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After applying Fubini’s Theorem we see that the last expression is equal to

IS

- [yf()]y~"tdy)ths.
0
The proof of the second inequality is the same except that r is replaced
by —r.

m(E)

(1.9) JIfg)1dmx) =] f*Og*@adr.
E 0

Proof. We may assume f and g are non-negative simple functions. We
then write /= X f; and g = 2 g, as in (1.5). (1.9) is clearly true for the
functions f; g, and the result follows.

Finally, let us note

1 17
(1.10) ~[g®dt <~fg()dt for0<x =<y,
Yo X aq

where g (t) is non-negative and non-increasing on t > 0.
(1.10) is geometrically obvious.

Section 2. TOPOLOGICAL PROPERTIES

(1.6) implies that /' + g€ L (p, q) if f, g € L (p, g). Since ||. ||, is positive
homogeneous we see that L (p, g) is a linear space. ||.||,, leads to a topology
on L (p, q) such that L (p, q) is a topological vector space. f, —» fe L{p, q)
in this topology if and only if || f—1, ||,4 = 0. We shall see that this space
1s metrizable.

For p, q fixed we define two analogues of f*. Choose r such that
O<r=<1l,r<qgandr <p. Let

sup(1

o g @ dm )", ¢ < m(w)

frEm =f** ) =

1
(=] 1fC)I"dm )", t>m(M).
Y

Consider (f*)** (¢). Since any g** is non-negative and non-increasing we
can use (1.9) and (1.10) to see that
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L
(f*H**(1) = (;f Lf*W] dy)'r.

Jf** leads easily to a metric on L (p, ¢), avoiding technical difficulties which
might occur when the measure m is atomic. f** is also useful because for
some purposes it is more closely related to fthan is f*.(f*)** is especially
suited for applications of Hardy’s inequality.

(2.1) Jr=rrm = H*F0 .

The first inequality in (2.1) follows from the fact that if E = {xe M : | f(x) |

> [ (f)} then m (E) = t. The second inequality follows from (1.9) and
(1.10).

Let Hprq - Hf** pq-
SE ¥ and (f*)** are further related by
(2.2) v = ”f Hpq = Hf1 “pq = P/(P“"”))l/r

(2.2) follows immediately from (2.1) and Hardy’s incquality.
It is clear that

[(f+9)** O] = [f*O] + [g** 0],

sothat p (f, g) = Hf-g H;q is a metric onL (p, q) (2 2) implies the topolooy
of L (p, q) given by H Hpq

*

I’ q°

(2.3) L (p, q) is complete with respect to the metric p (f, g) = H f—g

l,,(,

Proof. Suppose o (foms fn) = 0 as m,n — oo, where f/, e L(p, q), n = 1.
< || /|4 It follows from (1.7) that the sequence
{f,} is fundamental in measure and, hence, the exists a subsequence {f,, |
which converges almost uniformly to a function f. (See [7, p. 93].)
Fix L such that p(f,f.) <¢ for n = N (¢). Let ¢, = f,, —f. and
¢ = f—f;. Then ¢, converges almost uniformly to ¢ and by Fatou’s
lemma, ¢**(t) <liminf ;" (¢), and || ¢ ||5, < lim inf || ¢, ||7,. That is,

k — oo

p (f,f1) < e Hence, feL(p,q) and p (f,f) = 0 as L — co.
(2.4) Simple functions are dense in L (p, q), g # .

IAJ

Proof. Suppose feL(p, q), p # . We may assume that /= 0. We
show that given any g, & > O there exists a simple function f, such that
0<f <fand(f—f)*(t) < eforallt = 6. Notethat f*(t) > Oast— cc.
It follows that m (E, [ f]) < oo. Hence, we can find a simple function f, = 0
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such that f,(x) =0 for x¢E,[f] and 0 < f(x) — f, (x) < e for all
x e E,[f] except for a set of measure less than 6. Then m ({x eEM : |f(x)
— £, (x) [ > 8}) < d,s0 (f—f)*(t) < e fort = 6. We obtain a sequence of
simple functions £, such that (f—£,)* (1) = 0 asn — co and £, (t) < f* (¢),
for each t > 0. We have (f—/)* (1) < f* (t/2) + f* (¢/2) < 2f* (¢/2) and
Lebesgue’s Theorem on dominated convergence implies H f—f ] [;q — 0 as
n — o for g # oo.

It is well known that a linear mapping of one Frechet space into another
is continuous if and only if it maps bounded sets into bounded sets. (See
[6, p. 54].) Since || f||,4 is positive homogeneous, a linear operator T which
maps L (p, q) into L (p’, ¢’) is continuous if and only if there exists a positive
number ¢ such that || Zf||,, < c||f||,» where ¢ is independent of
feL(p,q).

