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ON L(p,q) SPACES ')

by Richard A. HUNT

Section 0. INTRODUCTION

L (p, q) spaces are function spaces which are closely related to L? spaces.
Recall that a complex-valued function f defined on a measure space (M, m)
belongs to L? if || /||, = (J | f(x) |? dm (x))''? < co. From the definition

E

of the above integral we have that || f ||§ is the least upper bound of finite
sums Zyfm({xeM :y, £ |f(X)| < yps1}) With 0 =y, <y, < .. It
follows that || f||, is completely determined by the distribution function of f,
A =m{xeM:|f(x)|>y}), > 0. With each function i, (y) we
associate the function f* (f) =inf {y > 0:1,(y) < ¢}, £ > 0. A; and f*
are non-negative and non-increasing. If A, (y) is continuous and strictly
decreasing f* is the inverse function of A,. The most important property
of f* is that it has the same distribution function as f. It follows that

(J 1/ 1P dmG)Tr = (I [F* (0] dr) e

Let us write this equation in a more suggestive form as

W1, = (%I (17 % (1)]7 defo)!/? .

The Lorentz space L (p, q) is the collection of all /'such that || f|[;, < oo,
where

A @pdynis, 0<p<w, 0<g<ow
e =1 PO

supt'/’f*(1), O<p=< o, g= .
L >0
We see that || /||, = || f||p 50 L? = L (p, p). We shall see that || f|[;,.
= “fH;ql’O < ¢y = g, = . Hence, L(p, q,) = L(p, q,) for g, < g,. In
particular, L(p, q;) = L* = L(p,q,) = L(p, 0)for0 < ¢, < p < ¢, < oo.

Gp Sé%SThis work was supported by the U.S. Army Contract DA-31-124-ARO (D)-58 and NSF Grant



— 250 —

In this sense the L (p, q) spaces give a refinement of L” and L (p, ). L (p, %)
plays an important role in analysis and is sometimes called weak L”.

The fact that L (p, q) space theory provides an advantageous setting for
LP theory is best seen in results concerning the Marcinkiewicz interpolation
theorem. (See [32, Vol. I, p. 112].) This theorem states:

*

If T belongs to a certain class (quasi-linear) of operators and H T/
=< B Hfl ppp Where 1 < p;, £ g, < 0,0 = 0,1, py # py and qy # ¢, then

H 1f ag = By Ilfllpe’ where 1/pg==(1—=0)/py+0/py, 1/gs = (1—=0)/q50/g,.
0<0<1.

Let us weaken the hypothesis of this theorem by requiring only that
| 77 || 50 < Bil|| f|pi1s i = 0, 1. We can then obtain the stronger conclu-
sion || Tf ||30p < Bo || /]|, as @ consequence of a well known incquality of
Hardy. Hence, using elementary Lorentz space theory we weaken the hypo-
thesis, strengthen the conclusion and shorten the proof of the L” theorem
(see [15]). Also, consideration of the Lorentz space analogue (the weak type
theorem of Section 3) shows that the condition ¢, = p, is necessary in the
L? result (see [14]).

One of the purposes of this paper is to present, in one place, the basic
properties of L (p, q) spaces and some tools which are useful in their study.
The behavior of operators on these spaces is also studied.

For the most part, the presentation presupposes only a knowledge of
basic measure theory.

Section 1 of this paper contains a development of elementary properties
and inequalities which are useful in the study of Lorentz spaces. In Section 2
we develop topological properties of the spaces. H H:q gives a natural
topology for L (p, g) such that L (p, q) is a topological vector space. The
introduction of f** an analogue of f*, leads to a metric onL (p, ¢q).

70 = ms(l;f);t(m I(E) £ S ["dm ()", 0 <r £ 1.)L(p.gq)isscen

to be a Frechet space and in some cases, a Banach space. The continuity of
linear, sub-linear and quasi-linear operators is considered in terms of thc
above mentioned metric. Continuous linear functionals on the L (p, ¢) spaces
are discussed. Section 3 is devoted to the development of two interpolation
theorems for Lorentz spaces. One of these is an analogue of the Marcinkie-
wicz theorem on the interpolation of operators acting on L? spaces. The
other is an analogue of the Riesz-Thorin convexity theorem. (See [32, Vol. 11,
p. 95].) The behavior of operators on L (p, g) spaces is studied in Section 4.

Gir




— 251 —-

This is done by considering in detail some classical L? operators. Related
references are contained in Section 5.

I would like to acknowledge that much of this development was
contained in my Ph. D. Thesis obtained at Washington University in
St. Louis under the direction of Professor Guido Weiss. My thanks go to
Professor Weiss and to Professor Mitchell Taibleson for their many helpful
suggestions in the preparation of this paper. Professor Antoni Zygmund
suggested the present expository form of the L (p, ¢) space results.

Section 1. ELEMENTARY PROPERTIES AND INEQUALITIES

We consider only complex-valued, measurable functions defined on a
measure space (M, m). The measure m is assumed to be non-negative and
totally o-finite. We assume the functions f are finite valued a.e. and, for
some y > 0, m(E) < oo, where E, = E, [f] = {xeM :|f(x)| > y}. As
usual, we identity functions which are equal a.e.

The distribution function of fis defined by A (y) = 4,(y) = m(E,),y > 0.
2.(») 1s non-negative, non-increasing and continuous from the right. The
non-increasing rearrangement of f onto (0, c0) is defined by f* (1)
= inf {y >0:4,(y) 1}, 1> 0. Since 4, (y) < oo for some y > 0 and
J'is finite valued a.e. we have that A, (y) — 0 as y — co. It follows that /*(z)
is well defined for ¢ > 0. f* (¢) is clearly non-negative and non-increasing
on (0, oo). If A, (y) is continuous and strictly decreasing then f* (¢) is the
inverse function of 4, (y).

It follows immediately from the definition of f* (¢) that

(1.1) | M) <y,
Since /4, (y) is continuous from the right we have
(1.2) (ff(m) <.

Inequalities (1.1) and (1.2) can be used to prove two elementary properties
of f*,

(1.3) S* () is continuous from the right.

Proof. We have f*(t) = f* (t+h) for all & > 0. If there exists y such
that f*(¢) > y > f* (t+h) for all h > 0, then, using (1.2), we have
i (¥) S A, (f*(t+h)) £t + hforall h > 0. That is, Aq(y) £ t. It follows
that f* () < y, which is a contradiction.
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(1.4) Are(y) = A;(y) forally > 0.

