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This is done by considering in detail some classical L? operators. Related
references are contained in Section 5.

I would like to acknowledge that much of this development was
contained in my Ph. D. Thesis obtained at Washington University in
St. Louis under the direction of Professor Guido Weiss. My thanks go to
Professor Weiss and to Professor Mitchell Taibleson for their many helpful
suggestions in the preparation of this paper. Professor Antoni Zygmund
suggested the present expository form of the L (p, ¢) space results.

Section 1. ELEMENTARY PROPERTIES AND INEQUALITIES

We consider only complex-valued, measurable functions defined on a
measure space (M, m). The measure m is assumed to be non-negative and
totally o-finite. We assume the functions f are finite valued a.e. and, for
some y > 0, m(E) < oo, where E, = E, [f] = {xeM :|f(x)| > y}. As
usual, we identity functions which are equal a.e.

The distribution function of fis defined by A (y) = 4,(y) = m(E,),y > 0.
2.(») 1s non-negative, non-increasing and continuous from the right. The
non-increasing rearrangement of f onto (0, c0) is defined by f* (1)
= inf {y >0:4,(y) 1}, 1> 0. Since 4, (y) < oo for some y > 0 and
J'is finite valued a.e. we have that A, (y) — 0 as y — co. It follows that /*(z)
is well defined for ¢ > 0. f* (¢) is clearly non-negative and non-increasing
on (0, oo). If A, (y) is continuous and strictly decreasing then f* (¢) is the
inverse function of 4, (y).

It follows immediately from the definition of f* (¢) that

(1.1) | M) <y,
Since /4, (y) is continuous from the right we have
(1.2) (ff(m) <.

Inequalities (1.1) and (1.2) can be used to prove two elementary properties
of f*,

(1.3) S* () is continuous from the right.

Proof. We have f*(t) = f* (t+h) for all & > 0. If there exists y such
that f*(¢) > y > f* (t+h) for all h > 0, then, using (1.2), we have
i (¥) S A, (f*(t+h)) £t + hforall h > 0. That is, Aq(y) £ t. It follows
that f* () < y, which is a contradiction.
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(1.4) Are(y) = A;(y) forally > 0.

Proof. A, (p) is the Lebesgue measure of the set of points # > 0 for
which f* (¢) > y. Since f* is non-increasing we have

(*) dpe () = sup {t > 0:* (1)) > y }.

We see from (*) that /* (1, (y)) £ y implies 1, (y) = 4. ().

Ift > As. (), then (*) implies f* (£) < y. Hence, A, () S A, (f* (?)) £ ¢.
It follows that A, (y) £ 4,. (y) and (1.4) is proved.

By a simple function we mean a function which can be written in the
form

N

f(x) = Z CjXEj(x),

Jj=1

where ¢y, ..., cy are complex numbers, E,, ..., Ey are pairwise disjoint sets
of finite measure and y; (x) denotes the characteristic function of the
set E. For such a function let cj, ..., cy be a rearrangement of the num-
bers |cy |, ..., | cy| such that ¢j 2 ¢; = ... 2 cy = 0. Then

[ ¢ 0<t<m(E)

-1
¢t Y mE)St< )Y m(E), j=2,..,N
f*() = = =

J J
*

N
0 t= ) m(E).
| k=1

It is very useful to note
(1.5) If f(x) is a non-negative simple function, then we can write
N

f(x) = ) f;(x), where f; (x) is a non-negative function with exactly
j=1

N
one positive value and £* (t) = Y, f; (t).
j=1
N
Proof. Suppose f(x) =) ¢; XE; (x), where E,, ..., Ey are pairwise
j=1

J
disjoint and¢; > ... > ¢y > cy4+1 =0. Let F; = U E;anda; = ¢; — ¢4y,
k=1
Jj=1,.,N. Set f;(x) = a; 1E; (x) and we are done.
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Consideration of the functions f(x) = l—-xand g(x) = x,0 = x £ 1,
shows that we do not always have (f+g)* (t) < f* (t) + g* (¢). However,
(1.6) [+t +1) SfF@) +9% (), 1,1, >0.

