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Evidemment, si de plus f(0) == 0, V' (0) = 0, V,* (¢) < 0(¢ £ 0), toutes
les solutions de (9) tendent vers zéro (stabilité asymptotique).
Pour appliquer ces résultats a (1), on peut définir la fonction (voir [1])

0

V(g) =G(¢(0) =3[ a(=0)[[g(¢(s)ds]*do

-r

pour laquelle

Vi*(¢) = -%d(r)[f_ g(¢(0)do]* =3 a(=0)[[g(d(s)ds]*do,

pour ¢ € Cy et on peut déduire le théoréme 1 directement du théoréme 4.
Si

1
a(y = ;("—t)

on obtient le théoréme 2 A de la méme maniére; mais de la théorie générale
(théoréme 3) on peut seulement déduire que Q (x (¢)) est un tore de solu-
tions de I’équation différentielle ordinaire

y'+g@() =0
qui satisfont
0
[ gy(t+0)do =0, —o0<t< .

—-Fr

Pour obtenir le théoréme 2 B, C il faut employer les arguments parti-
culiers de [1]. Pour I'idée de cette démonstration voir le supplément.

SUPPLEMENT
1 . .
Avec a (1) = — (r—1) il s’ensuit de (5), (6) que
r

lim | g(x(s)ds = 0.

t—2o0 t—r

Puisque chaque solution de (1) satisfait I’équation
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.t

1
x"(f)+g(«\‘(f))=7j gx(s)ds (0 =t<0),

t—r

on infére que la solution x (¢) tend, dans un sens convenable, vers une
solution de I’équation différentielle ordinaire

(10) w' (1) +gw@) =0,

quand t—oo0. Rappelons que toutes les solutions de (10) sont périodiques
(voir (3)) et satisfont

(an Gun) + 56 WP =k (=0 <i<w®),

ou k est une constante; donc les solutions forment les cycles fermés dans
le plan u, »'. La démonstration précise ces observations.
D’abord, on a de (4) et (5) au-dessus que lim V' (¢) = v existe. Supposons

t— o0

que nous ne nous trouvons pas dans le cas trivial v = 0 — donc I'* (x (¢))
# (0, 0), I’origine du plan. A cause de la continuité des solutions de 1’équa-
tion (10) par rapport aux valeurs initiales et de la définition d’un ensemble
limite on peut donner la description suivante de I’ensemble I'* (x (¢)):

() Si(a, B)el" (x (1)), le cycle fermé y (o, B) de ’équation (10) dans
le plan u, ¥’ a travers (o, f) appartient a I'" (x (¢)).

(i) Soit (ay, By) et (oy, B,) deux points dans I'" (x (7)) et définissons
le tore D (g, By; ¢y, B,) 'ensemble fermé et connexe de tous les points dans
le plan u, ¥’ entre et sur les deux cycles fermés y («y, ;) et y (3, 8,). On a
D (0,0;0,0) = (0,0) et D (o, fy; ey, ) = 7 (g, f;) si et seulement si
(o3, f2) €y (24, B1)- En utilisant encore la continuité, on montre qu’il
existe deux points (a;, ), (%3, B,), tels que '™ (x (¢)) = D (oq, By; &y, Br).

Le but est de montrer que le tore D (a4, fi;; o5, B,) s’écroule dans un
seul cycle; c’est-a-dire qu’il existe un point (p, ¢) € I'" (x (¢)) tel que I'* (x
(t)) = y (p, g). Pour accomplir ceci on montre d’abord, en utilisant la conti-
~ nuité et la périodicité des solutions u (, ty, o, f) de (10) ou u (¢, t,, &, B)
= o, U’ (to, lo, &, B) = B, que

j g(U(T,tO;a,ﬁ)d’c = )

t—r
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pour chaque («, f) e I'" (x (¢)). 11 s’ensuit que
u(t+r, ty, o, f) = u(t, ty, o, f) (—o0 < t,t, <o0),

¢t par conséquent il existe un nombre entier m > 1, indépendant de (a, B),
tel que r = mp (o, B), ol p est définie dans le théoréme 2. Par les mémes
méthodes on montre — voir (4)

t t

1
(12) G (u (1, to, 0 ) + ?J [Jg(u(s, to, &, ) ds]* dv = v = lim V (1),

r - 00

t—r 1 t

pour —oo < t,t, <oo. Puisque v > 0, on trouve que (0,0) ¢ ' (x (1)) et
donc I'" (x (¢)) est un anneau dans le plan u, ' sans 'origine. On peut
tirer la conclusion B, théoréme 2, directement de (12) et de cette remarque,
voir [1], et évidemment on a aussi C.
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