Proof. A, (p) is the Lebesgue measure of the set of points # > 0 for
which f* (¢) > y. Since f* is non-increasing we have

(*) dpe () = sup {t > 0:* (1)) > y }.

We see from (*) that /* (1, (y)) £ y implies 1, (y) = 4. ().

Ift > As. (), then (*) implies f* (£) < y. Hence, A, () S A, (f* (?)) £ ¢.
It follows that A, (y) £ 4,. (y) and (1.4) is proved.

By a simple function we mean a function which can be written in the
form

N

f(x) = Z CjXEj(x),

Jj=1

where ¢y, ..., cy are complex numbers, E,, ..., Ey are pairwise disjoint sets
of finite measure and y; (x) denotes the characteristic function of the
set E. For such a function let cj, ..., cy be a rearrangement of the num-
bers |cy |, ..., | cy| such that ¢j 2 ¢; = ... 2 cy = 0. Then

[ ¢ 0<t<m(E)

-1
¢t Y mE)St< )Y m(E), j=2,..,N
f*() = = =

J J
*

N
0 t= ) m(E).
| k=1

It is very useful to note
(1.5) If f(x) is a non-negative simple function, then we can write
N

f(x) = ) f;(x), where f; (x) is a non-negative function with exactly
j=1

N
one positive value and £* (t) = Y, f; (t).
j=1
N
Proof. Suppose f(x) =) ¢; XE; (x), where E,, ..., Ey are pairwise
j=1

J
disjoint and¢; > ... > ¢y > cy4+1 =0. Let F; = U E;anda; = ¢; — ¢4y,
k=1
Jj=1,.,N. Set f;(x) = a; 1E; (x) and we are done.
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Consideration of the functions f(x) = l—-xand g(x) = x,0 = x £ 1,
shows that we do not always have (f+g)* (t) < f* (t) + g* (¢). However,
(1.6) [+t +1) SfF@) +9% (), 1,1, >0.

Proof. Since

{xeM:|f(x)+g)| >f*(t) +g%(t)}
C{xeM:|f)| >f ) }u{xeM:[g(x)|>g"(t)}
wehave Ay4, (% (1) + g% (1) S Ay (% (1) + Ay (8% (12)) < t, + 1. This

implies (1.6).

The Lorentz space L (p, q) is the collection of all f'such that || /||, < oo,
where

{(g.[[tl/pf*(t)]qﬁ)l/q, O<p<w, 0<g<
fllpe =1 PO ¢

supt'?f* (1), 0<p=Z<L o, q= 0.

t>0

e 0]

The case p = 0, 0 < g < oo is not of interest since | [f* ()} dt/t < o0
0

implies f = 0 a.e.
Since f and f* have the same distribution function we have || f||;,
= ([ | f(x) |” dm (x))'/?. Hence, L (p,p) is the familiar L? space on
M

(M, m).
Since f* is essentially the inverse function of 4,
(1.7) supt'/2f* (1) = supy [1,(5)]"7.

t>0 y>0

L (p, ) plays an important role in analysis and is often called weak L?”.
L? and weak L?, as well as all L (p, g) which have the same first index p,
are related by

(1.8) 1 flpg S NSy, 0<4q1 g, £ 0.

Proof. In case g, = oo we have, since f * (¢) is non-increasing,

t
tl/”f*(t) =f*(t) (51;15 y(‘ll/P)“l dy)llql
0



254 —

< (%1 FLytPf(n]erdyly)ar.

The result follows immediately.

In case g, < oo it is sufficient to prove the inequality for simple func- |
tions since we can clearly find simple functions f, () such that0 < £, ~ /%

and apply the monotone convergence theorem.

If fis a simple function we have f*(f) = ¢, fora,_, <1 < a,

k=1,..,N,where ¢, >¢c, > ...>cy>0and 0 =a, < a, < ... <ay.

N
Then Hf”;q = ( Z ci (@'?—a{!?}))'/4. By setting dj = c, by = ai*'" and
k=1 ‘

0 = q,/q, we see that (1.8) is a consequence of

N N
() 2, di(by=by_y) = (Y di(by—by_1)"°,
k=1 k=1

for o >dy >d,>..>0,0=0b;<b, <..< oand 0 <0 < 1.

The proof of (*) is by finite induction. (*) is obviously true (with equality)

for N = 1. Assume (*) is true for N and consider

N
@ (x) = ( Z dZ(bg“‘bZ—l) + x° (D41 _bm‘))]/o
k=1

N

- (Z dy(by—by_y) + x(byyy —bN)), 0<«x

k=1
We must show that ¢ (dy.;) = 0. We have ¢ (0) = 0 and ¢ (dy) = 0 by
our induction hypothesis, since ¢ (0) = 0 is exactly (*) and ¢ (dy) is (¥)
with by replaced by by, (. A simple calculation shows that ¢” (x) <0 for
x > 0. Hence, ¢ (x) = 0 for 0 < x =< dy. Since0 < dy.; < dythis com-
pletes the proof.

If yg is the characteristic function of a set of finite measure then
| %2 ||pa = [m (E)]'/? for all p, q. This implies that inequality (1.8) is best
possible. Shorter proofs can be used to obtain || /|[,,, = B || /]l54,- 91 < 42
For example,

IIA

dy .

200 . d / ool . - , 2k . . |
(q;j [tllp]M (t)]qz ,t_t)ql,qz é( Z [f (2 )]qz [fl__f 1(a2/p) (“])” 12
O.

k=—o P 2k

< Z [f* (2k—1)]ql kay/p

(= — o0
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0D 2k—1
q . . dt
B ¥ [ [0l e~
P k=—on2k-2 t

= B 115,]"-

(1.8) clearly implies L(p,q,) < L(p,q,), 0 <qg; < g, < oo. If the

measure space (M, m) contains a countably infinite collection of pairwise
disjoint sets of finite non-zero measure it is easy to construct a simple
fuaction f which belongs to L (p, ¢,) but does not belong to L (p, q,) for
any given p and ¢, < ¢,.

L (p, q) spaces with different first indices are related only in special cases.

For example, if m (M) < 00, L (p3, ;) < L(pa, ) = L(py, g4) forp, = p,.

