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Evidemment, si de plus/(0) — 0, V (0) 0, K9* (</>) < 0 (0 =£ 0), toutes
les solutions de (9) tendent vers zéro (stabilité asymptotique).

Pour appliquer ces résultats à (1), on peut définir la fonction (voir [1])

o o

V(4>)G(0(0)) - H à(-6)Ug(<P(s))dsfdd
-r 9

pour laquelle

0 0 0

U*(0) ià(r)[Jg(<p(d))dd]2 - i j â(-0)[f g (4>(s))ds]2 dû
-r -r 9

pour cj) g CH et on peut déduire le théorème 1 directement du théorème 4.

Si
1

a (0 - (r ~ 0
r

on obtient le théorème 2 A de la même manière ; mais de la théorie générale

(théorème 3) on peut seulement déduire que Q (.x (0)) est un tore de

solutions de l'équation différentielle ordinaire

y"+g(y) 0

qui satisfont

o

J 9 {y (t + 0)) d6 0 — oo < t < co
— r

Pour obtenir le théorème 2 B, C il faut employer les arguments
particuliers de [1]. Pour l'idée de cette démonstration voir le supplément.

Supplément

Avec a(t) —(r-t) il s'ensuit de (5), (6) que
r

.t

lim J g (x (s)) ds ~ 0

t-*oo t-r
Puisque chaque solution de (1) satisfait l'équation
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a'" (0 + g (x('))7 J g(x^ds(° - œ) '

t-r
on infère que la solution x (/) tend, dans un sens convenable, vers une

solution de l'équation différentielle ordinaire

(10) u" (t) + g(u(t)) - 0,

quand t-+ oo. Rappelons que toutes les solutions de (10) sont périodiques
(voir (3)) et satisfont

(11) G (u (t)) -f — (iu (t))2 k (— oo < / < oo)

où k est une constante; donc les solutions forment les cycles fermés dans

le plan u, u'. La démonstration précise ces observations.

D'abord, on a de (4) et (5) au-dessus que lim V (t) v existe. Supposons
00

que nous ne nous trouvons pas dans le cas trivial v 0 — donc r+ (x(t))
# (0, 0), l'origine du plan. A cause de la continuité des solutions de l'équation

(10) par rapport aux valeurs initiales et de la définition d'un ensemble

limite on peut donner la description suivante de l'ensemble T+ (x(t)):
(i) Si (a, ß) e T+ (x (t)), le cycle fermé y (a, ß) de l'équation (10) dans

le plan w, u à travers (a, ß) appartient à T+ (x (t)).

(ii) Soit (oiußi) et (oc2,/?2) deux points dans T+ (x (t)) et définissons
le tore D (al5 ßi;a2, ßi) l'ensemble fermé et connexe de tous les points dans
le plan u, u entre et sur les deux cycles fermés y (oq, ß±) et y (a2, ß2). On a

D (0,0; 0, 0) (0, 0) et D (oq, ß1 ; cc2, ß2) y (oq, ßt) si et seulement si

(a2, ß2) e y (ai? ßi)- En utilisant encore la continuité, on montre qu'il
existe deux points (oq, ßß), (a2, ß2), tels que jT+ (x (t)) D (oq, ßl; a2, ß2).

Le but est de montrer que le tore D (oq, ; a2, ß2) s'écroule dans un
seul cycle; c'est-à-dire qu'il existe un point (p, q) e T+ (x (t)) tel que T+ (x
(0) y (p, q)- Pour accomplir ceci on montre d'abord, en utilisant la continuité

et la périodicité des solutions u (t, t0, a, ß) de (10) où u (t0, t0, a, ß)
oc, u (t0, t0, a, ß) =- ß, que

t

§ g (u (t, a, ß) 0
t-r
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pour chaque (a, ß) e T+ (x (t)). Il s'ensuit que

u (t+ r, t0, a,/?) u (t, t0, a, ß) - oo < t, t0 < oo)

et par conséquent il existe un nombre entier m ^ 1, indépendant de (a, ß),
tel que r mp (a, ß), où p est définie dans le théorème 2. Par les mêmes
méthodes on montre — voir (4)

t t

(12) G (m (t, t0, a, ß)+ 2 j* [J g (u (s, t0, a, ^]2 — v lim V

f-r T

pour — oo < t0 <oo. Puisque v > 0, on trouve que (0, 0) £ T+ (x (/)) et

donc r+ (x(0) est un anneau dans le plan w, w' sans l'origine. On peut
tirer la conclusion B, théorème 2, directement de (12) et de cette remarque,
voir [1], et évidemment on a aussi C.
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