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A REMARK ON KRONECKER’S THEOREM

by K. MAHLER

Kronecker’s theorem on the inhomogeneous simultaneous approxima-
tions can be obtained in many different ways. Perhaps the simplest proof
is based on the geometry of numbers, as I shall show in this note.

The basic facts from the geometry of numbers can be found in the book
An Introduction to the Geometry of Numbers by J. W. S. Cassels, Berlin 1959.
We follow the notation of this book ; references to it will bear the letters IGN

and the page number.

1. The n-dimensional space of all points
X =X, .0.0%), ¥V =0U.nV), 0=1(0,..0)

with real coordinates is denoted by R". Points in R" are considered also
as vectors. The sum of two points x and y is then defined by

X+ y =X +Vi5ees Xn+ V) s
the product of the point x with the real number ¢ by

tx = (tXq, ..., 1X,) ,

and the inner product of the points x and y by

Xy =Xy + ... +X,V-

The real-valued function F(x) of x in R" is called a convex distance
function if

F(0)=0; F(x)>0ifx=0. (1)
F(tx) = [t|F(x). (2)

Fx+y) = F(x) + F(p). 3)
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When F(x) is such a convex distance function, the point set K defined by
K: F(x) £1

is convex, bounded, closed, symmetric in 0, and it contains O as an interior
point. The volume of K defined by

hn

V = jF fdx, ...dx

is a positive number (IGN 108 f.).
It can be shown that with every convex distance function F (x) there is
associated a second convex distance function

Xy
F*(y) = sup —— = sup xy,
F(x)
X #0 Fx)=1
and then, conversely,
Xy
F(x) = sup ” = sup xy.
F*(y) i
y#o F*(y) =1

The two convex bodies
K: F(x) =1 and K*: F¥y) =1
are polar reciprocal with respect to the unit sphere
E: xx =1

in the sense that every point y on the frontier of K* has as its polar hyper-
plane relative to E the tangential hyperplane (or rather, tac-hyperplane)

xy = F*(y)

of K. The analogous relation holds when K and K* and hence also F (x)
and F* (y) are interchanged (IGN 112 f.).

2. A lattice point in R" is a point with rational integral coordinates.
In terms of these lattice points the n successive minima of the convex body K

are defined as follows.
The first minimum m! is the smallest value of F(x) at any lattice

point x # 0; denote by x*) # 0 a lattice point satisfying

F(xM) = m™,
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Next let 2 < k < n, and assume that the first k — 1 successive minima
m®,....om* Y and k — 1 corresponding independent lattice points
xD L x%T D satisfying

FGx™ = m®  (h=1,2,....k—1)

have already been defined. The k—th minimum m® is then the smallest
value of F(x) in any lattice point x that is linearly independent of
xM . x%" Y and we denote by x* such a lattice point for which

F(x®) = m®

It can be proved that the n successive minima m‘'), ..., m™ are unique.
They satisfy the inequalities

n
o< mmy 2 < VmPOm® om0 (4

0 <mV <m®
o n!

IIA

The corresponding n lattice points x*’, ..., x® are not unique. They are
linearly independent and so form a base of R", but they need not form a
base of the set of all lattice points (IGN, 215 f.).

There naturally exist also n successive minima m*™), ..., m*™ of the

polar reciprocal couvex body K* and a set of » linearly independent lattice
points y®1), ..., ™ such that

F*(y®) = m*®  (k=1,2,...,n).

- These minima satisfy inequalities analogous to (4).

By a general theorem in the geometry of numbers (IGN 213 f. and 219 f.)

the two sets of successive minima are related to one another by the system
- of »n inequalities

i

1 € m® mxe=* D <yt (k=1,2,...,n). (5)

The two sets of successive minima of K and K* are also connected with
the problem of inhomogeneous approximations. Let x° be an arbitrary
points in R". There exists then a lattice point x such that (IGN 313 f.).

nm®™ n-n!
F(x—-x% < < . (6)

= 2 T oamr)

3. We give now two kinds of applications of the results just stated to
inhomogeneous problems; both can be generalised.
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First let n = N + 1 where N = 1. We number the suffixes of the
coordinates 0, 1, ..., N rather than 1, 2, ..., n as before. Denote by «, ..., ay
aset of Narbitrary fixed real numbers and by 4 and Btwo positive parameters.
Then the expressions

F(x) = A(|xy —oyxo| +... +|xy —onyxo]) + Bl xq |
and

.y + ... +
F*(y) = max<|)’1| . |yl 1Yo + a4 Ay Yn |>

A 9 verny ‘4 b B

form a pair of polar reciprocal distance functions. With a slight change of
notation, let m‘®, mD ..., m™ and m*©, m*D_ .. m*™ be the two
corresponding sets of N + 1 successive minima.

It will be assumed that
F*(y) 2 1 for all lattice points y # 0.
This is equivalent to the hypothesis that
m*(©® > 1.

Therefore, with a trivial change of notation, the formula (6) implies that
for any given point x° there exists a lattice point x satisfying

(N+1)(N+1)!
> .