It

L{

m(E) =1 for every measurable set £ < M with m(E) > 0, then
Pis4q1) = L(py, 0) = L(p,, q,) for p; = p,.
(1.8) and the following inequalities are fundamental to the study of

L (p, g) spaces.

A function ¢ (x) defined on an interval of the real line is said to be

convex 1f for every pair of points Py, P, on the curve y = ¢ (x) the points

of

the arc P, P, are below, or on, the chord P, P,. For example, x", r > 1,

is convex in (0, oo) and e* is convex in (—oo, o). We will need Jensen’s
integral inequality. (See [32, Vol. I, p. 24].)

THEOREM. (Jensen): Suppose ¢ (u) is convex in an interval o < u < f5,

v = f(x) = f ina=x = b and that p (X) is non-negative with

b
| p(x)dx # 0. Then

a

J £ p(x) dx Jo(f(x)p(x)dx
av ) = 5 ,
[ p(x)dx [ p(x)dx

where all integrals in question are assumed to exist and be finite.
b b

Proof. Lety == [ fpdx/|pdx. Then « <y < B. Let us first suppose

’: that o <y < 8, and let k& be the slope of a supporting line of ¢ through

- the point (y, ¢ (y)). Then since ¢ is convex, we have

(%)

o(u)—o(y) = k(u—y), «<u <B.
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Replacing u by f(x) in (*), multiplying both sides by p (x), and integrating

over a £ x £ b, we obtain

b b b b
Jo(f))px)dx —o @) [p(x)dx 2 k{]f(x)p(x)dx —yjp(x)dx} -

which is the desired inequality. If y = B, then f(x) = f at a.e. point at

which p (x) > 0 and the inequality is obvious. Similarly if y = a.

THEOREM (Hardy): If g = 1, r > 0 and f = 0, then

(U SOydy]er =t < L DOy dy)e

and

F@ydy]rrtant < 2(] [ o]y dy)e.
0

(

Q= g

[

t
Proof. The technique of the proof is to write [[f(x) dy]? as
5 ,

t
[{f(x)y~*y*dy]* and apply Jensen’s inequality to the measure y* dy. We :
0 j

obtain an inequality of the form

(JIJfay]rem=rdntt < C)(f [yf)]*y~ " dy)'e.

a is then chosen so that C («) is minimal. In this case o = (r/q)—1 is the

best choice.

(F[Jfmdy]eer—"dnth

00 t
_ g(j [g_t—r/qu(y)y—(r/q>+1 0=t gylag1 dp)s
0 0

which, by Jensen’s inequality, is majorized by

( )1 llq(}o[tj(f(y)y—(r/q)+l)qy(r/q)—1 dy]t_('/q)_ldt)”q.
0 o0

4
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After applying Fubini’s Theorem we see that the last expression is equal to

IS

- [yf()]y~"tdy)ths.
0
The proof of the second inequality is the same except that r is replaced
by —r.

m(E)

(1.9) JIfg)1dmx) =] f*Og*@adr.
E 0

Proof. We may assume f and g are non-negative simple functions. We
then write /= X f; and g = 2 g, as in (1.5). (1.9) is clearly true for the
functions f; g, and the result follows.

Finally, let us note

1 17
(1.10) ~[g®dt <~fg()dt for0<x =<y,
Yo X aq

where g (t) is non-negative and non-increasing on t > 0.
(1.10) is geometrically obvious.

Section 2. TOPOLOGICAL PROPERTIES

(1.6) implies that /' + g€ L (p, q) if f, g € L (p, g). Since ||. ||, is positive
homogeneous we see that L (p, g) is a linear space. ||.||,, leads to a topology
on L (p, q) such that L (p, q) is a topological vector space. f, —» fe L{p, q)
in this topology if and only if || f—1, ||,4 = 0. We shall see that this space
1s metrizable.

For p, q fixed we define two analogues of f*. Choose r such that
O<r=<1l,r<qgandr <p. Let

sup(1

o g @ dm )", ¢ < m(w)

frEm =f** ) =

1
(=] 1fC)I"dm )", t>m(M).
Y

Consider (f*)** (¢). Since any g** is non-negative and non-increasing we
can use (1.9) and (1.10) to see that
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L
(f*H**(1) = (;f Lf*W] dy)'r.

Jf** leads easily to a metric on L (p, ¢), avoiding technical difficulties which
might occur when the measure m is atomic. f** is also useful because for
some purposes it is more closely related to fthan is f*.(f*)** is especially
suited for applications of Hardy’s inequality.

(2.1) Jr=rrm = H*F0 .

The first inequality in (2.1) follows from the fact that if E = {xe M : | f(x) |

> [ (f)} then m (E) = t. The second inequality follows from (1.9) and
(1.10).

Let Hprq - Hf** pq-
SE ¥ and (f*)** are further related by
(2.2) v = ”f Hpq = Hf1 “pq = P/(P“"”))l/r

(2.2) follows immediately from (2.1) and Hardy’s incquality.
It is clear that

[(f+9)** O] = [f*O] + [g** 0],

sothat p (f, g) = Hf-g H;q is a metric onL (p, q) (2 2) implies the topolooy
of L (p, q) given by H Hpq

*

I’ q°

(2.3) L (p, q) is complete with respect to the metric p (f, g) = H f—g

l,,(,

Proof. Suppose o (foms fn) = 0 as m,n — oo, where f/, e L(p, q), n = 1.
< || /|4 It follows from (1.7) that the sequence
{f,} is fundamental in measure and, hence, the exists a subsequence {f,, |
which converges almost uniformly to a function f. (See [7, p. 93].)
Fix L such that p(f,f.) <¢ for n = N (¢). Let ¢, = f,, —f. and
¢ = f—f;. Then ¢, converges almost uniformly to ¢ and by Fatou’s
lemma, ¢**(t) <liminf ;" (¢), and || ¢ ||5, < lim inf || ¢, ||7,. That is,

k — oo

p (f,f1) < e Hence, feL(p,q) and p (f,f) = 0 as L — co.
(2.4) Simple functions are dense in L (p, q), g # .

