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Proof. From (2.7), we have

|| f* gH*! sup BI \f\,
h

where h* t)g Let 1(h)J/* g(x)h (x) (x).

\I(h)\ sKl I /(y) I • \gixy~1)I\h(x)\
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Hence, |/(A) | ^ ||/fc ||n, where /c0>) J |g(xj_1) |.| A(x) | (x). By

the multiplication theorem it follows that j / | ^ B

where l/p0 -f- 1 \p\1. But k|g[* | h|,where (x) g(x-1). Hence

by Lemma 4.8,
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Since (G, <im) is unimodular, we have (g)* (0 g* (t) and the lemma

follows.
By applying the strong type interpolation theorem to the end point

results of Lemma 4.8 and Lemma 4.9, we obtain

Theorem 4.10. (Convolution theorem):

\\f*g\\*pq^B\\f\\;oqo\\g\\;iqi,
where 0 < 1/p l/p0 + 1/pi — 1 <1, 1 < Po> Pi < 00 and 0 ^ 1/q

® i/q0 + lAh i-

Section 5. References

Various properties of L (p, q) spaces have appeared in many places,

often as special cases of a more general theory. We will mention several

places where related results and applications are found. The references

given are not necessarily the first or the only place where the indicated
result appears.

The principal references are [19] and [20], where G. G. Lorentz defines

special cases of L (/?, q) spaces and proves many of their properties. The
notion of a non-increasing rearrangement of a function was used by Hardy
Littlewood and Payley. (See [32].) A simple proof of the inequality ||/||pe2

B\\f\\*pqi^i is f°un(l inO'Neil [22]. The technique used in the proof
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of Hardy's inequality is well known. A different proof of Hardy's inequality
is found in [9, p. 245] or [32, Vol. I, p. 20]. The author learned the simple
proof of inequality (1.9) from class notes from a course given by A. Zyg-
mund in Chicago. A similar proof is given in [11, p. 278].

The L (/?, q) spaces which are Banach spaces appear as intermediate

spaces in the general interpolation theory of Calderön [1]. Peetre [24]
identifies L (p, q) spaces as intermediate spaces for the interpolation theory
of Lions and Peetre [18]. Many L (p, q) results are then contained in these

general theories. In particular, there are results concerning density, inclusion,

separability and duality of the spaces. A ** norm is used in these

results. Riviere [25] generalized the results of Calderön [1] to include

L (p, q), p, q > 0. Similarly, P. Kree and J. Peetre generalized the results

of Lions and Peetre [18].

(2.5) is proved by Krein and Semenov [18] and is contained implicitly
in Stein and Weiss [30]. Halperin [8] and [9] obtains general results on
conjugate spaces and reflexitivity. Results on uniform convexity of some

related spaces are found in Halperin [10]. The results concerning linear

functional on L(p,q), p < 1, correspond to results of Day [5] for Lp

spaces 0 < p < 1.

The weak type theorem of Section 3 restricted to linear operators on
the L (/?, q) spaces which are Banach spaces was proved by A. P. Calderön [2].

We learned that E. M Stein also obtain these results. Proof of these cases

is found in Lions and Peetre [18], together with Peetre [24]. Also see Calderön

[1] and Oklander [21]. Krein and Semonov [17] prove some special

cases. The theorem is closely related to results of Stein and Weiss [29] and

[30]. The weak type theorem for L (p, q), p, q > 0, is proved in Hunt [14].

These cases are also contained in work of P. Kree and J. Peetre. j

The strong type theorem of Section 3 for linear operators on the L (p, q) \

spaces which are Banach spaces is found in Calderön [1]. These results are j

related to results of Hirschman [13], Stein [26] and Stein and Weiss [27]. J

The result for sublinear operators follows ideas found in Calderön [1], j

Calderön and Zygmund [3] and Weiss [31]. Rivière [25] obtains results for
linear operators acting on L (p, q) spaces, p, q > 0.

Stein [26] proves an analogue of Theorem 4.3 for Fourier coefficients.

The multiplication and convolution theorems are proved by a different j

method in O'Neil [22]. E. M. Stein also obtained these results. (See [22].) j
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