Proof. Since

{xeM:|f(x)+g)| >f*(t) +g%(t)}
C{xeM:|f)| >f ) }u{xeM:[g(x)|>g"(t)}
wehave Ay4, (% (1) + g% (1) S Ay (% (1) + Ay (8% (12)) < t, + 1. This

implies (1.6).

The Lorentz space L (p, q) is the collection of all f'such that || /||, < oo,
where

{(g.[[tl/pf*(t)]qﬁ)l/q, O<p<w, 0<g<
fllpe =1 PO ¢

supt'?f* (1), 0<p=Z<L o, q= 0.

t>0

e 0]

The case p = 0, 0 < g < oo is not of interest since | [f* ()} dt/t < o0
0

implies f = 0 a.e.
Since f and f* have the same distribution function we have || f||;,
= ([ | f(x) |” dm (x))'/?. Hence, L (p,p) is the familiar L? space on
M

(M, m).
Since f* is essentially the inverse function of 4,
(1.7) supt'/2f* (1) = supy [1,(5)]"7.

t>0 y>0

L (p, ) plays an important role in analysis and is often called weak L?”.
L? and weak L?, as well as all L (p, g) which have the same first index p,
are related by

(1.8) 1 flpg S NSy, 0<4q1 g, £ 0.

Proof. In case g, = oo we have, since f * (¢) is non-increasing,

t
tl/”f*(t) =f*(t) (51;15 y(‘ll/P)“l dy)llql
0
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< (%1 FLytPf(n]erdyly)ar.

The result follows immediately.

In case g, < oo it is sufficient to prove the inequality for simple func- |
tions since we can clearly find simple functions f, () such that0 < £, ~ /%

and apply the monotone convergence theorem.

If fis a simple function we have f*(f) = ¢, fora,_, <1 < a,

k=1,..,N,where ¢, >¢c, > ...>cy>0and 0 =a, < a, < ... <ay.

N
Then Hf”;q = ( Z ci (@'?—a{!?}))'/4. By setting dj = c, by = ai*'" and
k=1 ‘

0 = q,/q, we see that (1.8) is a consequence of

N N
() 2, di(by=by_y) = (Y di(by—by_1)"°,
k=1 k=1

for o >dy >d,>..>0,0=0b;<b, <..< oand 0 <0 < 1.

The proof of (*) is by finite induction. (*) is obviously true (with equality)

for N = 1. Assume (*) is true for N and consider

N
@ (x) = ( Z dZ(bg“‘bZ—l) + x° (D41 _bm‘))]/o
k=1

N

- (Z dy(by—by_y) + x(byyy —bN)), 0<«x

k=1
We must show that ¢ (dy.;) = 0. We have ¢ (0) = 0 and ¢ (dy) = 0 by
our induction hypothesis, since ¢ (0) = 0 is exactly (*) and ¢ (dy) is (¥)
with by replaced by by, (. A simple calculation shows that ¢” (x) <0 for
x > 0. Hence, ¢ (x) = 0 for 0 < x =< dy. Since0 < dy.; < dythis com-
pletes the proof.

If yg is the characteristic function of a set of finite measure then
| %2 ||pa = [m (E)]'/? for all p, q. This implies that inequality (1.8) is best
possible. Shorter proofs can be used to obtain || /|[,,, = B || /]l54,- 91 < 42
For example,

IIA

dy .

200 . d / ool . - , 2k . . |
(q;j [tllp]M (t)]qz ,t_t)ql,qz é( Z [f (2 )]qz [fl__f 1(a2/p) (“])” 12
O.

k=—o P 2k

< Z [f* (2k—1)]ql kay/p

(= — o0
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0D 2k—1
q . . dt
B ¥ [ [0l e~
P k=—on2k-2 t

= B 115,]"-

(1.8) clearly implies L(p,q,) < L(p,q,), 0 <qg; < g, < oo. If the

measure space (M, m) contains a countably infinite collection of pairwise
disjoint sets of finite non-zero measure it is easy to construct a simple
fuaction f which belongs to L (p, ¢,) but does not belong to L (p, q,) for
any given p and ¢, < ¢,.

L (p, q) spaces with different first indices are related only in special cases.

For example, if m (M) < 00, L (p3, ;) < L(pa, ) = L(py, g4) forp, = p,.