IAJ

Proof. Suppose feL(p, q), p # . We may assume that /= 0. We
show that given any g, & > O there exists a simple function f, such that
0<f <fand(f—f)*(t) < eforallt = 6. Notethat f*(t) > Oast— cc.
It follows that m (E, [ f]) < oo. Hence, we can find a simple function f, = 0
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such that f,(x) =0 for x¢E,[f] and 0 < f(x) — f, (x) < e for all
x e E,[f] except for a set of measure less than 6. Then m ({x eEM : |f(x)
— £, (x) [ > 8}) < d,s0 (f—f)*(t) < e fort = 6. We obtain a sequence of
simple functions £, such that (f—£,)* (1) = 0 asn — co and £, (t) < f* (¢),
for each t > 0. We have (f—/)* (1) < f* (t/2) + f* (¢/2) < 2f* (¢/2) and
Lebesgue’s Theorem on dominated convergence implies H f—f ] [;q — 0 as
n — o for g # oo.

It is well known that a linear mapping of one Frechet space into another
is continuous if and only if it maps bounded sets into bounded sets. (See
[6, p. 54].) Since || f||,4 is positive homogeneous, a linear operator T which
maps L (p, q) into L (p’, ¢’) is continuous if and only if there exists a positive
number ¢ such that || Zf||,, < c||f||,» where ¢ is independent of
feL(p,q).

Let us note the following interesting and useful result:

(2.5) Suppose T is a linear operator which maps characteristic functions
1e» m (E) < oo, into a Banach space B and || Tyg|| < || xe|[p1
where c is independent of yg. Then there exists a unique linear extension
of T to a continuous mapping of L (p, 1) into B.

Proof. Suppose f = 0 is a simple function. According to (1.5) we write
f = Zf, where f, = ¢, xp, and f* = X f,. Then

=2 Th] sz ]s,

p=c|f

*
pl-

| 771 = [ TEs

Then || 77 || < <" || f]|;1 for any complex-valued simple function f. Since
the simple functions are dense in L (p, 1) we can then extend T uniquely
to a bounded operator of L (p, 1) into B.

It is of interest to know which of the L (p, g) spaces may be considered

to be Banach spaces.

(2.6) L(I,1)and L (p,q),1 <p =< 0,1 < q £ 0, are Banach spaces
for any measure space (M, m). For any other p, q there are measure
spaces such that L (p, q) cannot be considered to be a Banach space
in such a way that the topology corresponding to the norm is comparable
to the metric topology.

Proof. 1Tt is immediate that |[.||,,, with » = 1 is a norm. This norm is
applicable to the spaces L (p,q), 1 < p < o0,1 £ ¢ < 0. ||.||1; is already
a norm for L (1, 1). Also, note that |.]| HH’&O

11 =

L’Enseignement mathém., t. XII, fasc. 4. 18
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Let M = (0 c0) and m be real Lebesgue measure. Since L (p, q) is a
Frechet space, (2.6) follows from the fact that none of the remaining spaces
contain a bounded convex open set. (See [16].) This is easily seen from the
following constructions:

Incase 0 < g < 1 let

0<t <2 kr

|
fi@®) =

lo t227%, kx21.

Then || f;

n
L but || T Al = 0 as 1 - oo.
n o= |

1
In case 0 < p < 1 choose ¢ such that 1 < ¢ < -and let
p

! k-Aimte o< <k+1
fk(t) =

| 0 otherwise, k = 1.

n
Then || f; |[pe < 1, but H’—szkH;q—»oo as n — .
k=1

In the cases where p = 1 divide (0, o) into pairs of intervals
Lio, Iy, where Ioq = (0,17, Iy = (1,2]
Lio = (2773 + (k—1) 2k 2%(3) + (k—1)27'] and
Ty = Q13 + k=121, 2°(3) + (k=1) 2], k=1. Let

k k—1 ‘
JkO == ( U IiO)U( U Iil) and Jkl = Ikl' Note that i JkO l — | Jkl | "
i=0 i=0

If f,o is zero on J define f;; by

0 tedyo
fa@® =1 fro(t—1Jko D) teJyy
- fro otherwise .

In case ¢ = oo let
k=1 tel,,

Joo =
0 tel,,, k=0.
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1
In case 1 < ¢ < oo choose- < o < 1 and let
q

2—k'k—a tEIkO

Joo (D) =
0 teIkla k%o.

The result is then seen by considering sums of the form f; 11 o = (fro+/x1)/2
k=0,1,..

For the remainder of this section let us consider continuous linear
functionals I on L (p, ). We have |I(f)| £ B * forall feL (p,q).

Consider L (p, 1), 1 £ p < 0. Define u (E) =1 (yg). u (E) is a measure
and | u(E)| < B|| xe|[; [m (E)]'/?. Hence, puis absolutely continuous
with respect to m. The Radon-Nikadyn Theorem (see [7, p. 138]) then gives
a function g (x) such that u (E) = I (xg) = gz (x) g (x) dm (x). This

M

leads to I(f) = [f(x) g (x)dm (x) and hence | [ f(x) g (x) dm (x) |

< B|| f||,1 for all fe L (p, 1). Setting f'(x) = [exp (—i arg g (x))]. xz(x) we
obtain || g (x) | dm (x) £ B [m (E)]'/?. Therefore,

(E)ilg(x)idm(x) <B[m(E)] e < g~ 1/¥

for t £ m(E), where 1/p -+ 1/p’ = 1. It follows that g** (t) < Bt /7 5o

geL(p', o) and ||g||,» < B. (It isinteresting to note how naturally g**

appeared in the above discussion.) Conversely, for any ge L (p’, o0),

1(f)= [ g(x) f(x)dm (x) defines a continuous linear functional on
M

L (p,1). Since

If g f(x)dm(x)| = 5 g*r@f*mde = )1 “UP (1) dt

=plg

This proves that L (p’, o) is the conjugate space of L (p, 1). For the same
reasons that L! is not the conjugate space of L® we cannot expectL (p, 1)
to be the conjugate space of L (p’, o).
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Suppose now that [ is a continuous linear functional on L (p, ), 1 <p < o0,
1 < g < . Since || f||;4 < || f|l51, ! is also a continuous linear function
on L (p, 1). Hence, there exists a function ge L (p’, o) such that

(%) I(f) = [ f(x)g(x)dm(x) forall feL(p,1).
M ,
In particular, (*) holds for all simple functions. Using (*) and [l (f )]
. I 1 1 1
< B||f||pq it can be shown thatgeL (p,q), -~ +— =1, - +— = 1,
p p q 4

and (*) holds for all fe L (p, q). Conversely, for any g e L (p’, ¢'), (*) defines
a continuous linear functional on L (p, ¢). We have obtained
| i

2.7 The conjugate space of L (p, 1) is L (p’, o), where ! +—-=1.
p

P
The conjugate space of L (p,q), 1l <p < 0,1 < g < o0,isL(p’, q'),
1 1
where - 4 — = 1, ~ + — = 1, and hence, these spaces are reflexive.
p p q (4

According to (2.5) any continuous linear functional on L (p, g), 1 Ep< o0,
q < 1, can be extended to a continuous linear functional on L (p, 1).