Let us note the following interesting and useful result:

(2.5) Suppose T is a linear operator which maps characteristic functions
1e» m (E) < oo, into a Banach space B and || Tyg|| < || xe|[p1
where c is independent of yg. Then there exists a unique linear extension
of T to a continuous mapping of L (p, 1) into B.

Proof. Suppose f = 0 is a simple function. According to (1.5) we write
f = Zf, where f, = ¢, xp, and f* = X f,. Then

=2 Th] sz ]s,

p=c|f

*
pl-

| 771 = [ TEs

Then || 77 || < <" || f]|;1 for any complex-valued simple function f. Since
the simple functions are dense in L (p, 1) we can then extend T uniquely
to a bounded operator of L (p, 1) into B.

It is of interest to know which of the L (p, g) spaces may be considered

to be Banach spaces.

(2.6) L(I,1)and L (p,q),1 <p =< 0,1 < q £ 0, are Banach spaces
for any measure space (M, m). For any other p, q there are measure
spaces such that L (p, q) cannot be considered to be a Banach space
in such a way that the topology corresponding to the norm is comparable
to the metric topology.

Proof. 1Tt is immediate that |[.||,,, with » = 1 is a norm. This norm is
applicable to the spaces L (p,q), 1 < p < o0,1 £ ¢ < 0. ||.||1; is already
a norm for L (1, 1). Also, note that |.]| HH’&O

11 =

L’Enseignement mathém., t. XII, fasc. 4. 18
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Let M = (0 c0) and m be real Lebesgue measure. Since L (p, q) is a
Frechet space, (2.6) follows from the fact that none of the remaining spaces
contain a bounded convex open set. (See [16].) This is easily seen from the
following constructions:

Incase 0 < g < 1 let

0<t <2 kr

|
fi@®) =

lo t227%, kx21.

Then || f;

n
L but || T Al = 0 as 1 - oo.
n o= |

1
In case 0 < p < 1 choose ¢ such that 1 < ¢ < -and let
p

! k-Aimte o< <k+1
fk(t) =

| 0 otherwise, k = 1.

n
Then || f; |[pe < 1, but H’—szkH;q—»oo as n — .
k=1

In the cases where p = 1 divide (0, o) into pairs of intervals
Lio, Iy, where Ioq = (0,17, Iy = (1,2]
Lio = (2773 + (k—1) 2k 2%(3) + (k—1)27'] and
Ty = Q13 + k=121, 2°(3) + (k=1) 2], k=1. Let

k k—1 ‘
JkO == ( U IiO)U( U Iil) and Jkl = Ikl' Note that i JkO l — | Jkl | "
i=0 i=0

If f,o is zero on J define f;; by

0 tedyo
fa@® =1 fro(t—1Jko D) teJyy
- fro otherwise .

In case ¢ = oo let
k=1 tel,,

Joo =
0 tel,,, k=0.
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1
In case 1 < ¢ < oo choose- < o < 1 and let
q

2—k'k—a tEIkO

Joo (D) =
0 teIkla k%o.

The result is then seen by considering sums of the form f; 11 o = (fro+/x1)/2
k=0,1,..

For the remainder of this section let us consider continuous linear
functionals I on L (p, ). We have |I(f)| £ B * forall feL (p,q).

Consider L (p, 1), 1 £ p < 0. Define u (E) =1 (yg). u (E) is a measure
and | u(E)| < B|| xe|[; [m (E)]'/?. Hence, puis absolutely continuous
with respect to m. The Radon-Nikadyn Theorem (see [7, p. 138]) then gives
a function g (x) such that u (E) = I (xg) = gz (x) g (x) dm (x). This

M

leads to I(f) = [f(x) g (x)dm (x) and hence | [ f(x) g (x) dm (x) |

< B|| f||,1 for all fe L (p, 1). Setting f'(x) = [exp (—i arg g (x))]. xz(x) we
obtain || g (x) | dm (x) £ B [m (E)]'/?. Therefore,

(E)ilg(x)idm(x) <B[m(E)] e < g~ 1/¥

for t £ m(E), where 1/p -+ 1/p’ = 1. It follows that g** (t) < Bt /7 5o

geL(p', o) and ||g||,» < B. (It isinteresting to note how naturally g**

appeared in the above discussion.) Conversely, for any ge L (p’, o0),

1(f)= [ g(x) f(x)dm (x) defines a continuous linear functional on
M

L (p,1). Since

If g f(x)dm(x)| = 5 g*r@f*mde = )1 “UP (1) dt

=plg

This proves that L (p’, o) is the conjugate space of L (p, 1). For the same
reasons that L! is not the conjugate space of L® we cannot expectL (p, 1)
to be the conjugate space of L (p’, o).
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Suppose now that [ is a continuous linear functional on L (p, ), 1 <p < o0,
1 < g < . Since || f||;4 < || f|l51, ! is also a continuous linear function
on L (p, 1). Hence, there exists a function ge L (p’, o) such that

