalents dans G™).

On peut aussi réduire le groupe de structure au sous-groupe H des
difffomorphismes de R et au sous-groupe H™ = Hn G*.

Si I’on suppese de plus que X est muni d’une structure différentiable,
on peut aussi se restreindre aux applications f dans H (ou H™) qui déter-
minent des applications différentiables du produit de la source de f par R
dans R. Avec cette restriction, on démontre, comme dans le cas continu,
le méme théoréeme de classification des fibrés différentiables séparés sur X.

Par contre on ne peut pas déduire de ce résultat une classification
différentiable simple des feuilletages différentiables du plan. Il existe en effet
des structures feuilletées différentiables du plan ayant le branchement simple
pour espace des feuilles, et induisant sur X des structures différentiables non
difféomorphes [1].
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