Suppose [ is a continuous linear functional on L (p, 1), 0 < p < 1. Let
us assume that m (M) < oo. Since (M, m) is o-finite this will result in no
loss of generality in the following argument. We have

*
11 -

;1 = B[m (E)]l/p < B[m (M)](l/p)—l ” XE

[ 1(xe) | —§B“XE

Hence, by (2.5), I can be extended to a continuous linear functional on

L(1,1) = L' Then there exists a function ge L™ such that I(f)"

= [ f(x) g (x)dm (x) for all feL'. Also, || g(x)f(x)dm(x)|< B||f
M M

As before, we have

*
pl:

[ 1g(x) | dm(x) < B[m (]
m(E) g

In case (M, m) is non-atomic this implies that g (x) = 0 a.e. and, hence§
=0 on L(p,1). It follows that the trivial functional 1 = O is the only |
continuous linear functional on the spaces L (p,q), 0 <p < 1,0 < g < o0.
If I is a continuous linear functional on L (1, q), 1 < ¢, then [ is a contin-
uous linear functional on L (1, 1) = L', so there exists a function ge L* |
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such that I(f) = I.Lf(x) g(x) dm(x) for all fe L(1,1) and I;{f(x) dm(x) |

< B || f||is- If (M, m) is non-atomic we can use this to show that g = 0 a.e.
and, hence the trivial functional | = 0 is the only continuous linear functional
on L(1,q9), 1 < g < o0.

Section 3. INTERPOLATION THEOREMS

Suppose T is an operator which maps L (p;, ¢;) boundedly into L(p';, q';),
i = 0, 1. An interpolation theorem for L (p, q) spaces can then be described
as a method which leads to inequalities of the form || 7f || ;.o < B||f ||
B independent of f'e L (p, g). The intermediate spaces L (p, g) and L(p’, q')
and the corresponding constant B are determined by the method of inter-
polation.

Interpolation theorems can generally be classified as either weak type
or strong type. The two types of theorems are easily characterized. The
weak type theorems are proved by real variable methods which utilize
only minimal hypotheses. Since the weak hypotheses are characteristic of
the real method of proof, the conclusions are limited. In the case of Lorentz
spaces the essential part of the weak type hypothesis is that the range spaces
of the given end point conditions are weak L? spaces. We can then conclude
only that an intermediate space L (p, q) is mapped boundedly into an appro-
priate space L (p’, q¢'), where ¢' = ¢. In order to utilize a stronger hypothesis
to arrive at a stronger conclusion, we must go to the complex methods of
proof which are characteristic of the strong type theorems. The two methods
also differ in the intermediate spaces obtained and in the behavior of the
corresponding constants B. In general, we obtain more intermediate spaces
by the weak type methods. However, the constants corresponding to the
weak type methods are, in some sense, not as satisfactory. This is seen in
the prototypes of the weak and strong type theorems, the interpolation
theorem of Marcinkiewicz and the Riesz-Thorin convexity theorem.

An operator 7 mapping functions on a measure space into functions
on another measure space is called quasi-linear if T ( f+g) is defined when-
ever Tf and Tg are defined and if |T(f+g)| £ K(| If|+| Tg|) ae.,
where K is independent of f and g. An argument similar to that which led
to (1.6) gives

(3.1) (T(f+9)* () £ K((TH*(t/2) + (Tg)* (1/2)).
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Our weak type theorem is a consequence of Hardy’s inequality.

WEAK TYPE THEOREM: If T is quasi-linear and

H) |11,
then

Y

. 5 i=031: Po <DPi, p;7ép’13

PLQE ==

where q <s and, for 0<0 <1, 1/py= (1-0)/po + 0/py, 1/p,

= (1=0)/po + 0/py. If t = min (q, qo, qy), then By = O ([9(1— 01 ”’)

Proof. Letp = p,and p’ = p,. Since
it 1s sufficient to prove C) with s = gq. Slmllarly, we assume that Jo = g1 =
oo and that ¢,, g, < ¢, except when p; = g, = oco. Put

ORI VYRS
HOE

0 otherwise

1/py — 1/p° 1/p’ — 1/p]|
and £, (x) = £(x) — £(x), wherey:lﬁ _12‘; =1;§_1/Lp.

It follows from the definitions that

t* f*(y) O<y<ty
f () = { y =
(3.2) < and
x f*@® O<y<?t
Lft(y)é{f*(y) y =1,

Case 1: p; < o0, g < 0. ,
We use (3.1), a change. of variables and Minkowski’s inequality (or, if
g < 1, an obvious substitute which introduces an additional factor of 2'/9)

to obtain

| Tf ;e = K217 (q/p)“q{(f [£/7 (Tf‘)*(t)]q )”"\

® , d
+ (j' [tllp (Tft)*(t)]q-t—t)”q} .
0
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By H), this sum is majorized by

Podo

: v . opp . dt .,
K2 Gl ([ [Bo 017 | [ )
0

. dt

P1‘11]q _2_)1/4 } )

By using (3.2) and Minkowski’s inequality again, we dominate this by
{ K21p (q/pf)llq } .

+ (J [By P
0

o0 t7 ’
{Bo (J‘ t—q(l/p{,—l/p’) [@ j‘ [f* (y)]qoy(qo/po)~1 dy]q/qofl_t)l/q
0 Poo l

o , , q (9] _ dt
+ Bl(i (1 =UPD [ ZL [ [ f* () ]aytar/ey) 1dy]q/q17)1/q

Pivw
© ! dt
+ B; (j 1a(1/p"=1/p}) [@_ j' [f* (t)’)]th y(q1/p1)—1 dy]q/ql _)1/q } ‘
0 Pio t

Again changing variables and then using Hardy’s inequality, we majorize
the last sum by

K217 |y I“”q(P/p’)“q{ " " & T Bl} I ‘
(1 = (po/p))!* ~ ((ps/p) — D' |

(Note that in order to apply Hardy’s inequality it was necessary to weaken
the hypothesis so that g/q; = 1,1 = 0, 1.)