(%) I(f) = [ f(x)g(x)dm(x) forall feL(p,1).
M ,
In particular, (*) holds for all simple functions. Using (*) and [l (f )]
. I 1 1 1
< B||f||pq it can be shown thatgeL (p,q), -~ +— =1, - +— = 1,
p p q 4

and (*) holds for all fe L (p, q). Conversely, for any g e L (p’, ¢'), (*) defines
a continuous linear functional on L (p, ¢). We have obtained
| i

2.7 The conjugate space of L (p, 1) is L (p’, o), where ! +—-=1.
p

P
The conjugate space of L (p,q), 1l <p < 0,1 < g < o0,isL(p’, q'),
1 1
where - 4 — = 1, ~ + — = 1, and hence, these spaces are reflexive.
p p q (4

According to (2.5) any continuous linear functional on L (p, g), 1 Ep< o0,
q < 1, can be extended to a continuous linear functional on L (p, 1).

Suppose [ is a continuous linear functional on L (p, 1), 0 < p < 1. Let
us assume that m (M) < oo. Since (M, m) is o-finite this will result in no
loss of generality in the following argument. We have

*
11 -

;1 = B[m (E)]l/p < B[m (M)](l/p)—l ” XE

[ 1(xe) | —§B“XE

Hence, by (2.5), I can be extended to a continuous linear functional on

L(1,1) = L' Then there exists a function ge L™ such that I(f)"

= [ f(x) g (x)dm (x) for all feL'. Also, || g(x)f(x)dm(x)|< B||f
M M

As before, we have

*
pl:

[ 1g(x) | dm(x) < B[m (]
m(E) g

In case (M, m) is non-atomic this implies that g (x) = 0 a.e. and, hence§
=0 on L(p,1). It follows that the trivial functional 1 = O is the only |
continuous linear functional on the spaces L (p,q), 0 <p < 1,0 < g < o0.
If I is a continuous linear functional on L (1, q), 1 < ¢, then [ is a contin-
uous linear functional on L (1, 1) = L', so there exists a function ge L* |
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such that I(f) = I.Lf(x) g(x) dm(x) for all fe L(1,1) and I;{f(x) dm(x) |

< B || f||is- If (M, m) is non-atomic we can use this to show that g = 0 a.e.
and, hence the trivial functional | = 0 is the only continuous linear functional
on L(1,q9), 1 < g < o0.

Section 3. INTERPOLATION THEOREMS

Suppose T is an operator which maps L (p;, ¢;) boundedly into L(p';, q';),
i = 0, 1. An interpolation theorem for L (p, q) spaces can then be described
as a method which leads to inequalities of the form || 7f || ;.o < B||f ||
B independent of f'e L (p, g). The intermediate spaces L (p, g) and L(p’, q')
and the corresponding constant B are determined by the method of inter-
polation.

Interpolation theorems can generally be classified as either weak type
or strong type. The two types of theorems are easily characterized. The
weak type theorems are proved by real variable methods which utilize
only minimal hypotheses. Since the weak hypotheses are characteristic of
the real method of proof, the conclusions are limited. In the case of Lorentz
spaces the essential part of the weak type hypothesis is that the range spaces
of the given end point conditions are weak L? spaces. We can then conclude
only that an intermediate space L (p, q) is mapped boundedly into an appro-
priate space L (p’, q¢'), where ¢' = ¢. In order to utilize a stronger hypothesis
to arrive at a stronger conclusion, we must go to the complex methods of
proof which are characteristic of the strong type theorems. The two methods
also differ in the intermediate spaces obtained and in the behavior of the
corresponding constants B. In general, we obtain more intermediate spaces
by the weak type methods. However, the constants corresponding to the
weak type methods are, in some sense, not as satisfactory. This is seen in
the prototypes of the weak and strong type theorems, the interpolation
theorem of Marcinkiewicz and the Riesz-Thorin convexity theorem.

An operator 7 mapping functions on a measure space into functions
on another measure space is called quasi-linear if T ( f+g) is defined when-
ever Tf and Tg are defined and if |T(f+g)| £ K(| If|+| Tg|) ae.,
where K is independent of f and g. An argument similar to that which led
to (1.6) gives

(3.1) (T(f+9)* () £ K((TH*(t/2) + (Tg)* (1/2)).
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