It

L{

m(E) =1 for every measurable set £ < M with m(E) > 0, then
Pis4q1) = L(py, 0) = L(p,, q,) for p; = p,.
(1.8) and the following inequalities are fundamental to the study of

L (p, g) spaces.

A function ¢ (x) defined on an interval of the real line is said to be

convex 1f for every pair of points Py, P, on the curve y = ¢ (x) the points

of

the arc P, P, are below, or on, the chord P, P,. For example, x", r > 1,

is convex in (0, oo) and e* is convex in (—oo, o). We will need Jensen’s
integral inequality. (See [32, Vol. I, p. 24].)

THEOREM. (Jensen): Suppose ¢ (u) is convex in an interval o < u < f5,

v = f(x) = f ina=x = b and that p (X) is non-negative with

b
| p(x)dx # 0. Then

a

J £ p(x) dx Jo(f(x)p(x)dx
av ) = 5 ,
[ p(x)dx [ p(x)dx

where all integrals in question are assumed to exist and be finite.
b b

Proof. Lety == [ fpdx/|pdx. Then « <y < B. Let us first suppose

’: that o <y < 8, and let k& be the slope of a supporting line of ¢ through

- the point (y, ¢ (y)). Then since ¢ is convex, we have

(%)

o(u)—o(y) = k(u—y), «<u <B.
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Replacing u by f(x) in (*), multiplying both sides by p (x), and integrating

over a £ x £ b, we obtain

b b b b
Jo(f))px)dx —o @) [p(x)dx 2 k{]f(x)p(x)dx —yjp(x)dx} -

which is the desired inequality. If y = B, then f(x) = f at a.e. point at

which p (x) > 0 and the inequality is obvious. Similarly if y = a.

THEOREM (Hardy): If g = 1, r > 0 and f = 0, then

(U SOydy]er =t < L DOy dy)e

and

F@ydy]rrtant < 2(] [ o]y dy)e.
0

(

Q= g

[

t
Proof. The technique of the proof is to write [[f(x) dy]? as
5 ,

t
[{f(x)y~*y*dy]* and apply Jensen’s inequality to the measure y* dy. We :
0 j

obtain an inequality of the form

(JIJfay]rem=rdntt < C)(f [yf)]*y~ " dy)'e.

a is then chosen so that C («) is minimal. In this case o = (r/q)—1 is the

best choice.

(F[Jfmdy]eer—"dnth

00 t
_ g(j [g_t—r/qu(y)y—(r/q>+1 0=t gylag1 dp)s
0 0

which, by Jensen’s inequality, is majorized by

( )1 llq(}o[tj(f(y)y—(r/q)+l)qy(r/q)—1 dy]t_('/q)_ldt)”q.
0 o0

4
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After applying Fubini’s Theorem we see that the last expression is equal to

IS

- [yf()]y~"tdy)ths.
0
The proof of the second inequality is the same except that r is replaced
by —r.

m(E)

(1.9) JIfg)1dmx) =] f*Og*@adr.
E 0

Proof. We may assume f and g are non-negative simple functions. We
then write /= X f; and g = 2 g, as in (1.5). (1.9) is clearly true for the
functions f; g, and the result follows.

Finally, let us note

1 17
(1.10) ~[g®dt <~fg()dt for0<x =<y,
Yo X aq

where g (t) is non-negative and non-increasing on t > 0.
(1.10) is geometrically obvious.

Section 2. TOPOLOGICAL PROPERTIES

(1.6) implies that /' + g€ L (p, q) if f, g € L (p, g). Since ||. ||, is positive
homogeneous we see that L (p, g) is a linear space. ||.||,, leads to a topology
on L (p, q) such that L (p, q) is a topological vector space. f, —» fe L{p, q)
in this topology if and only if || f—1, ||,4 = 0. We shall see that this space
1s metrizable.

For p, q fixed we define two analogues of f*. Choose r such that
O<r=<1l,r<qgandr <p. Let

sup(1

o g @ dm )", ¢ < m(w)

frEm =f** ) =

1
(=] 1fC)I"dm )", t>m(M).
Y

Consider (f*)** (¢). Since any g** is non-negative and non-increasing we
can use (1.9) and (1.10) to see that
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