Case 2: py < 00, g = 0.

Following the proof of case 1, we obtain

1y

VP (Tf)* (f) < K-2/¥ { B, tllp’—l/p{,(flﬂj' [j* (y)]qoy(qo/po)—l dy)llqo
Po o

+ B1 (1P =1/p" (C‘_Il }o[f* (y)]q1 y(fh/m)-l dy)1/q1

Py
ty
+ B, 1P =1/p; (q_l j [f* (t)]q1y(q1/p1)-l dy)l/‘“ } .
Pio

Then, after use of the estimate y'/? f* (y) < || /||, the proof of case 2
is clear.
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The remaining cases are

Case 3: p, =¢q, = o, g < 0,
and
Case 4: p; = q, = q = 0.

The proofs of these cases follows the proofs of cases 1 and 2, except we
now use the estimate || £, || < f* (7).

An operator 7 which maps functions on a measure space into functions
on another measure space is called sublinear if whenever Tf and Tg are
defined and c is a constant, then T ( f+g) and T (¢f) are defined with

JIT(f+9)|§ITf|+|Tg| and

(3.3)
LIT(h)] = lel-|TSf].

It follows that
(3.4) [[Tfl = 1Tgll =21T(f—g)]|.

Our analogue of the Riesz-Thorin convexity theorem depends on
harmonic majorization of subharmonic functions.

STRONG TYPE THEOREM: Suppose T is a sublinear operator and
* .
” Tf HI’;q; é Bi ”f Pid;? I = 0, 1.

Then || Tf || ygq0 < BBo ™ By || ||y, Where 1/pg = (1—06)/po + 0/p1,
1/pe = (1= 0)/ps + 0/py, 1/qp = (1—06)/go -+ 6/q; and 1/qy = (1—-0)/qe
- 0/q;, 0 < 0 < 1.

Proof. Let py=p, gy = g, s == P, and g = ¢.
Suppose that fis a simple function. Then f can be written in the form

f(x) = T (Go (%)) 7°(Gy (x)),
where G; is a non-negative simple function such that
;i‘Ii é B(”f”;‘l)q/ql 2 i = 0’ 1 ‘

To see this, consider (f*)**, 0 < r < min (po, P1> 90> 915 q’o, ‘]’1)- We have
(f*)** (¢) = (ho (1))' ~° (hy (1))°, where

h,(f) = [(f*)* *(t)]q/qi ta/ai) @/p—qilpi) , i =0,1.

(3.5) | G:
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> dt
If Sh(u)=(]I[h (t)]’Y)”', it is not difficult to see that f* (u)

< S ((f*)**) (1), and hence, by Holder’s inequality, that f *(u) < (Sh, (1))' ~°
(Sh, ())°. G; is obtained by choosing values smaller than Sh;. (3.5) follows
from Hardy’s inequality.

Let F(x,z) = /™ [G, (0] 2 [G; (x)]5, z complex, 0 < Rez £ 1.

Since G; is simple and non-negative, i = 0, 1, TF ( , z) is defined for z
fixed. By considering first a countable dense set {zk} x>1 and then.extend-
ing by continuity to all z, we may assume that except for a set of measure
zero | TF (v, z) | is defined for all z and y fixed and (3.3) and (.3.4) are true
pointwise in y. Fix such a point y. (3.3) and (3.4) imply that [ TF (y, z)[
i1s a bounded and continuous function of z, 0 < Rez < 1. We need that
log | TF (y, z) | is subharmonic in 0 < Rez < 1. This follows from the
fact that |TF (y, z) | €"® is subharmonic for every harmonic function / (z).
That is, let H (z) be analytic with real part 4 (z). For a fixed point z let
Zrms K = 1, ..., m, be points which are evenly distributed over the circle with
radius r and center z, m = 1. If D (x, m, z) is defined by

1 m
e F (x,z) = — Y F(x, zy,,) "™ 4+ D(x, m, z),
k=1

then

m

1
"D TF(y,2)| < — 3 "™ | TF(x, 24, | + | TD(y, m,2)].

k=1
N m
Since D (x, m, z) is of the form ) (¢;(z) — - Y @, (z,) Xe; (x), with @;
j=1 Ny=1
analytic, we may again assume that (3.3) holds pointwise in y, so
| TD (y, m, z) | - 0 as m — 0. Then

2n

1 : .
eI TF(y,2)| < o~ O TF(y, z+re) | 0,
o
so log | TF (v, z) | is subharmonic.

The preceding paragraph implies that log l TF (y, z)| 1s majorized in
0 < Rez < 1 by the Poisson integral of its boundary values. In particular,

log | TF (y,0) | = [ Po(6,¢)log| TF (y, ity | dt + | P,(6,t) log | TF(y,
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1+ it) | dt, where Py (0, ) and P, (0 t) and P, (6, t) are positive, [ Py(0,1)

dt =1—0and | P, (0,1)dt = 0. We then obtain

— O

| TF(y,0) " = {exp(l—_l_—ej Py (0,0 1og | TF (y, it) l’dt)}“"

{exp( [ P 0,0)log | TF(y,1+it)|" dt)}

-~ 00

Noting that TF (y, 0) = Tf(y), we use Jensen’s inequality to obtain
| Tf ()| < Ho(»)' ™% Hy (y)°,
where

1
Hy(y) = (-—-—I Py (0,1) | TF (y,it)|"dt)''"

== 0D
and

1
Hy(y) = (———~f Py (0,0 TF(y, 1+it)[mde)'/".

== 00

Holder’s inequality implies (Tf)** (y) = { Ho (» }'~° {H" (»)}° and then

Hpoq H 1 Hpm

1
By Fubini’s theorem, H, () < (——~ j P (0, t) [TE** (y, it)]"dr)!/".

— 00

Hence

L7 .
“ H, “Poqo < (p I (1 9-[ Py (6,1 [TF**(y,it)]’dt)q"/'y(q“/p")_ldy)'/q _
00 —V -
By Jensen’s inequality the right hand term is dominated by
1
po (j) (____j P, (0, t)[TF**(y lt)]qodt) (90/pd) - ldy)llqu