F(x —xp) <

These estimates can be expressed in a more explicit form. Put

0 0 0 0 0
Bo = X0, By = a3y Xg — X1, ...,y = ayXo — Xy,

where x° has the coordinates
0 0 .0 0
XY = (X(y X1y eeer Xy) -

For any given N + 1 constants f,, B, ..., By there is always a unique
point x° satisfying these equations.
The result obtained may now be expressed in the following form.

THEOREM 1. Let oy, &y, ..., 0y, A > 0, and B > 0 be real numbers such that

|yo + %3y + ... +ayyy| 2B
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for all lattice points y satisfying

y#0, max ([yil, |y2l, .., lyn)) £ 4.

Then for every choice of the real numbers g, f, .... Py there exists a
lattice point x such that
(N+2)!

[Xo—=PBo| = ——zg—a loeyXg —xy =Byl + oo+ layxg — Xy — Byl =

(N+2)!
24

Assume, in particular, that the N 4 1 numbers

L, a0, 0, ..., 0y

}

are linearly independent over the rational field. Then to any arbitrarily
large number 4 > 0 there exists a number B > 0 satisfying the hypothesis
of the Theorem. Therefore the N quantities

o Xo — X — B | (k=1,2,...,N)

can simultaneously be made less than any prescribed number ¢ > 0 by a
suitable choice of the lattice point x. In addition, if J is any interval of
(N+2)!

length , then there is a lattice point x with this property for

' which x, e J.
4. For the second application put » = N and denote by o, «,, ..., oty

a set of N real numbers where ay # 0. Let further 4 and B be again two
positive parameters. The two expressions

A
F(x) = (layxy —o Xyl + .o+ Jayxy g —ay_1xy|) + [ xy |
| oy | oy |
- and
_ o + ... +
FR{)) = max |J’1|’”_,IJ’N 1|,| 1)1 oAy Yy |
A A B

- form then a pair of polar reciprocal distance functions. Denote by
L m®, L om™ and m* O, . m*® the two corresponding sets of successive
minima.
It will again be assumed that
F*(y) 2z 1 for all lattice points y # 0,

so that
m*@) > 1.

L’Enseignement mathém., t. XII, fasc. 3. 13
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By the formula (6) there exists then to every point x° a lattice point x

satisfying the inequality
N-N!

F(x—-x% <
( ) = >

Assume x satisfies the inequality (7). Then

N-1
N+1)!
z laN(xk—xl?) —ak(xN—xl?)l é( tD IO‘NI’
k=1 2A
N+1)!ayl
Xy = X S( .
| Xy Nl = 55

Denote by x,, 8, B, ..., By @ set of N + 1 real numbers and put

)\.k == akxo"‘xk'—‘ﬁk (kzl, 2,...,N).
Then
Xk —xl(c) = O Xo —xl(c) — B — N
and hence

(7)

(8)

oy (x; “xl(c)) — oy (xy —x7) = o (xy+By) — oAy (xI? + B + (uhy —ayky) .

In order to establish a simple result we finally fix x2, x9...,x%_, in

terms of x,, B4, B2, ..., By by putting
o_ % . o
Xk =a__(xN+ﬂN)—ﬂk (k-:],?.,,N—‘])
N

and defining then x, by the equation

It follows that

and

aN(xk—'xI?) "“k(xN"Xg) = —ayN (k=1,2,...,N-1).

By Ay = 0 the formulae (8) imply therefore that

ul (N+1)!

N
|2l = 2 laxo—x— Bl =
kg,l k k};} kX0 k k 2 A

and
(N+1)!ay]
2B ‘

0
ayXo—Xy— Byl £

!
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In the first of these inequalities the parameters x5 and By are still at our
disposal. We choose their values such that the quantity

0
_ XN + By
%N

d

'is equal to any prescribed number. Hence the final result is as follows.

 THEOREM 2. Lef oy, dy, ..., o5, A > 0, and B > 0, be real numbers such
| that ay # 0, and that

oy yy + ... +ayyn| 2 B

for all lattice points y satisfying

y#0, max (|yl, [y2ls s yn-1l) £ 4.

Then for every choice of the N + 1 real numbers By, B, ..., By, and d,
there exists a lattice point x and a real number x, for which

N+1)!

(N+1)!4
< - -,

N
, o, Xg — X — <
kg1lk0 k — Bl = >4

Assume, in particular, that the N numbers

Oy, 0oy veey Oy

are linearly independent over the rational field. Then ay # 0, and to any
arbitrarily large number 4 > O there exists a number B > 0 satisfying the
hypothesis of the Theorem. Therefore the N quantities

Iakx()_xk_ﬁkl (k=1,2,9N)

can simultaneously be made less than any prescribed number ¢ > 0 by a
suitable choice of the lattice point x and the real number x,. Moreover,

(V+1) !

for every interval J of length " there is such a solution x, x,

with x, € J.
The proofs of Theorems 1 and 2 explain very clearly why different con-

ditions have to be imposed on «,, o5, ..., ¢y according as to whether we
require a solution with integral x, or only with real x,.

Australian National University ( Regu le 20 avril 1966 )
Canberra, A.C.T.
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