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ON L (p, q) SPACES x)

by Richard A. Hunt

Section 0. Introduction

L (p, q) spaces are function spaces which are closely related to LP spaces.
Recall that a complex-valued function/ defined on a measure space (M, m)

belongs to LP if \\f\\p (J |/(x) |p dm (x))llp < oo. From the definition
e

of the above integral we have that ||/||J is the least upper bound of finite
sums Iypn m {{x e M :yn^\f{x) \ < j„+1}) with 0 It
follows that ||/||p is completely determined by the distribution function of/,

(y) m ({* E M : \f(x) I > y})> y > 0. With each function Xf (j) we
associate the function /* (t) inf {y > 0 : Xf {y) ^ t}, t > 0. Xf and /*
are non-negative and non-increasing. If Xf (y) is continuous and strictly
decreasing /* is the inverse function of Xf. The most important property
of/* is that it has the same distribution function as /. It follows that

00

(j \f(x)\pdm(x))1»[/*(o
M 0

Let us write this equation in a more suggestive form as

00

11/11, (-J [t1/p/*(<)]p<fr/01/p.
P 0

The Lorentz space L (p, q) is the collection of all/ such that ||/||p? < oo,
where

(-J [t1/pf* (t)~\qdtjt)llq 0 < p < oo 0 < q < oo
P o

supf1/p/*(0 0 < p ^ co q oo
t> o

WfWl

We see tfiat ||/||p - ||/||;p, so LP L(p,p). We shall see that ||y „Mf
II/IIp«!'0 < 00• Hence, Z,(p, <= L(p, £2) for ^ ^ £2. In

particular, L p,c -LP(p,^2) «= Z, (/>, 00) for 0 < ^ p g çr2 ^ 00.

1) This work was supported by the U.S. Army Contract DA-31-124-ARO (D)-58 and NSF Grant
GP-5628.
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In this sense the L (p, q) spaces give a refinement of Lp and L (/;, go). L (/?, x
plays an important role in analysis and is sometimes called weak Lp.

The fact that L (/;, q) space theory provides an advantageous setting for
Lp theory is best seen in results concerning the Marcinkiewicz interpolation
theorem. (See [32, Vol. LI, p. 112].) This theorem states:

Ij T belongs to a certain class (quasi-linear) of operators and ||

BiH.011
pp ' llere1 ^ p, ^ qt^co, / 0, 1, p0 ^ and q0 # qx, then

|| Tf\\qe ^ Be||/||Pe, where \/p0(1 -0)lp0 + 0/Pl,\jqe - (1

0 < 0 < 1.

Let us weaken the hypothesis of this theorem by requiring only that
|| Tf\\l f Bt ||/||Pl-i, / 0, L We can then obtain the stronger conclusion

|| Tf\\*ePe ^ Be ||/||w as a consequence of a well known inequality of
Hardy. Hence, using elementary Lorentz space theory we weaken the
hypothesis, strengthen the conclusion and shorten the proof of the Lp theorem
(see [15]). Also, consideration of the Lorentz space analogue (the weak type
theorem of Section 3) shows that the condition qQ L p0 is necessary in the
Lp result (see [14]).

One of the purposes of this paper is to present, in one place, the basic

properties of L (p, q) spaces and some tools which are useful in their study.
The behavior of operators on these spaces is also studied.

For the most part, the presentation presupposes only a knowledge of
basic measure theory.

Section 1 of this paper contains a development of elementary properties
and inequalities which are useful in the study of Lorentz spaces. In Section 2

we develop topological properties of the spaces. || \\*pq gives a natural

topology for L (/?, q) such that L (p, q) is a topological vector space. The

introduction of /**, an analogue of /*, leads to a metric onL(p,q).

(/**(/) sup (-L J I f{x))rdm{x)pc0<i'5 I .)L(p,q) is seen
m(E)^t m (L) E

to be a Frechet space and in some cases, a Banach space. The continuity of
linear, sub-linear and quasi-linear operators is considered in terms of the

above mentioned metric. Continuous linear functional on the L (/;, q) spaces

are discussed. Section 3 is devoted to the development of two interpolation
theorems for Lorentz spaces. One of these is an analogue of the Marcinkiewicz

theorem on the interpolation of operators acting on Lp spaces. The

other is an analogue of the Riesz-Thorin convexity theorem. (See [32, Vol. IT,

p. 95].) The behavior of operators on L (/;, q) spaces is studied in Section 4.
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This is done by considering in detail some classical LP operators. Related

references are contained in Section 5.

I would like to acknowledge that much of this development was

contained in my Ph. D. Thesis obtained at Washington University in
St. Louis under the direction of Professor Guido Weiss. My thanks go to
Professor Weiss and to Professor Mitchell Taibleson for their many helpful
suggestions in the preparation of this paper. Professor Antoni Zvgmund
suggested the present expository form of the L (p, q) space results.

Section 1. Elementary properties and inequalities

We consider only complex-valued, measurable functions defined on a

measure space (Af, m). The measure m is assumed to be non-negative and

totally cr-finite. We assume the functions / are finite valued a.e. and, for
some y > 0, m (£v) < oo, where Ey =- Ey [/] { x e M : j /(x)\ > y }. As
usual, we identity functions which are equal a.e.

The distribution function off is defined by X (y) Xf (y) m (Ef), y > 0.

X (y) is non-negative, non-increasing and continuous from the right. The

non-increasing rearrangement of f onto (0, oo) is defined by /* (t)
-- --- inf {y > 0 : Xf (y) g /}, t > 0. Since Xf (y) < oo for some y > 0 and

/is finite valued a.e. we have that Xf (y) -> 0 as y -» oo. It follows that/*(t)
is well defined for t > 0. /* (t) is clearly non-negative and non-increasing
on (0, oo). If Xf (y) is continuous and strictly decreasing then /* (t) is the
inverse function of Xf(y).

It follows immediately from the definition of /* (t) that

(i-D f*P/(v))^ y

Since Xf (y) is continuous from the right we have

(1.2)

Inequalities (1.1) and (1.2) can be used to prove two elementary properties
of/*.
(1.3) /* (t) is continuous from the right.

Proof. We have /* (t) ^ f* (t+h) for all h > 0. If there exists y such
that /*(0 > y > f* (t+h) for all h > 0, then, using (1.2), we have

'-j- (>') ^ Xf (/* (t+h)) ^ / + h for all h > 0. That is, Xf (y) g t. It follows
that /* (t) g y, which is a contradiction.
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