Thus, using Fubini’s theorem, our hypothesis and (3.5), we have

1
” Hy ”poqo = (__ j Py (0,1) ” TF(-,it) “ dt 1y
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< BBy (1] o0 | FCin) [, d0)
= 58, Gy 5, < BB L1 [1Jo
Similarly, | I, Hpiqi < BB, []If s/

We now have

(3.6) | Tf | e < BBo™°BY ||f || g

where f is any simple function. |

For any f'e L (p, q) we find a sequence of simple functions f, such that
1/ lloa = ||.f |loq and | Tf, | = | If | a.e. Then, using Fatou’s lemma, we have
(TF)** (¢) £ lim inf (Tf,)** (¢) and || If||, o < liminf || TF, ||,q. (3.6)
then implies that || Zf||;, < BBo ™ BY || /|| e

Note that in case p, = Go, P; = q1, Po = qo and p; = ¢; the proofis
simpler and the constant B may be omitted from the conclusion so the
constant By % B of the Riesz-Thorin convexity theorem is retained.

Section 4. APPLICATIONS

Many classical operators are known to map L? boundedly into L7,
where the points (1/p, 1/p") form a non-degenerate line segment and p < p'.
Operators of this type are, for example, the Fourier transform [32, Vol. I,
p. 254], the Hilbert transform [23], the Hardy-Littlewood maximal function
operator [32, Vol. I, p. 32], singular integral operators [4] and fractional
integral operators [12] and [28]. We see from the weak type interpolation
theorem that operators of this type map L (p, g) boundedly into L (p’, ¢),
0 < g £ oo. Hence, we know the behavior of the operators acting on some
additional spaces. If p = p’, this is the only extension of the L? results.
However, if p < p’, the L? result is improved, since we see that L? is
mapped boundedly into L (p’, p), a space which is continuously contained
in L7,

The germ of the weak type theorem can be seen in a theorem of Hardy
and Littlewood on the rearrangement of Fourier coefficients. (See [32, Vol. 11,
p. 130].) Let us develop an L (p, q) version of this result for the Fourier
integral transform.
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We write the Fourier transform of a function fe L' (E,) as

(4.1) 70 = [ f(ye ™ ady.

En
Recall that if s is a simple function then (4.1) defines s~ and we have
5™ ||2 = || s||.- The Fourier transform can then be uniquely extended
such that || /™ ||, = || f||. for all fe L? (E,). Suppose fe L(p, q), 1 <p < 2,
1 £ g < oo. Then fe L' -+ L? and, hence, f” is defined. We have (4.1) and

(4.2) fG) =[ 7 e*™dy = (7)Y (%),

in the sense that

J fMe?™¥dy > f7(x) and | f7(x)e*™Vdx - f(y)

ly[<R |x[<R

in the appropriate L (p, g¢) norm as R — 0.

THEOREM 4.3 Suppose 1 < g < 0,1 <p <2andlfp+ 1/p" = 1.
(a) feL (p,q)ifandonlyif for all F such that F* = f*, there exists
F” = geL(p/, q). Furthermore, g~ = F a.e. and || g||;q < B|| /][54
(b) ge L (p/, q) if and only if, for some G such that G* = g*, there
exists G¥ =fe L (p,q). Furthermore,f¥ =G q.e. and || g||,o < B || /|| s
The proof of Theorem 4.3 depends on a result which is a slight extension
of a lemma found in [32, Vol. II, p. 129]:

LeMMA 4.4. Suppose f(t) is non-negative, locally integrable and an even
Sfunction of t, —o0 < t < oo. Further, suppose {(t) is non-increasing on

(0, ) and f(t) > 0 as t - co. Then g(x) = | f(t) cos xt dte L (r, q)
0
if and only if feL(1',q), where 1= q=< o, | <r <o and
I/r 4+ 1/r' = 1.
Proof. Suppose geL(r,q). Let G (x) = [g (y)dy. Then |G (x)]|
0
< | x| g** (| x |). Elementary arguments show that

dt

G(x) = | f( sin xt—t~,

S~ 8

and then | G (x) | = Bf(1/] x|). (See [32, Vol. II, p. 129]) It follows that
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f*(t) £ B(1/t) g** (1/t), t > 0. A change of variables and Hardy’s inequal-

ity then show that || f||;, < B|| & ||re-
Conversely, suppose fe L (r’, g). We have

1/]x|

lg(x)| B f(Ody.

(See [32, Vol. II, p. 129].) Hence, | g (x) | is majorized by (1/] x )./ ** (1/] x |).
It follows that g* (r) < B(1/t) f** (1/t), t > 0. As above, this implies that
g7 = B f][7e

Proof of Theorem 4.3. F” and G are given by (4.1) and (4.2). The
inequalities are obtained from the weak type interpolation theorem and the

end point results || /™ ||, = || f||> and|| /" || = ||.f]|1- The theorem is then
clear for n == 1, since 2g = f~ = f for functions of the type described in
Lemma 4.4. For n > 1 use special functions of the form

f(xq)- Ar0, 11 (x5) ... X0, 13 (xn)

where x = (x4, ..., x,) and fis as in Lemma 4.4.

We prove a multiplication theorem for functions belonging to L (p, q)
spaces. This result is used to prove a convolution theorem for the L (p, q)
spaces which are Banach spaces. Note that functions which do not belong
to one of the Banach spaces are not appropriate for convolution since they
are not necessarily locally integrable.

THEOREM 4.5. (Multiplication theorem):

Hfg :"1 = B HfHPoqo Hg HP1‘11 ?

where 1/p = 1/py + 1/py and 1/q = 1/q, + 1/q;.

Proof. Applying Holder’s inequality twice, we obtain (fg)** (¢, r)
< f*¥* (1, 2r) g** (¢, 2r) and then the theorem.

Suppose (G, dm) is a locally compact unimodular topological group,
where dm is Haar measure on the group G. The convolution of two functions
is then defined by /* g (x) = [ f(») g (xy~ ') dm(y), provided the integral
exists. We develop a convolution theorem for L (p, ¢) spaces by interpolating
certain end point results.

Lemma 46. ||f*g |50 < B||f

P10 =

* *
11”8 p100’1<p1<oo'

1
Proof.  (f*¢)*() = sup ——= ) |f*g(x)|dm(x).
m(E) =t m(E)E
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By Fubini’s theorem

1
(E)f 1f*g (x) | dm (x) £ —@J(Jlf(v)l |9 (xy™") [dm(y))dm (x)

= I (E)J lg Cey™ ) 1dm )1 ) [dm () ,
but

(E)J lg (xy™) [dm(x) < g** (1) = Bt/ {1 g |];,

1t follows that £1/21 (f* g)* (£) < B

Lemma 4.7. || f* g||5e = B ][5
1/py + 1/py = 1.
Proof | /g )| ==|[f()g(xy~t)dm(y) | By (1. 9) this is majorized

by j'f (t) g* (t ) dt, which is dominated by || g ||;,0 jf* (1)~ 1/ dt.

where 1 < p, < oo and

By applying the weak type interpolation theorem to the end point
results of Lemma 4.6 and Lemma 4.7 we obtain

LemmAa 4.8. || /* g||ne pios  Where 0 < 1/p = 1/p,
+ 1/p;—1<1,1<qg=5 © and1<po,p1<oo.
Lemma 4.8 contains the fractional integration theorem of Hardy and
Littlewood [12] and Stein and Weiss [20]. It is interesting to note that it
is not true that

(*) Hf*glloooo__BHprOpngH Py 3

B independent of fand g, 1/p, + 1/p; = 1. (See [12].) Hence, the classical
Maerinkiewicz interpolation theorem for L? spaces does not apply directly
to obtain Lemma 4.8. The Stein-Weiss extension of the Marcinkiewicz |
theorem does apply directly. (See [30].) Their theorem uses the end point
result that (*) is true if f'is restricted to the class of characteristic functions
of measurable sets of finite measure. According to (2.5) this is equivalent
to the end point result of Lemma 4.7.

Lemma 4.9. ||f *g],: £ B I f“;oqo | 2lp,q> where 0 < 1/p = 1/p,
+1/p;—=1<1,1/qo+ 1/qy = 1 and 1 < py, p; < 0.
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Proof. From (2.7), we have
f*g 1l = Sl;pB | [f*g () h(x)dm(x)],

where h* (1) < t4/P71 Let I (h) = [f* g (x) h (x) dm (x).

T = [T TgGy™D dm ) [h(x) [dm(x)
= {IfMIJTgGy™ 1 Th(x) [dm(x))dm (y) .

Hence, | I1(h)| < ||fk||i1, where k(») = [|g Gy~ |.|h(x)| dm (x). By
the multiplication theorem it follows that | 7 (h) | < B||f||p. | & lpsass
where 1/p, + 1/p'y = 1. But k=g |*| k|, where g (x) = g(x™ ). Hence
by Lemma 4.8,

1k g, £ B G g, 17 110 S BI1G pya, -

Since (G, dm) is unimodular, we have (§)* (#) = g* (¢) and the lemma
follows.

By applying the strong type interpolation theorem to the end point
results of Lemma 4.8 and Lemma 4.9, we obtain

THEOREM 4.10. (Convolution theorem):

11/* 9 Ung < B S Mgy 119 ey »

where 0 < 1/p = 1/py + l/p;—1 <1, 1 <pg,p; < o0 and 0= 1/q
= 1/qo + 1/q; £ L.

Section 5. REFERENCES

Various properties of L (p, q) spaces have appeared in many places,
often as special cases of a more general theory. We will mention several
places where related results and applications are found. The references
given are not necessarily the first or the only place where the indicated
result appears.

The principal references are [19] and [20], where G. G. Lorentz defines
special cases of L (p, q) spaces and proves many of their properties. The
notion of a non-increasing rearrangement of a function was used by Hardy
Littlewood and Payley. (See [32].) A simple proof of the inequality || /|54,
< B||f|lpap 41 £ 42, is found in O’Neil [22]. The technique used in the proof
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of Hardy’s inequality is well known. A different proof of Hardy’s inequality
is found in [9, p. 245] or [32, Vol. I, p. 20]. The author learned the simple
proof of inequality (1.9) from class notes from a course given by A. Zyg-
mund in Chicago. A similar proof is given in [11, p. 278].

The L (p, q) spaces which are Banach spaces appear as intermediate
spaces in the general interpolation theory of Calderén [1]. Peetre [24]
identifies L (p, q) spaces as intermediate spaces for the interpolation theory
of Lions and Peetre [18]. Many L (p, g) results are then contained in these
general theories. In particular, there are results concerning density, inclu-
sion, separability and duality of the spaces. A ** norm is used in these
results. Riviere [25] generalized the results of Calderén [1] to include
L(p, q), p, q > 0. Similarly, P. Kree and J. Peetre generalized the results
of Lions and Peetre [18].

(2.5) is proved by Krein and Semenov [18] and is contained implicitly
in Stein and Weiss [30]. Halperin [8] and [9] obtains general results on
conjugate spaces and reflexitivity. Results on uniform convexity of some
related spaces are found in Halperin [10]. The results concerning linear
functionals on L (p, q), p < 1, correspond to results of Day [5] for L?
spaces 0 < p < 1.

The weak type theorem of Section 3 restricted to linear operators on
the L (p, q) spaces which are Banach spaces was proved by A. P. Calderdn [2].
We learned that E. M Stein also obtain these results. Proof of these cases
is found in Lions and Peetre [18], together with Peetre [24]. Also see Calde-
ron [1] and Oklander [21]. Krein and Semonov [17] prove some special
cases. The theorem is closely related to results of Stein and Weiss [29] and
[30]. The weak type theorem for L (p, q), p, ¢ > 0, is proved in Hunt [14].
These cases are also contained in work of P. Kree and J. Peetre.

The strong type theorem of Section 3 for linear operators on the L (p, g)
spaces which are Banach spaces is found in Calderon [1]. These results are
related to results of Hirschman [13], Stein [26] and Stein and Weiss [27].
The result for sublinear operators follows ideas found in Calderén [l1],
Calderén and Zygmund [3] and Weiss [31]. Riviere [25] obtains results for
linear operators acting on L (p, q) spaces, p, g > 0.

Stein [26] proves an analogue of Theorem 4.3 for Fourier coefficients.
The multiplication and convolution theorems are proved by a different
method in O’Neil [22]. E. M. Stein also obtained these results. (See [22].)
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